
Business Transaction Monitoring

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of
this document may be reproduced or disclosed to others without the prior permission of eG Innovations Inc.
eG Innovations Inc. makes no warranty of any kind with regard to the software and documentation, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 2012, Windows 7, Windows 8, andWindows 10 are either
registered trademarks or trademarks of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.

Copyright

©2016 eG Innovations Inc. All rights reserved.

Table of Contents
INTRODUCTION 1

1.1 The eG Business Transaction Monitor (BTM) 1

1.2 Pre-requisites for Business Transaction Monitoring Using eG 2

1.3 How does the eG BTM Work? 4

1.3.1 Installing eG BTM on a Generic JVM Node 4

1.3.2 Installing eG BTM on an Apache Tomcat Server 9

1.3.3 Installing eG BTM on an IBM WebSphere 22

1.3.4 Installing eG BTM on an Oracle WebLogic Server 31

1.3.5 Installing eG BTM on GlassFish 43

1.4 Java Business Transactions Test 54

1.5 Key Java Business Transactions Test 65

1.6 Detailed Diagnostics 74

1.6.1 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction 75

1.6.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown 84

1.6.3 Detailed Diagnostics Revealing the Root-cause of an Error Transaction 88

1.6.4 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down 90

CONCLUSION 94

I ntroduction

1

1
Introduction
A business transaction represents a type of user request to a web application. For instance, the following
types of requests are considered business transactions for an online retail banking application:

l Logging in

l Balance checking

l Funds transfer

l Bill payments

l Logging out

User experience with a web application not only relies on the successful completion of these user
requests/transactions, but also on their rapid execution. This is why, even if a single transaction slows down,
stalls, or fails, user dissatisfaction with the web application as a whole grows. This in turn may cause user
complaints to increase, support costs to sky rocket, and revenues to dip.

To avoid such disastrous results, web application administrators should monitor every business transaction
closely and promptly identify the slow/stalled/failed transactions. Most importantly, administrators will have to
determine where and why these transactions under- performed – i.e., identify the root- cause of poor
transaction performance - so that the problem can be quickly resolved before users begin doubting the stability
of the web application.

Root-cause isolation is often the most challenging! This is because, most web applications these days
overlay multi- tier environments characterized by multiple application servers, database servers, remote
services, etc. Every business transaction to such web applications travels through multiple nodes, using
remote calls to external services, to fulfill its purpose. For example, an online transaction to shop for goods
may access a ShopCart web page on a web server. Every time an item is added to a shopping cart, the web
server may make an HTTP/S call to a web application server to invoke the business logic. The business logic
may then make a database call to run a query for retrieving the total count of goods that that user has shopped
for so far. A slowdown in even one node or a delay in processing even a single remote service call can impact
the performance of the transaction. To accurately isolate where the actual bottleneck lies, administrators
should employ an APM solution that can trace the entire path of every business transaction, measure the total
round-trip time of each transaction, identify the synchronous and asynchronous calls made by the transaction
at various nodes, and compute the time spent by the transaction at each node, for each call. This can be
achieved using the eG Business Transaction Monitor (BTM).

1.1 The eG Business Transaction Monitor (BTM)
The eG BTM employs an advanced ‘tag-and-follow’ technique to trace the complete path of each business
transaction to a web application, end-to-end. When doing so, it auto-discovers the application servers the

I ntroduction

2

transaction travels through, and also automatically ascertains what remote service calls were made by the
transaction when communicating with the servers. In the process, the eG BTMmeasures the following:

l The total response time of each transaction;

l The time spent by the transaction on each application server;

l The time spent by the transaction for processing every external service call (including SQL
queries);

Using these analytics, the eG BTM precisely pinpoints the slow, stalled, and failed transactions to the web
application, enables administrators to accurately isolate where – i.e., on which application server – the
transaction was bottlenecked, and helps them figure out exactly what caused the bottleneck – an inefficient or
errored query to the database? A slow HTTP/S call to another application server? a time-consuming POJO /
JMX method execution? a slow SAP JCO/async call? By quickly leading administrators to the source of
transaction failures and delays, the eG BTM facilitates rapid problem resolution, which in turn results in the
low downtime of and high user satisfaction with the web application.

1.2 Pre-requisites for Business Transaction Monitoring Using
eG
The following are the pre-requisites for performing business transactionmonitoring using eG:

l The eG Business Transaction Monitor (BTM) can be installed on Java containers only - i.e., Java
applications / J2EE-enabled web, application, andmessaging servers. The details are as follows:

Supported JVMs

l Oracle Hotspot JVM 1.5 to 1.8

l BEA JRockit 1.5 and 1.6

l IBM JVM 1.5 to 1.8

l Open JDK 1.5 to 1.8

Supported Application Servers

l WebSphere 7.x, 8.x

l WebLogic 9.x, 10.x, 12.x

l JBoss 7.x / EAP / WildFly

l Apache Tomcat 5.x, 6.x, 7.x

l GlassFish 3.x and 4.x

I ntroduction

3

Supported Frameworks

l Servlets

l JSPs

l Struts 1.x, 2.x

l SpringMVC

Supported HTTP End Points

l HTTP URLConnection

Supported Web Service End Points

l Axis 1.x, 2.x

l JAX-WS

l JAX-RPC

Supported Databases

l Oracle 8i, 9i, 10g, 11g

l IBM DB2 9.x

l MS SQLServer 2005, 2008, 2012

l Postgres 8.x, 9.x

l MySQL

l HSQLDB

Supported Drivers

l Oracle- Thin

l DB2

l Microsoft SQL Server

l Connector/J

l jTDS - Type4

l JDBC2, JDBC2 EE, JDBC3, JDBC4

l The eG Business Transaction Monitor (BTM) can be installed on only those Java containers that
use JDK 1.5 or higher

I ntroduction

4

l Do not install the eG Business Transaction Monitor (BTM) on a Java container that is already JTM-
enabled.

l For complete visibility into the transaction path, make sure that you:

l BTM-enable each JVM node in the transaction path;

l Manage each JVM node as a separate component in eG;

1.3 How does the eG BTM Work?
To be able to track the live transactions to a web application, eG Enterprise requires that a special eG
Application Server Agent be deployed on every JVM node (i.e., web application server instance) through
which the transaction travels. The eG Application Server Agent is available as a file named eg_btm.jar on
the eG agent host, which has to be copied to the system hosting the application servers being monitored. You
then need to configure the application server with the path to the eg_btm.jar file to fully BTM-enable the
server. Once this is done, restart the server and then proceed to configure the Java Business Transactions
test and Key Java Business Transactions test.

1.3.1 Installing eG BTM on a Generic JVM Node

The steps for deploying an eG BTM on a JVM node will differ based on where the eG agent has been deployed
- whether on the JVM node, or on a remote host.

If the eG agent monitoring the JVM node has been deployed on that node itself (which is the agent-based
approach), then follow the steps below to BTM-enable that node:

1. Manage the JVM node as a separate component using the eG administrative interface. Whenmanaging,
make a note of theNick name andPort number that you provide.

2. If multiple JVM instances are operating on a single node, and you want to BTM-enable al the instances,
then you will have to manage each instance as a separate component using the eG administrative
interface. When doing so, make a note of the Nick name and Port number using which you managed
each instance.

3. In the <EG_ AGENT_ INSTALL_ DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkha/lib/btm), you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm (on Windows; on Unix,
this will be /opt/egurkha/lib/btm). Take care to name this directory in the following format: <Managed_

I ntroduction

5

Component_NickName>_<Managed_Component_Port> . For instance, if you have managed the
JVM node using the nick name AppServer1 and the port number 8088, the new directory under the btm
directory should be named as AppServer1_8080.

5. If you have managed multiple JVM instances running on a single node, then you will have to create
multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

8. By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
port parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~

#

Designated_Agent=

#

I ntroduction

6

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

9. Finally, save the btmOther.props file.

10. Then, proceed to edit the start-up script of the JVM node being monitored, and append the following
lines to it:

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

"-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar”

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\AppServer1_8088 directory, the above specification will be:

-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\AppServer1_8088

"-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar”

Note:

l The “-javaagent…” entry above should be added as one of the JVM options in the start-up script.

l Note that the above lines will change based on the operating system and the web/web application
server being monitored. For example, if the JVM node is operating on Unix, then the above
specification will change as follows:

-DEG_PROPS_HOME=opt/egurkha/lib/btm/AppServer1_8088

"-javaagent:opt/egurkha/lib/btm/eg_btm.jar”

l Also, in Unix environments, when using the agent-based approach, both the agent and the JVM
instance will be running using different user privileges. In this situation, by default, the eG BTM logs
will not be created. In order to create the same, insert the following entry after the -DEG_PROPS_
HOME specification.

-DEG_LOG_HOME=<<Log_File_Path>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\AppServer1_8088 directory, and the log files also need to be created in the same
directory, the complete specification will be as follows:

I ntroduction

7

-DEG_PROPS_HOME=opt/egurkha/lib/btm/AppServer1_8088

-DEG_LOG_HOME=opt/egurkha/lib/btm/AppServer1_8088

"-javaagent:opt/egurkha/lib/btm/eg_btm.jar”

11. Then, add the eg_btm.jar file to theCLASSPATH of the JVM node beingmonitored.

12. Finally, save the file, and restart the JVM node.

If the eG agent has been deployed on a remote host (which is the agentless approach), then follow the steps
below to BTM-enable the JVM node:

1. Manage the JVM node as a separate component using the eG administrative interface. Whenmanaging,
make a note of theNick name andPort number that you provide.

2. If multiple JVM instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
youmanaged each instance.

3. In the <EG_ AGENT_ INSTALL_ DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkha/lib/btm), you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, log into the JVM node that is beingmonitored.

5. Create a new directory named, say eGBTM, in any location on that node.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the JVM node using the nick name AppServer1 and the port number 8088, the sub-directory
should be named as AppServer1_8080.

7. If you have managed multiple instances of that JVM node, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the JVM node:

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

I ntroduction

8

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

10. By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
PORT parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

11. Finally, save the btmOther.props file.

12. Then, proceed to edit the start-up script of the JVM node being monitored, and append the following
lines to it:

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

"-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg_btm.jar FILE>>”

I ntroduction

9

For instance, if the .props files had been copied to the C:\eGBTM\AppServer1_8088 directory, the
above specification will be:

-DEG_PROPS_HOME=C:\AppServer1_8088

"-javaagent:C:\eGBTM\eg_btm.jar”

Note:

l The “-javaagent…” entry above should be added as one of the JVM options in the start-up script.

l Note that the above lines will change based on the operating system and the web/web application
server being monitored. For example, if the JVM node is operating on Unix, then the above
specification will change as follows:

-DEG_PROPS_HOME=opt/eGBTM/AppServer1_8088

"-javaagent:opt/eGBTM/eg_btm.jar”

13. Then, add the eg_btm.jar file to theCLASSPATH of the JVM node beingmonitored.

14. Finally, save the file, and restart the JVM node.

1.3.2 Installing eG BTM on an Apache Tomcat Server

The steps for BTM-enabling an Apache Tomcat server will differ based on where the eG agent monitoring that
Tomcat server has been deployed - whether on the Tomcat server, or on a remote host.

1.3.2.1 Agent- based Approach to Deploying eG BTM on an Apache Tomcat
Server

If an Apache Tomcat Server is running on Windows, and the eG agent monitoring the server has been
deployed on that server itself, then follow the steps below to BTM-enable that Tomcat server:

1. Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of theNick name andPort number that you provide.

2. If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

l eg_btm.jar

l btmLogging.props

I ntroduction

10

l btmOther.props

l exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed_Component_Port>.
For instance, if you havemanaged the Tomcat server using the nick name Tomcat1 and the port number
8080, the new directory under the btm directory should be named as Tomcat1_8080.

5. If you have managed multiple Tomcat server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described by step 5 above, then the files should be copied to
each of those directories:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
port parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

I ntroduction

11

#~~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files. This
can be done, in one of the following ways:

l Through the Tomcat control panel;

l Through the Tomcat start-up script

9. To use the control panel, do the following:

l First, open the Tomcat Control Panel.

Figure 1.1: BTM-enabling the Tomcat server on Windows

I ntroduction

12

l Select the Java tab page in Section 1.3.2 above.

l Add the following entry to the Java Options section of 1.3.2:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\tomcat1_8080 directory, the above specification will be:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\tomcat1_8080

l Click the Apply andOK buttons in 1.3.2.

l Restart the Tomcat service.

10. On the other hand, if you want to configure using the Tomcat start-up script, follow the steps below:

l Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

l Insert the lines of code indicated by 1.3.2 above to BTM-enable the Tomcat server.

Figure 1.2: Editing the catalina.bat file

l Save the file and restart the Tomcat server.

11. Where multiple Tomcat server instances on a host are to be monitored, repeat 7 to 10 for each of the
server instances.

If an Apache Tomcat Server is running on Unix, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that Tomcat server:

1. Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of theNick name andPort number that you provide.

I ntroduction

13

2. If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the /opt/egurkha/lib/btm directory, you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, create a new directory under the /opt/egurkha/lib/btm. Take care to name this directory in the
following format: <Managed_Component_NickName>_<Managed_Component_Port>. For instance, if
you have managed the Tomcat server using the nick name Tomcat and the port number 8080, the new
directory under the btm directory should be named as Tomcat_8080.

5. If you have managed multiple Tomcat server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM

I ntroduction

14

port parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files. This
can be done by editing the start-up script of the Tomcat server. For that, first open the start-up script.

9. Insert the following lines in the script (as depicted by Figure 1.3) to BTM-enable the server.
if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_ OPTS="$JAVA_ OPTS - javaagent:<<PATH TO THE eg_ btm.jar>> - DEG_ PROPS_

HOME=<<PATH TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>

fi

For instance, if the .props file had been copied to the Tomcat_ 8080 folder within the
/opt/egurkha/lib/btm folder, then your specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/egurkha/lib/btm/eg_btm.jar -DEG_PROPS_

HOME=/opt/egurkha/lib/btm/Tomcat_8080

fi

I ntroduction

15

Figure 1.3: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server

10. In Unix environments, if the eG agent is deployed on the same host as the Tomcat server, then both the
agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG_
PROPS_HOME specification and before the closing quotes .

-DEG_LOG_HOME=<LogFile_Path>

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/Tomcat_8080 directory,
and the BTM log files also need to be created in the same directory, then your complete specification will
be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/egurkha/lib/btm/eg_btm.jar -DEG_PROPS_

HOME=/opt/egurkha/lib/btm/Tomcat_8080 -DEG_LOG_HOME=/opt/egurkha/lib/btm/Tomcat_8080

fi

11. Finally, save the file and restart the Tomcat server.

12. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 7 to 11 for each of
the server instances.

I ntroduction

16

1.3.2.2 Agentless Approach to Deploying eG BTM on an Apache Tomcat Server

If an Apache Tomcat Server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that Tomcat server:

1. Manage the Apache Tomcat server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

2. If multiple Tomcat instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be the
/opt/egurkha/lib/btm directory) on the eG agent host, you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, log into the Tomcat server that is beingmonitored.

5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the Tomcat server using the nick name tomcat1 and the port number 8080, the sub-directory
should be named as tomcat1_8080.

7. If you have managed multiple instances of the Tomcat server, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Tomcat server. Where multiple sub-directories have been created, you will have
to copy the files to each of those directories.

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

I ntroduction

17

#

10. By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the Tomcat server, make sure you configure the BTM PORT
parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

11. Finally, save the btmOther.props file.

12. Then,proceed to configure the Tomcat server with the path to the eg_btm.jar and .props files. This can
be done, in one of the following ways:

l Through the Tomcat control panel;

l Through the Tomcat start-up script

13. To use the control panel, do the following:

l First, open the Tomcat Control Panel.

I ntroduction

18

Figure 1.4: BTM-enabling the Tomcat server on Windows in an agentless manner

14. Select the Java tab page in Figure 1.4 above.

15. Add the following entry to the Java Options section of Figure 1.4:

-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btm\tomcat1_8080 directory, the
above specification will be:

-javaagent:E:\btm\tomcat1_8080\eg_btm.jar

-DEG_PROPS_HOME=E:\btm\tomcat1_8080

16. Click the Apply andOK buttons in 1.3.2.

17. Restart the Tomcat service.

18. On the other hand, if you want to configure using the Tomcat start-up script, follow the steps below:

l Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

l Insert the lines of code indicated by Figure 1.5 above to BTM-enable the Tomcat server.

I ntroduction

19

Figure 1.5: Editing the catalina.bat file of a Tomcat server on Windows that is monitored in an agentless
manner

l Save the file and restart the Tomcat server.

19. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 9 to 18 for each of
the server instances.

If an Apache Tomcat Server is running on Unix, and the eG agent monitoring the server has been deployed on
a remote host in the environment, then follow the steps below to BTM-enable that Tomcat server:

1. Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of theNick name andPort number that you provide.

2. If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be the
/opt/egurkha/lib/btm directory) on the eG agent host, you will find the following files:

l eg_btm.jar

l btmLogging.props

I ntroduction

20

l btmOther.props

l exclude.props

4. Next, log into the Tomcat server that is beingmonitored.

5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the Tomcat server using the nick name Tomcat and the port number 8080, the sub-directory
should be named as Tomcat_8080.

7. If you have managed multiple instances of the Tomcat server, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Tomcat server. Where multiple sub-directories have been created, you will have
to copy the files to each of those directories.

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the Tomcat server, make sure you configure the BTM PORT
parameter of the test with this port number.

10. Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~~

#

I ntroduction

21

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

11. Finally, save the btmOther.props file.

12. Then, proceed to configure the Tomcat server with the path to the eg_btm.jar and .props files. For this,
you need to edit the start-up script of Tomcat. The first step to achieving that is to open the start-up
script file.

13. Insert the following lines in the file, as depicted by Figure 1.6.

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_ OPTS="$JAVA_ OPTS - javaagent:<<PATH TO THE eg_ btm.jar>> - DEG_ PROPS_

HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

fi

For instance, if the eg_btm.jar and .props files were copied to the /opt/btm/Tomcat_8080 directory on
the Tomcat server, then your specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/Tomcat_8080/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/Tomcat_8080"

fi

I ntroduction

22

Figure 1.6: Editing the start-up script to BTM-enable a Tomcat server on Linux in an agentless manner

14. Finally, save the file and restart the Tomcat server.

15. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 9 to 14 for each of
the server instances.

1.3.3 Installing eG BTM on an IBM WebSphere

The steps for BTM-enabling an IBM WebSphere server will differ based on where the eG agent monitoring that
WebSphere server has been deployed - whether on theWebSphere server, or on a remote host.

1.3.3.1 Agent-based Approach to BTM-Enabling IBM WebSphere

If an IBM WebSphere server is running on Windows, and the eG agent monitoring the server has been
deployed on that server itself, then follow the steps below to BTM-enable that WebSphere server:

1. Manage the WebSphere server using the eG administrative interface. When managing, make a note of
theNick name andPort number that you provide.

2. If multiple WebSphere server instances are operating on a single host, and you want to BTM-enable all
the instances, then you will have to manage each instance as a separate WebSphere server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

I ntroduction

23

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed_Component_Port>.
For instance, if you havemanaged theWebSphere server using the nick nameWebsphere1 and the port
number 9080, the new directory under the btm directory should be named asWebsphere1_9080.

5. If you have managed multiple WebSphere server instances running on a single host, then you will have
to create multiple sub-directories under the btm directory- one each for every instance. Each of these
sub-directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebSphere server, make sure you configure the BTM
port parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~

I ntroduction

24

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure theWebSphere server with the path to the eg_btm.jar and .props files. For
this, first login to the WebSphere administration console. When Figure 1.7 appears, click on the
WebSphere Application Server link in the right panel.

Figure 1.7: The WebSphere Administration console

9. This will invoke Figure 1.8. In the right panel of Figure 1.8, click on the link representing the WebSphere
server instance that you want to BTM-enable.

I ntroduction

25

Figure 1.8: Clicking on the WebSphere server instance to be BTM-enabled

10. Figure 1.9 will then appear.

Figure 1.9: The Configuration tab page of the WebSphere server instance to be BTM-enabled

11. Keep scrolling down the right panel of Figure 1.10 until you find the Server Infrastructure section.
Expand the Java and Process Management node in that section, and click on the Process definition
link within.

I ntroduction

26

Figure 1.10: Selecting the Process definition option from Java and Process Management tree

12. Figure 1.11 will then appear. From theAdditional Properties section, select Java Virtual Machines.

Figure 1.11: Configuring the Process definition

13. When Figure 1.12 appears, scroll down its right panel until the Generic JVM Arguments text box
comes into view.

I ntroduction

27

Figure 1.12: Configuring the JVM arguments

14. Here, specify the following:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\Websphere1_9080 directory, the above specification will be:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\Websphere1_9080

15. Save the changes and restart theWebSphere server.

If an IBM WebSphere server is running on Unix, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that WebSphere server:

1. Follow the steps 1-13 above. When doing so, note that the eg_btm.jar and the .props files will be
available in the /opt/egurkha/lib/btm directory on the Unix host.

2. In theGeneric JVM Arguments text box mentioned in step 13 (see Figure 1.12), specify the following:

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the opt/egurkha/lib/btm/Websphere1_9080
directory, the above specification will be:

-javaagent:opt/egurkha/lib/btm/eg_btm.jar

I ntroduction

28

-DEG_PROPS_HOME=opt/egurkha/lib/btm/WebSphere1_9080

3. In Unix environments, if the eG agent is deployed on the same host as theWebSphere server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG_
PROPS_HOME specification .

-DEG_LOG_HOME=<LogFile_Path>

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/Websphere1_9080
directory, and the BTM log files also need to be created in the same directory, then your complete
Generic JVM Arguments specification will be as follows:

-javaagent:opt/egurkha/lib/btm/eg_btm.jar

-DEG_PROPS_HOME=opt/egurkha/lib/btm/WebSphere1_9080

-DEG_LOG_HOME=opt/egurkha/lib/btm/WebSphere1_9080

4. Save the file and restart theWebSphere server.

1.3.3.2 Agentless Approach to BTM-Enabling an IBM WebSphere server

If an IBM WebSphere server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that WebSphere
server:

1. Manage the WebSphere server as a separate component using the eG administrative interface. When
managing, make a note of theNick name andPort number that you provide.

2. If multiple WebSphere server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separateWebSphere server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_ AGENT_ INSTALL_ DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkha/lib/btm) of the eG agent host, you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, log into theWebSphere server that is beingmonitored.

5. Create a new directory named, say btm, in any location on that server.

I ntroduction

29

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the WebSphere server using the nick nameWebsphere1 and the port number 9080, the sub-
directory should be named asWebsphere1_9080.

7. If you have managed multiple instances of the WebSphere server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Websphere server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

10. By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebSphere server, make sure you configure the BTM
PORT parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~~

#

Designated_Agent=

#

Note:

I ntroduction

30

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

11. Finally, save the btmOther.props file.

12. Then, proceed to configure the WebSphere server with the path to the eg_btm.jar and .props files. To
achieve this, follow steps 8 - 13 detailed in Section 1.0.1.1 above. This will lead you to the Generic
JVM Arguments text box of Figure 1.12.

Figure 1.13: Configuring the JVM arguments

13. Here, specify the following:

-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btmWebsphere1_9080 directory,
the above specification will be:

-javaagent:E:\btm\Websphere1_9080\eg_btm.jar

-DEG_PROPS_HOME=E:\btm\Websphere1_9080

14. Finally, save the changes and restart theWebSphere server.

I ntroduction

31

If an IBM WebSphere server is running on Unix, and the eG agent monitoring the server has been deployed on
a remote host in the environment, then follow the steps below to BTM-enable that WebSphere server:

1. Follow the steps 1-12 above.

2. In theGeneric JVM Arguments text box mentioned in step 12 , specify the following:

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar and .props files had been copied to the opt/btm/WebSphere1_9080 directory, the
above specification will be:

-javaagent:opt/btm/WebSphere1_9080/eg_btm.jar

-DEG_PROPS_HOME=opt/btm/WebSphere1_9080

3. Save the changes and restart theWebSphere server.

1.3.4 Installing eG BTM on an Oracle WebLogic Server

The steps for BTM-enabling an Oracle WebLogic server will differ based on where the eG agent monitoring
that server has been deployed - whether on theWebLogic server, or on a remote host.

1.3.4.1 Agent-based Approach to BTM-Enabling Oracle WebLogic Server

If an Oracle WebLogic server is running on Windows, and the eG agent monitoring the server has been
deployed on that server itself, then follow the steps below to BTM-enable that WebLogic server:

1. Manage theWebLogic server using the eG administrative interface. Whenmanaging, make a note of the
Nick name andPort number that you provide.

2. If multipleWebLogic server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate WebLogic server using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed_Component_Port>.

I ntroduction

32

For instance, if you have managed the WebLogic server using the nick name WebLogic1 and the port
number 9080, the new directory under the btm directory should be named asWebLogic1_9080.

5. If you have managed multiple WebLogic server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for theWebLogic server, make sure you configure the BTM port
parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

#~~

#

Designated_Agent=

I ntroduction

33

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the WebLogic server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

l If you want to BTM-enable a singleWebLogic server instance, then use theWebLogic Administration
console for this purpose.

l If you want to BTM-enable the Admin server of a WebLogic cluster, then use the start-up script of the
Admin server for this purpose

9. To use the WebLogic Administration console, first login to the console. Then, follow the steps detailed
below:

l When Figure 1.14 appears, click on theServers link in the right panel.

Figure 1.14: Clicking on the Servers link

I ntroduction

34

l Figure 1.15 will then appear.

Figure 1.15: Clicking on the server instance to be BTM-enabled

l Figure 1.16 will then appear.

Figure 1.16: Viewing the configuration of the chosen server instance

l Keep scrolling down the right panel of Figure 1.16 until the Arguments text box comes into view (see
Figure 1.17).

I ntroduction

35

Figure 1.17: Configuring the JVM arguments

l In theArguments text box, specify the following lines:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\weblogic1_7001 directory, the above specification will be:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\weblogic_7001

l Finally, save the changes and restart theWebLogic server.

10. To edit the start-up script of the Admin server of theWebLogic cluster, then follow the steps below:

l Login to the Admin server, open the start-up script, and insert the following lines in it:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_

btm.jar -DEG_PROPS_HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

I ntroduction

36

For instance, if the .props files had been copied to the C:\eGurkha\lib\btm\WebLogic_7001
directory, the above specification will be:
set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:c:\eGurkha\lib\btm\eg_btm.jar -DEG_

PROPS_HOME=c:\eGurkha\lib\btm\WebLogic_7001"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

Figure 1.18: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an
agent-based manner

l Finally, save the file and restart the Admin server.

If an Oracle WebLogic server is running on Unix, and the eG agent monitoring the server has been deployed
on that server itself, then follow the steps below to BTM-enable that WebSphere server:

1. If you want to BTM-enable a single WebLogic server instance, then first, follow the steps 1-9 above,
until the Arguments text box comes into view. When doing so, note that the eg_btm.jar and the .props
files will be available in the /opt/egurkha/lib/btm directory on the Unix host.

2. In theArguments text box mentioned in step 9 (see Figure 1.17), specify the following:

I ntroduction

37

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the opt/egurkha/lib/btm/WebLogic_7001 directory,
the above specification will be:

-javaagent:opt/egurkha/lib/btm/eg_btm.jar

-DEG_PROPS_HOME=opt/egurkha/lib/btm/WebLogic_7001

3. In Unix environments, if the eG agent is deployed on the same host as the WebLogic server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG_
PROPS_HOME specification .

-DEG_LOG_HOME=<LogFile_Path>

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/WebLogic1_9080
directory, and the BTM log files also need to be created in the same directory, then your complete
 Arguments specification will be as follows:

-DEG_PROPS_HOME=opt/egurkha/lib/btm/WebLogic_7001

-javaagent:opt/egurkha/lib/btm/eg_btm.jar

-DEG_LOG_HOME=opt/egurkha/lib/btm/WebLogic_7001

4. Save the changes and then restart theWebLogic server instance.

5. On the other hand, if you want to BTM-enable an Admin server (of a WebLogic cluster) on Unix, then
follow steps 1-7 above. Then, jump to step 10. As instructed by step 10, edit the start-up script of the
Admin server, and insert the following lines in it:
EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:/opt/egurkha/lib/btm/eg_btm.jar -DEG_PROPS_

HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/WebLogic_7001
directory on the Unix host, then your specification will be:

I ntroduction

38

EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:/opt/egurkha/lib/btm/eg_btm.jar -DEG_PROPS_

HOME=/opt/egurkha/lib/btm/WebLogic_7001"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

6. Here again, to create the log files, insert the following entry after the -DEG_PROPS_HOME
specification and before the closing quotes.

-DEG_LOG_HOME=<LogFile_Path>

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/WebLogic_7001
directory on the Admin server host and the log files also need to be created in the same directory, then
your specification will be:

EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:/opt/egurkha/lib/btm/eg_btm.jar -DEG_PROPS_

HOME=/opt/egurkha/lib/btm/WebLogic_7001 -DEG_LOG_HOME=/opt/egurkha/lib/btm/WebLogic_

7001"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

7. Finally, save the file and restart theWebLogic Admin server.

1.3.4.2 Agentless Approach to BTM-Enabling an Oracle WebLogic server

If an Oracle WebLogic server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that WebLogic
server:

1. Manage the WebLogic server as a separate component using the eG administrative interface. When
managing, make a note of theNick name andPort number that you provide.

2. If multiple WebLogic server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate WebLogic server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_ AGENT_ INSTALL_ DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkha/lib/btm) of the eG agent host, you will find the following files:

I ntroduction

39

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, log into theWebLogic server that is beingmonitored.

5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the WebLogic server using the nick name weblogic1 and the port number 7001, the sub-
directory should be named as weblogic_7001.

7. If you have managed multiple instances of the WebLogic server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the WebLogic server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

10. By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebLogic server, make sure you configure the BTM
PORT parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

I ntroduction

40

#~~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

11. Finally, save the btmOther.props file.

12. Then, proceed to configure the WebLogic server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

l If you want to BTM-enable a singleWebLogic server instance, then use theWebLogic Administration
console for this purpose.

l If you want to BTM-enable the Admin server of a WebLogic cluster, then use the start-up script of the
Admin server for this purpose

13. To use theWebLogic Administration console, first login to the console. Then, follow the steps detailed in
step 9 of the previous section, until you get to the step where the Arguments text box comes into view.
Here, provide the entry depicted by Figure 1.19 below.

Figure 1.19: Configuring the JVM arguments

Here, specify the following:

-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg_btm.jar FILE>>

I ntroduction

41

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btm\weblogic_7001 directory, the
above specification will be:
-javaagent:E:\btm\weblogic_7001\eg_btm.jar

-DEG_PROPS_HOME=E:\btm\weblogic_7001

14. Finally, save the changes and restart theWebLogic server.

15. To BTM-enable the Admin server of a WebLogic cluster, edit the start-up script of the Admin server. For
that, follow the steps below:

l Open the start-up script and insert the following lines in it:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:<<PATH TO THE eg_btm.jar FILE>> -DEG_

PROPS_HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

For instance, if the jar file and the .props file had been copied to the C:\btm\WebLogic_7001
directory, the above specification will be:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:c:\btm\WebLogic_7001\eg_btm.jar -DEG_

PROPS_HOME=c:\btm\WebLogic_7001"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

I ntroduction

42

Figure 1.20: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an
agentless manner

l Finally, save the file and restart the Admin server.

If an Oracle WebLogic server is running on Unix, and the eG agent monitoring the server has been deployed
on a remote host, then follow the steps below to BTM-enable that WebLogic server:

1. To BTM-enable an individual WebLogic server instance, follow the steps 1-13 above, until the
Arguments text box comes into view.

2. In theArguments text box mentioned in step 13, specify the following:

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and the .props files had been copied to the opt/btm/WebLogic_7001
directory, the above specification will be:

-javaagent:opt/btm/eg_btm.jar

-DEG_PROPS_HOME=opt/btm/WebLogic_7001

3. Save the changes and then restart theWebLogic server instance.

4. On the other hand, if you want to BTM-enable an Admin server (of a WebLogic cluster) on Unix, then
follow steps 1-12 above. Then, jump to step 15. As instructed by step 15, edit the start-up script of the
Admin server, and insert the following lines in it:

I ntroduction

43

EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:<<PATH TO THE eg_btm.jar FILE>> -DEG_PROPS_

HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

For instance, if the jar file and .props files have been copied to the /opt//btm/WebLogic_7001 directory
on the Unix host, then your specification will be:

EG_ JAVA_ OPTIONS_ ADMIN_ SERVER="- javaagent:/opt/btm/WebLogic_ 7001/eg_ btm.jar - DEG_

PROPS_HOME=/opt/btm/WebLogic_7001"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

5. Finally, save the file and restart theWebLogic Admin server.

1.3.5 Installing eG BTM on GlassFish

The steps for BTM-enabling GlassFish server will differ based on where the eG agent monitoring that server
has been deployed - whether on the GlassFish server, or on a remote host.

1.3.5.1 Agent-based Approach to BTM-Enabling a GlassFish Server

If a GlassFish server is running on Windows, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that GlassFish server:

1. Manage theGlassFish server using the eG administrative interface. Whenmanaging, make a note of the
Nick name andPort number that you provide.

2. If multiple GlassFish server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate GlassFish server using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
youmanaged each instance.

3. In the <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

l eg_btm.jar

l btmLogging.props

I ntroduction

44

l btmOther.props

l exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed_Component_Port>.
For instance, if you have managed the GlassFish server using the nick name GlassFish1 and the port
number 8080, the new directory under the btm directory should be named as GlassFish1_8080.

5. If you have managed multiple GlassFish server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has beenmanaged in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

l btmLogging.props

l btmOther.props

l exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the GlassFish server, make sure you configure the BTM port
parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent.

#~~

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

I ntroduction

45

#~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the GlassFish server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

l Through theGlassFish Administration console

l By editing the start-up script of the GlassFish server instance

9. If you choose to use the GlassFish Administration console, then first, login to the console. Then, follow
the steps detailed below:

l When Figure 1.21 appears, click on the server-config node in the tree-structure in the left panel.

Figure 1.21: Clicking on the server-config node

I ntroduction

46

l From the options listed in the right panel of Figure 1.21, select the JVM Settings option. Figure 1.22 will
then appear. Select the JVM Options tab page in Figure 1.22.

Figure 1.22: Clicking on the JVM Options tab page

l Figure 1.23 will then appear. You now need to add two new JVM options. For this, click on the Add
JVM Option button in Figure 1.23, twice.

Figure 1.23: Clicking on the ADD JVM Option button

I ntroduction

47

l Two empty rows will then be inserted, as depicted by Figure 1.24.

Figure 1.24: Two empty rows inserted in the JVM Options tab page

l Specify each of the following lines in each of the empty rows, as indicated by Figure 1.25:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_AGENT_INSTALL_
DIR>\lib\btm\GlassFish1_8080 directory, the above specification will be:

-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar

-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\GlassFish1_8080

I ntroduction

48

Figure 1.25: Specifying the Java arguments for BTM-enabling the GlassFish server

l Finally, save the changes and restart the GlassFish server.

10. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script of the
GlassFish server instance, then follow the steps below:

l Open the start-up script and enter the following lines in it, as depicted by Figure 1.26.

<jvm-options>-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar</jvm-options>

<jvm-options>-DEG_ROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\GlassFish1_8080 directory, the above specification will be:
<jvm-options>-javaagent:<EG_AGENT_INSTALL_DIR>\lib\btm\eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=<EG_AGENT_INSTALL_DIR>\lib\btm\GlassFish1_8080</jvm-

options>

I ntroduction

49

Figure 1.26: Editing the start-up script of the GlassFish server instance to BTM-enable the instance

l Finally, save the file and restart the GlassFish server instance.

If a GlassFish server is running on Unix, and the eG agent monitoring the server has been deployed on that
server itself, then follow the steps below to BTM-enable that GlassFish server:

1. Follow step 1 - 7 above. While doing so, note that the jar and .props files will be available in the
/opt/egurkha/lib/btm directory on the eG agent host.

2. Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this, you
need to edit the start-up script of the GlassFish server.

3. The first step towards this end is to open the start-up script. Then, insert the following lines in it:

<jvm-options>-javaagent:opt/egurkha/lib/btm/eg_btm.jar </jvm-options>

<jvm- options>- DEG_ PROPS_ HOME= <<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the .props files had been copied to the /opt/egurkha/lib/btm/GlassFish1_8080
directory, the above specification will be:
<jvm-options>-javaagent:/opt/egurkha/lib/btm/eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=opt/egurkha/lib/btm/GlassFish1_8080</jvm-options>

4. In Unix environments, if the eG agent is deployed on the same host as the GlassFish server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG_
PROPS_HOME specification .

I ntroduction

50

<jvm-options>-DEG_LOG_HOME=<<LogFile_Path>></jvm-options>

For instance, if the .props files have been copied to the /opt/egurkha/lib/btm/GlassFish1_8080
directory, and the BTM log files also need to be created in the same directory, then your complete
specification will be as follows:

<jvm-options>-javaagent:/opt/egurkha/lib/btm/eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=opt/egurkha/lib/btm/GlassFish1_8080</jvm-options>

<jvm-options>-DEG_LOG_HOME=opt/egurkha/lib/btm/GlassFish1_8080</jvm-options>

5. Finally, save the file and restart the GlassFish server.

1.3.5.2 Agentless Approach to BTM-Enabling an GlassFish server

If a GlassFish server is running on Windows, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that GlassFish server:

1. Manage the GlassFish server as a separate component using the eG administrative interface. When
managing, make a note of theNick name andPort number that you provide.

2. If multiple GlassFish server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate GlassFish server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which youmanaged each instance.

3. In the <EG_ AGENT_ INSTALL_ DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkha/lib/btm), you will find the following files:

l eg_btm.jar

l btmLogging.props

l btmOther.props

l exclude.props

4. Next, log into the GlassFish server that is beingmonitored.

5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port> . For instance, if you have
managed the GlassFish server using the nick name GlassFish1 and the port number 8080, the sub-
directory should be named as GlassFish1_8080.

7. If you have managed multiple instances of the GlassFish server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has beenmanaged in eG.

I ntroduction

51

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the GlassFish server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

9. Next, edit the btmOther.props file. You will find the following lines in the file:

#~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Below property is BTM Server Socket Port, through which eG Agent Communicates

# Restart is required, if any changes in this property

# Default port is "13931"

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#

BTM_Port=13931

#

10. By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the GlassFish server, make sure you configure the BTM
PORT parameter of the test with this port number.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll
the eG BTM for metrics. If no IP address is provided here, then the eG BTM will treat the host from
which the very first 'measure request' comes in as theDesignated_Agent. 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

Below property is used to specify IP address of eG Agent which collectes BTM Data.

# Default is None

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#

Designated_Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.



I ntroduction

52

11. Finally, save the btmOther.props file.

12. Then, proceed to configure the GlassFish server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

l Through theGlassFish Administration console

l By editing the start-up script of the GlassFish server instance

13. If you choose to use the GlassFish Administration console, then first, login to the console. Then, follow
the steps detailed in step 9 of the previous section, until you get to the step where you add two empty
rows in the JVM Options page.

Figure 1.27: Configuring the JVM arguments

In these rows, provide the following entries, as depicted by Figure 1.27.

-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btm\GlassFish1_8080 directory,
the above specification will be:
-javaagent:E:\btm\GlassFish1_8080\eg_btm.jar

-DEG_PROPS_HOME=E:\btm\GlassFish1_8080

14. Finally, save the changes and restart the GlassFish server.

15. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script of the
GlassFish server instance, then follow the steps below:

l Open the start-up script and insert the following lines in it:

<jvm- options>- javaagent:<<PATH TO THE eg_ btm.jar ON THE LOCAL FOLDER>></jvm-

options>



I ntroduction

53

<jvm-options>-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the jar file and the .props file had been copied to the E:\btm\weblogic_7001 directory,
the above specification will be:

<jvm-options>-javaagent:E:\btm\GlassFish1_8080\eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=E:\btm\GlassFish1_8080</jvm-options>

Figure 1.28: Editing the start-up script of the GlassFish server instance to BTM-enable the instance

l Finally, save the file and restart the GlassFish server instance.

If a GlassFish server is running on Unix, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that GlassFish server:

1. Follow steps 1 - 11 above.

2. Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this, you
need to edit the start-up script of the GlassFish server.

3. The first step towards this end is to open the start-up script. Then, insert the following lines in it:

<jvm-options>-javaagent:<<PATH TO THE eg_btm.jar FILE>></jvm-options>

<jvm- options>- DEG_ PROPS_ HOME= <<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the jar file and .props files have been copied to the /opt/btm/GlassFish1_8080 directory,
the above specification will be:



I ntroduction

54

<jvm-options>-javaagent:/opt/btm/GlassFish1_8080/eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=opt/btm/GlassFish1_8080</jvm-options>

4. Finally, save the file and restart the GlassFish server

1.4 Java Business Transactions Test
The responsiveness of a transaction is the key determinant of user experience with that transaction; if
response time increases, user experience deteriorates. To make users happy, a Java business transaction
should be rapidly processed by each of the JVM nodes in its path. Processing bottlenecks on a single JVM
node can slowdown/stall an entire business transaction or can cause serious transaction errors. This in turn
can badly scar the experience of users. To avoid this, administrators should promptly identify
slow/stalled/errored transactions, isolate the JVM node on which the slowness/error occurred, and uncover
what caused the aberration on that node – is it owing to SQL queries executed by the node?Or is it because of
external calls – eg., async calls, SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business
Transactions test helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests received by
that JVM, and groups requests based on user-configured pattern specifications. For each transaction pattern,
the test then computes and reports the average time taken by that JVM node to respond to the transaction
requests of that pattern. In the process, the test identifies the slow/stalled transactions of that pattern, and
reports the count of such transactions and their responsiveness. Detailed diagnostics provided by the test
accurately pinpoint the exact transaction URLs that are slow/stalled, the total round- trip time of each
transaction, and also indicate when such transaction requests were received by that node. The slowest
transaction in the group can thus be identified.   

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in SQL query
processing, the test also reports the average time the transactions of each pattern took to execute SQL
queries. If a majority of the queries are slow, then the test will instantly capture the same and notify
administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know which are
the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node, highlights
transactions that are under-performing, and takes administrators close to the root-cause of poor transaction
performance.

Target of the Test: A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test:One set of results for each grouped URL



I ntroduction

55

Test parameters:

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. BTM PORT -Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node being monitored. If the JVM is being monitored in an agent- based manner, then the
btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\btm directory. 

4. MAX URL SEGMENTS - This test groups transaction URLs based on the URL segments count
configured for monitoring and reports aggregated response time metrics for every group. Using this
parameter, you can specify the number of URL segments based on which the transactions are to be
grouped.

URL segments are the parts of a URL (after the base URL) or path delimited by slashes. So if you had
the URL: http://www.eazykart.com/web/shopping/sportsgear/login.jsp, then http://www.eazykart.com
will be the base URL or domain,/web will be the first URL segment, /shoppingwill be the second URL
segment, and /sportsgear will be the third URL segment, and/login.jsp will be the fourth URL segment.
By default, this parameter is set to 3. This default setting, when applied to the sample URL provided
above, implies that the eG agent will aggregate response time metrics to all transaction URLs under
/web/shopping/sportsgear. Note that the base URL or domain will not be considered when counting
URL segments. This in turn means that, if the JVM node receives transaction requests for the URLs
such as http://www.eazykart.com/web/shopping/sportsgear/login.jsp,
http://www.eazykart.com/web/shopping/sportsgear/jerseys.jsp,
http://www.eazykart.com/web/shopping/sportsgear/shoes.jsp,
http://www.eazykart.com/web/shopping/sportsgear/gloves.jsp, etc., then the eG agent will track the
requests and responses for all these URLs, aggregate the results, and present the aggregated metrics
for the descriptor /web/shopping/sportsgear. This way, the test will create different transaction groups
based on each of the third-level URL segments – eg. /web/shopping/weddings, /web/shopping/holiday,
/web/shopping/gifts etc. – and will report aggregatedmetrics for each group so created.

If you want, you can override the default setting by providing a different URL segment number here. For
instance, your specification can be just 2 . In this case, for the
URLhttp://www.eazykart.com/web/shopping/login.jsp, the test will report metrics for the descriptor
web/shopping.

5. EXCLUDED PATTERNS - By default, this test does not track requests to the following URL patterns:

*.ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.lwfn, *.ffil, *.fon, *.pfm, *.pfb, *.std, *.pro, *.xsf, *.jpg,
*.jpeg, *.jpe, *.jif, *.jfif, *.jfi, *.jp2, *.j2k, *.jpf, *.jpx, *.jpm, *.jxr, *.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png,
*.apng, *.mng, *.tiff, *.tif, *.xbm, *.bmp, *.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv,
*.mov, *.rm, *.ram, *.swf, *.flv, *.ogg, *.webm, *.mp4, *.ts, *.mid, *.midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.ogg, *.mp3, *.mp4, *.css, *.js, *.ico|/egurkha*

If required, you can remove one/more patterns from this default list, so that such patterns are
monitored, or can appendmore patterns to this list in order to exclude them frommonitoring.



I ntroduction

56

6. MONITORING MODE – Profiler is the default operational mode for the eG agent that performs business
transaction monitoring. In this default mode, the agent collects deep diagnostics of all external calls
made by the target JVM node when processing a transaction. This includes POJO calls, which are
usually large in number. Since an agent operating in theProfiler modewill report response timemetrics
per POJO call, a marginal increase in the processing overheads of the transaction can be expected in
this mode.

To ensure that the agent balances transaction visibility with low transaction overhead,
Troubleshooting can be chosen as theMONITORING MODE. This mode optimizes agent performance
for your live environment. This is why, if you choose this mode, then whenever you attempt to perform
transaction execution analysis, eG will reveal the details of all  external calls made by the target JVM
node for that transaction, except POJOmethod calls.

7. METHOD EXEC CUTOFF (MS)– From the detailed diagnosis of slow/stalled/error transactions, you can
drill down and perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which the transaction
calls the methods. By configuring a METHOD EXECUTION CUTOFF, you can make sure that methods
that have been executing for a duration greater the specified cutoff are alone listed when performing
execution analysis. For instance, if you specify 5 here, then the Execution Analysis window for a
slow/stalled/error transaction will list only those methods that have been executing for over 5
milliseconds. This way, you get to focus on only those methods that could have caused the slowness,
without being distracted by inconsequential methods. By default, the value of this parameter is set to
250ms. 

8. SQL EXECUTION CUTOFF (MS) – Typically, from the detailed diagnosis of a slow/stalled/error
transaction on a JVM node, you can drill down to view the SQL queries (if any) executed by that
transaction from that node and the execution time of each query. By configuring a SQL EXECUTION
CUTOFF, you can make sure that queries that have been executing for a duration greater the specified
cutoff are alone listed when performing query analysis. For instance, if you specify 5 here, then for a
slow/stalled/error transaction, the SQL Queries window will display only those queries that have been
executing for over 5 milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10ms. 

9. HEALTHY URL TRACE – By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed diagnosis
capability for healthy transactions as well, then set this flag toYes. 

10. MAX HEALTHY URLS PER TEST PERIOD – This parameter is applicable only if the HEALTHY URL
TRACE flag is set to ‘Yes’. Here, specify the number of top-n transactions that should be listed in the
detailed diagnosis of the Healthy transactions measure, every time the test runs. By default, this is set
to 50, indicating that the detailed diagnosis of the Healthy transactions measure will by default list the
top-50 transactions, arranged in the descending order of their response times.

11. MAX SLOW URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed in
the detailed diagnosis of theSlow transactions measure, every time the test runs. By default, this is set
to 10, indicating that the detailed diagnosis of the Slow transactions measure will by default list the top-
10 transactions, arranged in the descending order of their response times.



I ntroduction

57

12. MAX STALLED URLS PER TEST PERIOD - Specify the number of top-n transactions that should be
listed in the detailed diagnosis of theStalled transactions measure, every time the test runs. By default,
this is set to 10, indicating that the detailed diagnosis of theStalled transactions measure will by default
list the top-10 transactions, arranged in the descending order of their response times.

13. MAX ERROR URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed
in the detailed diagnosis of the Error transactions measure, every time the test runs. By default, this is
set to 10, indicating that the detailed diagnosis of the Error transactions measure will by default list the
top-10 transactions, in terms of the number of errors they encountered.

14. ADVANCED SETTINGS – To optimize transaction performance and conserve space in the eG database,
many restraints have been applied by default on the agent’s ability to collect and report detailed
diagnostics. Depending upon how well-tuned your eG database is and the level of visibility you require
into transaction performance, youmay choose to either retain these default settings or override them. If
you choose not to disturb the defaults, then set the ADVANCED SETTINGS flag to No. If you want to
modify the defaults, then set theADVANCED SETTINGS flag toYes.

15. POJO METHOD TRACING LIMIT and POJO METHOD TRACING CUTOFF TIME - These parameters will
appear only if the ADVANCED SETTINGS flag is set to ‘true’. Typically, if theMONITORINGMODE of
this test is set to Profiler , then, as part of the detailed diagnostics of a transaction, eG reports the
execution time of every POJO, non-POJO, and recursive (i.e. methods that call themselves) method
call that a JVM node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to collect detailed
measures related to POJO method calls do not impact the overall responsiveness of the monitored
transaction, eG, by default, collects and reports the execution time of only the following POJO method
calls:

l The first 1000 POJOmethod calls made by the target JVM node for that transaction; (OR)

l The POJO method calls that were made by the target JVM node within 10 seconds from the start of
themonitored transaction on that node;

Accordingly, the POJO METHOD TRACING LIMIT is set to 1000 by default, and the POJO METHOD
TRACING CUTOFF TIME is set to 10 (seconds) by default. Of these two limits, whichever limit is
reached first will automatically be applied by eG for determining when to stop POJO tracing. In other
words, once a JVM node starts processing a transaction, the agent begins tracking the POJO method
calls made by that node for that transaction. In the process, if the agent finds that the configured tracing
limit is reached before the tracing cutoff time is reached, then the agent will stop tracking the POJO
method calls, as soon as the tracing limit is reached. On the other hand, if the tracing limit is not
reached, then the agent will continue tracking the POJO method calls until the tracing cutoff time is
reached. At the end of the cutoff time, the agent will stop tracking the POJO method calls. For
instance, if the JVM node makes 1000 POJO method calls within say, 6 seconds from when it began
processing the transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call, and report the
execution time of each of the 1000 calls alone. On the other hand, if the JVM node does not make over
1000 POJO method calls till the 10 second cutoff expires, then the eG agent continues tracking the
POJO method calls till the end of 10 seconds, and reports the details of all those that were calls made
till the cutoff time.



I ntroduction

58

Depending upon how many POJO calls you want to trace and how much overhead you want to impose
on the agent and on the transaction, you can increase / decrease the POJO METHOD TRACING LIMIT
and POJOMETHOD TRACING CUTOFF TIME specifications.

16. NON- POJO METHOD TRACING LIMIT – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. By default, when reporting the detailed diagnosis of a transaction on a
particular JVM node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes for that
transaction. This is why, the non-pojo method tracing limit parameter is set to 1000 by default. If you
want, you can change the tracing limit to enable the test to report the details of more or fewer non-
POJOmethod calls made by a JVM node. While a high value for this parameter may take you closer to
identifying the non-POJO method that could have caused the transaction to slowdown on a particular
JVM node, it may alsomarginally increase the overheads of the transaction and the eG agent.  

17. RECURSIVE METHOD TRACING LIMIT – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’ . A recursive method is a method that calls itself. By default, when
reporting the detailed diagnosis of a transaction on a particular JVM node, this test reports the
execution time of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM node makes for that transaction. This is why, the RECURSIVE METHOD
TRACING LIMIT parameter is set to 1000 by default. If you want, you can change the tracing limit to
enable the test to report the details of more or fewer recursivemethod calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the recursive method that could have
caused the transaction to slowdown on a particular JVM node, it may also marginally increase the
overheads of the transaction and the eG agent.

18. EXCEPTION STACKTRACE LINES –This parameter will appear only if the ADVANCED SETTINGS
flag is set to ‘true’. As part of detailed diagnostics, this test, by default,  lists the first 10 stacktrace
lines of each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the EXCEPTION
STACKTRACE LINES parameter is set to 10 by default. If required, you can have this test display more
or fewer stacktrace lines by overriding this default setting.   

19. INCLUDED EXCEPTIONS – This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’ . By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a transaction, such a
transaction, by default, will not be counted as anError transaction by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL exceptions that
have already been handled programmatically, occur. This can be achieved by configuring a comma-
separated list of these exceptions in the INCLUDED EXCEPTIONS text box. Here, each exception you
want to include has to be defined using its fully qualified exception class name. For instance, your
INCLUDED EXCEPTIONS specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be used as part of



I ntroduction

59

your specification. Once the exceptions to be included are configured, then this test will count all
transactions in which such exceptions are captured as Error transactions.  

20. IGNORED EXCEPTIONS – This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’ . By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled exceptions (or
handled SQL exceptions), as they may not pose any threat to the stability of the transaction or to the
web site/web application. To achieve this, administrators can configure a comma-separated list of such
inconsequential exceptions in the IGNORED EXCEPTIONS text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For instance, your
EXCLUDED EXCEPTIONS specification can be as follows:
java.sql.SQLException,java.io.FileNotFoundException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be excluded are configured, then this test
will exclude all transactions in which such exceptions are captured from its count of Error transactions.

21. IGNORED CHARACTERS – This parameter will appear only if the ADVANCED SETTINGS flag is
set to ‘true’ . By default, eG excludes all transaction URLs that contain the ‘\’ character from
monitoring. If you want eG to ignore transaction URLs with any other special characters, then specify
these characters as a comma-separated list in the IGNORED CHARACTERS text box. For instance,
your specification can be: \\,&,~

22. MAX GROUPED URLS PER MEASURE PERIOD - This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’ . This test groups URLs according to the MAX URL SEGMENTS
specification. These grouped URLs will be the descriptors of the test. For each grouped URL, response
timemetrics will be aggregated across all transaction URLs in that group and reported.

Whenmonitoring web sites/web applications to which the transaction volume is normally high, this test
may report metrics for hundreds of descriptors. If all these descriptors are listed in the Layers tab page
of the eG monitoring console, it will certainly clutter the display. To avoid this, by default, the test
displays metrics for a maximum of 50 descriptors – i.e., 50 grouped URLs alone – in the eG monitoring
console, during every measure period. This is why, theMAX GROUPED URLS PER MEASURE PERIOD
parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring console, the eG BTM
follows the below-mentioned logic:

l Top priority is reserved for URL groups with error transactions. This means that eG BTM first scans
URL groups for error transactions. If error transactions are found in 50 URL groups, then eG BTM
computes the aggregated response time of each of the 50 groups, sorts the error groups in the
descending order of their response time, and displays all these 50 groups alone as the descriptors of
this test, in the sorted order.

l On the other hand, if error transactions are found in only one / a few URL groups – say, only 20 URL
groups – then, eG BTM will first arrange these 20 grouped URLs in the descending order of their



I ntroduction

60

response time. It will then compute the aggregated response time of the transactions in each of the
other groups (i.e., the error-free groups) that were auto-discovered during the same measure period.
These other groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped URLs from this
sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the 20 error groups
are first displayed (in the descending order of their response time), followed by the 30 ‘error-free’
groups (also in the descending order of their response time).

At any given  point in time, you can increase/decrease the maximum number of descriptors this test
should supportby modifying the value of the MAX GROUPED URLS PER MEASURE PERIOD
parameter.

23. MAX SQL QUERIES PER TRANSACTION – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. Typically, from the detailed diagnosis of a slow/stalled/error transaction
on a JVM node, you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By default, eG picks the first 500 SQL queries
executed by the transaction, compares the execution time of each query with the SQL EXECUTION
CUTOFF configured for this test, and displays only those queries with an execution time that is higher
than the configured cutoff. This is why, theMAX SQL QUERIES PER TRANSACTION parameter is set to
500 by default.

To improve agent performance, you may want the SQL EXECUTION CUTOFF to be compared with the
execution time of a less number of queries – say, 200 queries. Similary, to increase the probability of
capturing more number of long-running queries, you may want the sql execution cutoff to be compared
with the execution time of a large number of queries – say, 1000 queries. For this, you just need to
modify theMAX SQL QUERIES PER TRANSACTION specification to suit your purpose.

24. TIMEOUT– By default, the eG agent will wait for 1000 milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can change this
timeout value, if required.

25. DD FREQUENCY – Refers to the frequency with which detailed diagnosis measures are to be generated
for this test. The default is 1:1. This indicates that, by default, detailed measures will be generated
every time this test runs, and also every time the test detects a problem. You can modify this
frequency, if you so desire. Also, if you intend to disable the detailed diagnosis capability for this test,
you can do so by specifying none against DD FREQUENCY.

26. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability



I ntroduction

61

l Both the normal and abnormalfrequencies configured for the detailed diagnosis measures should not
be 0.

Measures reported by the test:

Measurement Description Measurement
Unit Interpretation

All transactions Indicates the total
number of requests
received for transactions
of this pattern during the
last measurement
period.

Number By comparing the value of this measure
across transaction patterns, you can
identify the most popular transaction
patterns. Using the detailed diagnosis of
this measure, you can then figure out
which specific transactions of that pattern
aremost requested.

For the Summary descriptor, this
measure will reveal the total number of
transaction requests received by the target
JVM during the last measurement period.
This is a good indicator of the transaction
workload on that JVM.

Avg response time Indicates the average
time taken by the
transactions of this
pattern to complete
execution.

Secs Compare the value of this measure across
patterns to isolate the type of transactions
that were taking too long to execute. You
can then use the detailed diagnosis of the
All transactions measure of that group to
know how much time each transaction in
that group took to execute. This will lead
you to the slowest transaction.

For the Summary descriptor, this
measure will reveal the average
responsiveness of all the transaction
requests received by the target JVM
during the last measurement period. An
abnormally low value for this measure for
the Summary descriptor could indicate a
serious processing bottleneck on the
target JVM.



I ntroduction

62

Measurement Description Measurement
Unit Interpretation

Healthy
transactions

Indicates the number of
healthy transactions of
this pattern.

Number By default, this measure will report the
count of transactions with a response time
less than 4000 milliseconds. You can
change this default setting by modifying
the thresholds of the Avg response time
measure using the eG admin interface.

For the Summary descriptor, this
measure will report the total number of
healthy transactions on the target JVM.

Healthy
transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is healthy.

Percent To know which are the healthy
transactions, use the detailed diagnosis of
this measure. For the Summary
descriptor, this measure will report the
overall percentage of healthy transactions
on the target JVM.

Slow transactions Indicates the number of
transactions of this
pattern that were slow
during the last
measurement period.

Number By default, this measure will report the
number of transactions with a response
time higher than 4000 milliseconds and
lesser than 60000 milliseconds. You can
change this default setting by modifying
the thresholds of the Avg response time
measure using the eG admin interface.

A high value for this measure is a cause
for concern, as too many slow
transactions means that user experience
with the web application is poor. For the
Summary descriptor, this measure will
report the total number of slow transactons
on the target JVM. This is a good indicator
of the processing power of the target JVM.

Slow transaction
response time

Indicates the average
time taken by the slow
transactions of this
pattern to execute.

Secs For the Summary descriptor, this
measure will report the average response
time of all the slow transactions on the
target JVM.

Slow transactions Indicates what Percent Use the detailed diagnosis of this measure



I ntroduction

63

Measurement Description Measurement
Unit Interpretation

percentage percentage of the total
number of transactions
of this pattern is currently
slow.

to know which precise transactions of a
pattern are slow. You can drill down from a
slow transaction to know what is causing
the slowness. For the Summary
descriptor, this measure will report the
overall percentage of slow transactions on
themonitored JVM.

Error transactions Indicates the number of
transactions of this
pattern that experienced
errors during the last
measurement period.

Number A high value is a cause for concern, as too
many error transactions to a web
application can significantly damage the
user experience with that application. For
the Summary descriptor, this measure
will report the total number of error
transactons on the target JVM. This is a
good indicator of how error-prone the target
JVM is.

Error transactions
response time

Indicates the average
duration for which the
transactions of this
pattern were processed
before an error condition
was detected.

Secs The value of this measure will help you
discern if error transactions were also
slow. For the Summary descriptor, this
measure will report the average response
time of all error transactions on the target
JVM.

Error transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is
experiencing errors.

Percent Use the detailed diagnosis of this measure
to isolate the error transactions. You can
even drill down from an error transaction in
the detailed diagnosis to determine the
cause of the error. For the Summary
descriptor, this measure will report the
overall percentage of transactions of this
pattern on the target JVM that is currently
experiencing errors.

Stalled
transactions

Indicates the number of
transactions of this
pattern that were stalled
during the last
measurement period.

Number By default, this measure will report the
number of transactions with a response
time higher than 60000 milliseconds. You
can change this default setting by
modifying the thresholds of the Avg



I ntroduction

64

Measurement Description Measurement
Unit Interpretation

response time measure using the eG
admin interface.

A high value is a cause for concern, as too
many stalled transactions means that user
experience with the web application is
poor. For the Summary descriptor, this
measure will report the total number of
stalled transactons on the target JVM.

Stalled
transactions
response time:

Indicates the average
time taken by the stalled
transactions of this
pattern to execute.

Secs For the Summary descriptor, this
measure will report the average response
time of all stalled transactions on the
target JVM.

Stalled
transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is stalling.

Percent Use the detailed diagnosis of this measure
to know which precise transactions of a
pattern are stalled. You can drill down from
a stalled transaction to know what is
causing that transaction to stall. For the
Summary descriptor, this measure will
report the overall percentage of
transactions of this pattern on the target
JVM that is stalling.

Slow SQL
statements
executed

Indicates the number of
slow SQL queries that
were executed by the
transactions of this
pattern during the last
measurement period.

Number For the Summary descriptor, this
measure will report the total number of
slow SQL queries executed by all
transactions to the target JVM.

Slow SQL
statement time

Indicates the average
execution time of the
slow SQL queries that
were run by the
transactions of this
pattern.

Secs If there are too many slow transactions of
a pattern, you may want to check the
value of this measure for that pattern to
figure out if query execution is slowing
down the transactions. Use the detailed
diagnosis of the Slow transactions
measure to identify the precise slow
transaction. Then, drill down from that



I ntroduction

65

Measurement Description Measurement
Unit Interpretation

slow transaction to confirm whether/not
database queries have contributed to the
slowness. Deep-diving into the queries will
reveal the slowest queries and their impact
on the execution time of the transaction.

1.5 Key Java Business Transactions Test
For any business-critical application, some transactions will always be considered key from the point of view
user experience and business impact. For instance, in the case of a retail banking web application, fund
transfers executed online are critical transactions that have to be tracked closely for delays / errors, as
problems in the transaction will cost both consumers and the company dearly. Using the Java Key Business
Transactions test, administrators can perform focusedmonitoring of such critical transactions alone.

For each transaction URL pattern configured for monitoring on a JVM node, this test reports the count of
requests for that transaction pattern, and the count and percentage of transactions of that pattern that were
slow / stalling / error-prone. Detailed diagnostics provided by the test highlight the slow / stalled / error
transactions of a pattern, and pinpoint the precise reason why that key transaction slowed down / stalled /
encountered errors - is it because of an inefficient database query? is it because of a processing bottleneck on
the JVM node? or is it owing to slow remote service calls? This way, the test enables you to quickly detect
inconsistencies in the performance of your critical business transactions and accurately isolate its root-cause,
so that you can fix the issues well before users notice them.

.

Target of the Test: A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test:One set of results for each URL pattern configured for monitoring

Test parameters:

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured



I ntroduction

66

3. BTM PORT -Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node being monitored. If the JVM is being monitored in an agent- based manner, then the
btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.

4. URL PATTERNS - Provide a comma-separated list of PatternName:URLPattern pairs to be monitored.
The PatternName can be any name that uniquely identifies the pattern. These PattenNames will be the
descriptors of this test. For the URLPattern, you can either provide the exact URL to be monitored , or
can provide a pattern. For instance, if you want to monitor requests to distinct and specific web pages -
say, login.jsp and payment.jsp of a web application - then you can specify the exact URL of these web
pages as your URL PATTERNS . In this case your specification will
be,Login:/web/login.jsp,Payment:/web/payment.jsp. On the other hand, if you want to monitor requests
to all payment-related web pages in a web application - say, payment.jsp, creditcardpayment.jsp,
debitcardpayment.jsp, onlinepayment.jsp, and more - and you want the metrics to be grouped under a
single head calledPayment, then you can specify a pattern instead of the exact URL. In this case, your
URL PATTERNS specification will be Payment:*payment*. The leading '*' in the specification signifies
any number of leading characters, while the trailing '*' signifies any number of trailing characters. This
means that the specification in our example will track requests to all pages with names that contain the
word payment. YourURLPattern can also be *expr or expr* or *expr1*expr2* or expr1*expr2, etc.

5. KEY EXCLUDED PATTERNS - By default, this test does not track requests to the following URL
patterns:

*.ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.lwfn, *.ffil, *.fon, *.pfm, *.pfb, *.std, *.pro, *.xsf, *.jpg,
*.jpeg, *.jpe, *.jif, *.jfif, *.jfi, *.jp2, *.j2k, *.jpf, *.jpx, *.jpm, *.jxr, *.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png,
*.apng, *.mng, *.tiff, *.tif, *.xbm, *.bmp, *.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv,
*.mov, *.rm, *.ram, *.swf, *.flv, *.ogg, *.webm, *.mp4, *.ts, *.mid, *.midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.ogg, *.mp3, *.mp4, *.css, *.js, *.ico|/egurkha*

If required, you can remove one/more patterns from this default list, so that such patterns are
monitored, or can appendmore patterns to this list in order to exclude them frommonitoring.

6. METHOD EXEC CUTOFF (MS)– From the detailed diagnosis of slow/stalled/error transactions, you can
drill down and perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which the transaction
calls the methods. By configuring a METHOD EXECUTION CUTOFF, you can make sure that methods
that have been executing for a duration greater the specified cutoff are alone listed when performing
execution analysis. For instance, if you specify 5 here, then the Execution Analysis window for a
slow/stalled/error transaction will list only those methods that have been executing for over 5
milliseconds. This way, you get to focus on only those methods that could have caused the slowness,
without being distracted by inconsequential methods. By default, the value of this parameter is set to
250ms. 

7. SQL EXECUTION CUTOFF (MS) – Typically, from the detailed diagnosis of a slow/stalled/error
transaction on a JVM node, you can drill down to view the SQL queries (if any) executed by that
transaction from that node and the execution time of each query. By configuring a SQL EXECUTION
CUTOFF, you can make sure that queries that have been executing for a duration greater the specified
cutoff are alone listed when performing query analysis. For instance, if you specify 5 here, then for a



I ntroduction

67

slow/stalled/error transaction, the SQL Queries window will display only those queries that have been
executing for over 5 milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10ms. 

8. HEALTHY URL TRACE – By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed diagnosis
capability for healthy transactions as well, then set this flag toYes. 

9. MAX HEALTHY URLS PER TEST PERIOD – This parameter is applicable only if the HEALTHY URL
TRACE flag is set to ‘Yes’. Here, specify the number of top-n transactions that should be listed in the
detailed diagnosis of the Healthy transactions measure, every time the test runs. By default, this is set
to 50, indicating that the detailed diagnosis of the Healthy transactions measure will by default list the
top-50 transactions, arranged in the descending order of their response times.

10. MAX SLOW URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed in
the detailed diagnosis of theSlow transactions measure, every time the test runs. By default, this is set
to 10, indicating that the detailed diagnosis of the Slow transactions measure will by default list the top-
10 transactions, arranged in the descending order of their response times.

11. MAX STALLED URLS PER TEST PERIOD - Specify the number of top-n transactions that should be
listed in the detailed diagnosis of theStalled transactions measure, every time the test runs. By default,
this is set to 10, indicating that the detailed diagnosis of theStalled transactions measure will by default
list the top-10 transactions, arranged in the descending order of their response times.

12. MAX ERROR URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed
in the detailed diagnosis of the Error transactions measure, every time the test runs. By default, this is
set to 10, indicating that the detailed diagnosis of the Error transactions measure will by default list the
top-10 transactions, in terms of the number of errors they encountered.

13. ADVANCED SETTINGS – To optimize transaction performance and conserve space in the eG database,
many restraints have been applied by default on the agent’s ability to collect and report detailed
diagnostics. Depending upon how well-tuned your eG database is and the level of visibility you require
into transaction performance, youmay choose to either retain these default settings or override them. If
you choose not to disturb the defaults, then set the ADVANCED SETTINGS flag to No. If you want to
modify the defaults, then set theADVANCED SETTINGS flag toYes.

14. POJO METHOD TRACING LIMIT and POJO METHOD TRACING CUTOFF TIME - These parameters will
appear only if the ADVANCED SETTINGS flag is set to ‘true’. Typically, if theMONITORINGMODE of
this test is set to Profiler , then, as part of the detailed diagnostics of a transaction, eG reports the
execution time of every POJO, non-POJO, and recursive (i.e. methods that call themselves) method
call that a JVM node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to collect detailed
measures related to POJO method calls do not impact the overall responsiveness of the monitored
transaction, eG, by default, collects and reports the execution time of only the following POJO method
calls:

l The first 1000 POJOmethod calls made by the target JVM node for that transaction; (OR)

l The POJO method calls that were made by the target JVM node within 10 seconds from the start of
themonitored transaction on that node;



I ntroduction

68

Accordingly, the POJO METHOD TRACING LIMIT is set to 1000 by default, and the POJO METHOD
TRACING CUTOFF TIME is set to 10 (seconds) by default. Of these two limits, whichever limit is
reached first will automatically be applied by eG for determining when to stop POJO tracing. In other
words, once a JVM node starts processing a transaction, the agent begins tracking the POJO method
calls made by that node for that transaction. In the process, if the agent finds that the configured tracing
limit is reached before the tracing cutoff time is reached, then the agent will stop tracking the POJO
method calls, as soon as the tracing limit is reached. On the other hand, if the tracing limit is not
reached, then the agent will continue tracking the POJO method calls until the tracing cutoff time is
reached. At the end of the cutoff time, the agent will stop tracking the POJO method calls. For
instance, if the JVM node makes 1000 POJO method calls within say, 6 seconds from when it began
processing the transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call, and report the
execution time of each of the 1000 calls alone. On the other hand, if the JVM node does not make over
1000 POJO method calls till the 10 second cutoff expires, then the eG agent continues tracking the
POJO method calls till the end of 10 seconds, and reports the details of all those that were calls made
till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you want to impose
on the agent and on the transaction, you can increase / decrease the POJO METHOD TRACING LIMIT
and POJOMETHOD TRACING CUTOFF TIME specifications.

15. NON- POJO METHOD TRACING LIMIT – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. By default, when reporting the detailed diagnosis of a transaction on a
particular JVM node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes for that
transaction. This is why, the non-pojo method tracing limit parameter is set to 1000 by default. If you
want, you can change the tracing limit to enable the test to report the details of more or fewer non-
POJOmethod calls made by a JVM node. While a high value for this parameter may take you closer to
identifying the non-POJO method that could have caused the transaction to slowdown on a particular
JVM node, it may alsomarginally increase the overheads of the transaction and the eG agent.  

16. RECURSIVE METHOD TRACING LIMIT – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’ . A recursive method is a method that calls itself. By default, when
reporting the detailed diagnosis of a transaction on a particular JVM node, this test reports the
execution time of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM node makes for that transaction. This is why, the RECURSIVE METHOD
TRACING LIMIT parameter is set to 1000 by default. If you want, you can change the tracing limit to
enable the test to report the details of more or fewer recursivemethod calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the recursive method that could have
caused the transaction to slowdown on a particular JVM node, it may also marginally increase the
overheads of the transaction and the eG agent.

17. EXCEPTION STACKTRACE LINES –This parameter will appear only if the ADVANCED SETTINGS
flag is set to ‘true’. As part of detailed diagnostics, this test, by default,  lists the first 10 stacktrace
lines of each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the EXCEPTION
STACKTRACE LINES parameter is set to 10 by default. If required, you can have this test display more



I ntroduction

69

or fewer stacktrace lines by overriding this default setting.   

18. INCLUDED EXCEPTIONS – This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’ . By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a transaction, such a
transaction, by default, will not be counted as anError transaction by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL exceptions that
have already been handled programmatically, occur. This can be achieved by configuring a comma-
separated list of these exceptions in the INCLUDED EXCEPTIONS text box. Here, each exception you
want to include has to be defined using its fully qualified exception class name. For instance, your
INCLUDED EXCEPTIONS specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be used as part of
your specification. Once the exceptions to be included are configured, then this test will count all
transactions in which such exceptions are captured as Error transactions.  

19. IGNORED EXCEPTIONS – This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’ . By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled exceptions (or
handled SQL exceptions), as they may not pose any threat to the stability of the transaction or to the
web site/web application. To achieve this, administrators can configure a comma-separated list of such
inconsequential exceptions in the IGNORED EXCEPTIONS text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For instance, your
EXCLUDED EXCEPTIONS specification can be as follows:
java.sql.SQLException,java.io.FileNotFoundException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be excluded are configured, then this test
will exclude all transactions in which such exceptions are captured from its count of Error transactions.

20. IGNORED CHARACTERS – This parameter will appear only if the ADVANCED SETTINGS flag is
set to ‘true’ . By default, eG excludes all transaction URLs that contain the ‘\’ character from
monitoring. If you want eG to ignore transaction URLs with any other special characters, then specify
these characters as a comma-separated list in the IGNORED CHARACTERS text box. For instance,
your specification can be: \\,&,~

21. MAX GROUPED URLS PER MEASURE PERIOD - This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’ . This test groups URLs according to the MAX URL SEGMENTS
specification. These grouped URLs will be the descriptors of the test. For each grouped URL, response
timemetrics will be aggregated across all transaction URLs in that group and reported.



I ntroduction

70

Whenmonitoring web sites/web applications to which the transaction volume is normally high, this test
may report metrics for hundreds of descriptors. If all these descriptors are listed in the Layers tab page
of the eG monitoring console, it will certainly clutter the display. To avoid this, by default, the test
displays metrics for a maximum of 50 descriptors – i.e., 50 grouped URLs alone – in the eG monitoring
console, during every measure period. This is why, theMAX GROUPED URLS PER MEASURE PERIOD
parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring console, the eG BTM
follows the below-mentioned logic:

l Top priority is reserved for URL groups with error transactions. This means that eG BTM first scans
URL groups for error transactions. If error transactions are found in 50 URL groups, then eG BTM
computes the aggregated response time of each of the 50 groups, sorts the error groups in the
descending order of their response time, and displays all these 50 groups alone as the descriptors of
this test, in the sorted order.

l On the other hand, if error transactions are found in only one / a few URL groups – say, only 20 URL
groups – then, eG BTM will first arrange these 20 grouped URLs in the descending order of their
response time. It will then compute the aggregated response time of the transactions in each of the
other groups (i.e., the error-free groups) that were auto-discovered during the same measure period.
These other groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped URLs from this
sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the 20 error groups
are first displayed (in the descending order of their response time), followed by the 30 ‘error-free’
groups (also in the descending order of their response time).

At any given  point in time, you can increase/decrease the maximum number of descriptors this test
should supportby modifying the value of the MAX GROUPED URLS PER MEASURE PERIOD
parameter.

22. MAX SQL QUERIES PER TRANSACTION – This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. Typically, from the detailed diagnosis of a slow/stalled/error transaction
on a JVM node, you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By default, eG picks the first 500 SQL queries
executed by the transaction, compares the execution time of each query with the SQL EXECUTION
CUTOFF configured for this test, and displays only those queries with an execution time that is higher
than the configured cutoff. This is why, theMAX SQL QUERIES PER TRANSACTION parameter is set to
500 by default.

To improve agent performance, you may want the SQL EXECUTION CUTOFF to be compared with the
execution time of a less number of queries – say, 200 queries. Similary, to increase the probability of
capturing more number of long-running queries, you may want the sql execution cutoff to be compared
with the execution time of a large number of queries – say, 1000 queries. For this, you just need to
modify theMAX SQL QUERIES PER TRANSACTION specification to suit your purpose.

23. TIMEOUT– By default, the eG agent will wait for 1000 milliseconds for a response from the eG



I ntroduction

71

Application Server agent. If no response is received, then the test will timeout. You can change this
timeout value, if required.

24. DD FREQUENCY – Refers to the frequency with which detailed diagnosis measures are to be generated
for this test. The default is 1:1. This indicates that, by default, detailed measures will be generated
every time this test runs, and also every time the test detects a problem. You can modify this
frequency, if you so desire. Also, if you intend to disable the detailed diagnosis capability for this test,
you can do so by specifying none against DD FREQUENCY.

25. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormalfrequencies configured for the detailed diagnosis measures should not
be 0.

Measures reported by the test:

Measurement Description Measurement
Unit Interpretation

All transactions Indicates the total
number of requests
received for transactions
of this pattern during the
last measurement
period.

Number By comparing the value of this measure
across transaction patterns, you can
identify the most popular transaction
patterns. Using the detailed diagnosis of
this measure, you can then figure out
which specific transactions of that pattern
aremost requested.

Avg response time Indicates the average
time taken by the
transactions of this
pattern to complete
execution.

Secs Compare the value of this measure across
patterns to isolate the type of transactions
that were taking too long to execute. You
can then use the detailed diagnosis of the
All transactions measure of that group to
know how much time each transaction in
that group took to execute. This will lead
you to the slowest transaction.



I ntroduction

72

Measurement Description Measurement
Unit Interpretation

Healthy
transactions

Indicates the number of
healthy transactions of
this pattern.

Number

Healthy
transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is healthy.

Percent To know which are the healthy
transactions, use the detailed diagnosis of
this measure.

Slow transactions Indicates the number of
transactions of this
pattern that were slow
during the last
measurement period.

Number This measure will report the number of
transactions with a response time higher
than the configured SLOW TRANSACTION
CUTOFF (MS). A high value is a cause for
concern, as too many slow transactions
means that user experience with the web
application is poor.

Slow transaction
response time

Indicates the average
time taken by the slow
transactions of this
pattern to execute.

Secs

Slow transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is currently
slow.

Percent Use the detailed diagnosis of this measure
to know which precise transactions of a
pattern are slow. You can drill down from a
slow transaction to know what is causing
the slowness.

Error transactions Indicates the number of
transactions of this
pattern that experienced
errors during the last
measurement period.

Number A high value is a cause for concern, as too
many error transactions to a web
application can significantly damage the
user experience with that application.

Error transactions
response time

Indicates the average
duration for which the
transactions of this
pattern were processed
before an error condition
was detected.

Secs The value of this measure will help you
discern if error transactions were also
slow.



I ntroduction

73

Measurement Description Measurement
Unit Interpretation

Error transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is
experiencing errors.

Percent Use the detailed diagnosis of this measure
to isolate the error transactions. You can
even drill down from an error transaction in
the detailed diagnosis to determine the
cause of the error.

Stalled
transactions

Indicates the number of
transactions of this
pattern that were stalled
during the last
measurement period.

Number This measure will report the number of
transactions with a response time higher
than the configured STALLED
TRANSACTION CUTOFF (MS ). A high
value is a cause for concern, as too many
stalled transactions means that user
experience with the web application is
poor.

Stalled
transactions
response time:

Indicates the average
time taken by the stalled
transactions of this
pattern to execute.

Secs

Stalled
transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is stalling.

Percent Use the detailed diagnosis of this measure
to know which precise transactions of a
pattern are stalled. You can drill down from
a stalled transaction to know what is
causing that transaction to stall.

Slow SQL
statements
executed

Indicates the number of
slow SQL queries that
were executed by the
transactions of this
pattern during the last
measurement period.

Number

Slow SQL
statement time

Indicates the average
execution time of the
slow SQL queries that
were run by the
transactions of this
pattern.

Secs If there are too many slow transactions of
a pattern, you may want to check the
value of this measure for that pattern to
figure out if query execution is slowing
down the transactions. Use the detailed
diagnosis of the Slow transactions



I ntroduction

74

Measurement Description Measurement
Unit Interpretation

measure to identify the precise slow
transaction. Then, drill down from that
slow transaction to confirm whether/not
database queries have contributed to the
slowness. Deep-diving into the queries
will reveal the slowest queries and their
impact on the execution time of the
transaction.

1.6 Detailed Diagnostics
By reporting detailed diagnostics on transaction responsiveness and errors, eG Enterprise not only points you
to the slow/stalled/error transaction URLs, but also reveals what could be causing the slowness/errors.

Figure 1.29 reveals detailed diagnosis of the Avg response time measure of the OrderProcessing grouped
URL of the Java Business Transactions test.

Figure 1.29: Detailed diagnosis of the Avg response time measure of the Java Business Transactions test

The detailed diagnosis reveals the individual transaction URLs in the grouped URL that users requested for,
the total response time of each transaction, the client (remote host) from which each transaction request was
received, the thread executing the transaction, and the query string of the transaction URL. The per-
transaction response time displayed in Figure 1.29 includes the following:

l The total time for which the transaction request was processed by the target JVM and by other
BTM-enabled JVMs in the transaction path thereafter, until the time the response for that
transaction request was sent out by the target JVM; 



I ntroduction

75

l The time taken by external calls (SQL query / HTTP / JMX / Java / JMS / SAP JCO / async) to
other JVMs or backends in the transaction path;

Additionally, the overall experience of the users with each transaction – whether it is slow, stalled, or error - is
also revealed in the TRANSACTION USER EXPERIENCE column. The per-transaction statistics are also
sorted in the descending order of the transaction response time, starting with the slowest transaction and
ending with the healthiest one. In the event that the Avg response time of a grouped URL registers an
abnormally high value, you can use these detailed metrics to quickly and accurately identify the exact
transaction in the group that is significantly contributing to the poor user experience with the group.

Similar diagnostics are also available for the Slow transaction percentage, Stalled transaction percentage,
and Error transaction percentagemeasures of the Java Business Transactions test. With the help of these
detailedmeasures, you will be able to quickly and accurately identify the slow, stalled, and error transactions
in a grouped URL.

Once a slow/stalled transaction is revealed, the next question is what is causing the transaction to slowdown.
Transaction responsiveness can be impacted by any of the following factors:

l An inefficient database query run by the target JVM node;

l In a multi-JVM environment, a time-consuming POJO / non-POJOmethod called by any JVM node;

l A poorly responsiveness remote service call made by the target JVM node;

With the help of illustrated examples, the links below describe how drill-downs from the detailed diagnostics
enable accurate isolation of the root-cause of a transaction slowdown / errors in a transaction.

Detailed Diagnostics Revealing that an Inefficient DatabaseQuery is the Reason for a Slow Transaction

Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown

Detailed Diagnostics Revealing the Root-cause of an Error Transaction

Detailed Diagnostics Revealing that a Remote Service Call is the ReasonWhy a Transaction Slowed Down

1.6.1 Detailed Diagnostics Revealing that an Inefficient Database
Query is the Reason for a Slow Transaction

Let us consider the example of the EasyKart web application, which enables users to quickly shop for
products. Say that this web application has been deployed on the Oracle WebLogic server, EasyKart:80.
Users of EasyKart complained that every time they tried to browse the catalog of products on the EasyKart
web site, the response was very poor. Using eG’s Java Business Transactions test of the EasyKart:80
Oracle WebLogic server, you can promptly capture this anomaly! As you can see in Figure 1 below, the Java
Business Transactions test has accurately captured and reported that the Slow transactions percentage for
the /EasyKart/BrowseProducts.jsp transaction is 100%. This means that 100% of the requests for the
EasyKart/BrowseProducts.jsp transaction were serviced slowly (see Figure 1)!



I ntroduction

76

Figure 1.30: The Layers tab page indicating that all requests for /EasyKart/BrowseProducts.jsp were slow



I ntroduction

77

To know which request received the slowest response, click the DIAGNOSIS icon against the Slow
transactions percentage measure in 1.6.1. Figure 1.31 will then appear listing all the transaction requests that
were slow, the time at which each request was sent, the total response time of every request, the client from
which the, request was received, the query string of the transaction URL, and the thread executing the
request.

Figure 1.31: Detailed Diagnosis of the Slow transactions percentage measure

Since the requests are arranged in the descending order of their response time, a quick look at the detailed
diagnostics will lead you to the precise request that is the slowest. But, why is response to this request slow?
To answer this question, click the ‘magnifying glass’ icon against Slow in the TRANSACTION USER
EXPERIENCE column of the slowest request (i.e., the topmost request in Figure 1.31).

Figure 1.32 will then appear revealing the cross-application flow of the slow transaction. This flow diagram
clearly reveals the following:

l The JVMs and backends through which the transaction travelled;

l The time for which the transaction request was processed at each BTM-enabled JVM; note that this time
will not be computed for JVMs that are in the transaction path, but are not BTM-enabled and
those that are BTM-enabled but are not managed by eG;

l The time consumed by external calls made by the transaction and the number of times each type of call
was made;



I ntroduction

78

Figure 1.32: Cross-application transaction flow

Using conventional color codes and intuitive icons, the transaction flow chart precisely pinpoints where the
transaction slowed down. In the case of Figure 1.32 above, from the color-coding it is clear that the Database
Query executed by the Oracle WebLogic server – OrderProcessing:80 - is taking a long time for execution.
The question now is which query is this. To determine that, click onDatabase Query in Figure 1.32.

Drilling down from Database Query in Figure 1.32 automatically opens the list of SQL Queries executed by
the slow transaction in question (see Figure 1.33). The execution time of each query and what percentage of
the total response time of the transaction each query is consuming will be displayed here. From Figure 1.33, it
is evident that a SELECT DISTINCT specials. . . query is taking over 230000 milliseconds for execution –
this is apparently 98.02% of the total response time of the target transaction. This time-consuming query is
what is causing the transaction to slow down. To view the complete query, click on that query in the SQL
Queries list of Figure 1.33.  The detailed query will then be displayed in theQuery section of Figure 1.33.



I ntroduction

79

Figure 1.33: Analyzing the slow query

This way, using a short sequence of mouse clicks, you have zeroed-in on the source of the transaction
slowness.

The TRANSACTION SNAPSHOT section in Figure 1.32 leads you to the same root-cause, without
requiring any clicks! The details provided by this section are as follows:

l User Experience: The user experience with the BrowseProducts transaction; in our example, this is Slow

l Execution Time: The total response time of the BrowseProducts transaction;

l Slow Segment:Where exactly the BrowseProducts transaction slowed down; 



I ntroduction

80

From the Slow Segment display, it is evident that a database query executed by the BrowseProducts.jsp
transaction on the Customer Orders database took over 23000 millisecs for execution, thereby slowing down
the entire transaction! This corroborates our findings from the cross-application transaction flow and the
subsequent query analysis.

Now, click on the down-arrow button at the bottom tip of the TRANSACTION SNAPSHOT section (as
indicated by Figure 1.32). Doing so will reveal a tier-wise breakup of the transaction response time (see Figure
1.34). This way, you can quickly compare response time across tiers, and accurately isolate where the
bottleneck lies – in this case, it is in the database queries.

Figure 1.34: Tier-wise response time breakup

To close the tier-wise breakup, click on the up arrow button indicated by Figure 1.34.



I ntroduction

81

You can even close the transaction snapshot pop-up if you want to by clicking on the button alongside the

title TRANSACTION SNAPSHOT (as indicated by Figure 1.34).

Let us now revisit the cross-application flow diagram of the BrowseProducts transaction. You can use the top-
down slider at the bottom, left corner of the flow diagram (as indicated by Figure 1.32)  to zoom your diagram in
and out.

Moreover, by default, the time spent by the transaction at every point cut is reported in milliseconds in the flow
diagram. You can reconfigure the flow diagram to express the time spent as a percentage of total transaction
response time instead. For this, first click the button at the right, top corner of the flow diagram. The options
depicted by 1.6.1 will then appear.

Figure 1.35: Expressing the time spent at every point cut as a percentage of total transaction response time

Uncheck the Time spent in ms check box in 1.6.1 and select the Time spent in % check box to make sure
that the response time at every point cut is displayed as a percentage of total transaction response time. The
percentage will enable you to better judge where the transaction spent maximum time.

You can also choose the Component type or Component name options in 1.6.1 to have the component
type only or the component name only (as the case may be) displayed for each of the nodes in the cross-
application transaction flow. By default, both component type and namewill be displayed for each node.

Let us now explore the Summary section of the call drill down. For that, click the Summary option in the left
panel of Figure 1.33. Figure 1.36 will appear.



I ntroduction

82

Figure 1.36: A summary of the performance of the JVM node, OrderProcessing:80

The Summary section provides a quick summary of the performance of the monitored transaction,
EasyKart/BrowseProducts.jsp, on the JVM node that executed the slow database query – i.e., the Oracle
WebLogic server, OrderProcessing:80.

From the Summary, you can infer that the BrowseProducts transaction was processed for a total of 23712
milliseconds on the OrderProcessing:80. If you take a look at the transaction topology now (see Figure 1.37),
you will be able to understand that this processing time is the sum of the following:

l The time for which the transaction was processed internally by the OracleWebLogic server – 151
ms

l The time taken by OrderProcessing:80 to execute a database query for the transaction and
retrieve results – 23242ms

l The time taken by OrderProcessing:80 to make a JMS call to a messaging server and pull data
from themessage queueOrderQueue – 319ms



I ntroduction

83

Figure 1.37: How the total processing time of the transaction on OrderProcessing:80 is computed

The Breakup of Processing Time section in Figure 1.36 clearly indicates how the Total Processing time
is computed. From this section, you can also glean where the slowdown originated – within the JVM node? Or
when making external calls from the JVM node? In the case of our example, the problem is with the remote
calls.

Next, take a look at the URL displayed in the Summary section. As you can see, while the Business
Transaction continues to be BrowseProducts.jsp, the URL is EasyKart/SearchResults.jsp. When tracing a
transaction, if an HTTP call is made by a JVM node to another, then eG BTM not only discovers the type of
call made, but also discovers the URL that was called.

This means that in the case of our example, when the user accessed the EasyKart/BrowseProducts.jsp on
the EasyKart:80 server, the BrowseProducts page made an HTTP call to the OrderProcessing:80 server and
hit the URL EasyKart/SearchResults.jsp. eG accurately discovered the exact URL that the BrowseProducts
transaction accessed on the OrderProcessing:80 server and displayed that URL – i.e.,
EasyKart/SearchResults.jsp – against URL in Figure 1.36. Additionally, the Summary section also reports
the Query String of the URL, the Session ID of the session in which the transaction is processed on the
OrderProcessing:80 server, and Thread Name of the thread that processes the transaction.

TheSummary section also differentiates between the overall User Experience of a transaction and the Java
Processing Status of that transaction on a particular JVM node. In the case of our example, the Summary
section clearly reveals that the User Experience of the tranaction is Slow. At the same time, eG has also
detected that the transaction slowdown is not owing to the OrderProcessing:80 server – i.e., the slowness did



I ntroduction

84

not occur because of a processing bottleneck on the OrderProcessing:80 server. This is why, eG maintains
that the Java Processing Status of the OrderProcessing:80 server is Healthy.

1.6.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing
Transactions to Slowdown

Let us consider the example of the BTMDemoFiles web application, where the following transactions are
either slow or stalled.

Figure 1.38: Detailed diagnosis of the Avg response time measure

Let us focus on the slow /BTMDemoFiles/FirstPage8.jsp in Figure 1.38. To zoom into the transaction, click on
it. The flow of the FirstPage8.jsp transaction will then be displayed as depicted by Figure 1.39.

Figure 1.39: The cross-application flow of the FirstPage8.jsp transaction

From the transaction flow, it is evident that the transaction slowed down in 3 JVM nodes. By comparing the
time the transaction spent in all 3 nodes, it can be inferred that maximum delay occurred on the Tomcat
server, Tomcat193_8181:8181. The question now is what type of processing on the Tomcat server delayed
the transaction in question. A closer look at the Tomcat server icon in Figure 1.39 will answer this question as
well! As indicated by Figure 1.39, the Tomcat193_8181:8181 server processed Java methods synchronously
for over 30000 milliseconds and asynchronously for over 2000 milliseconds. Comparing the two execution
times points the needle of suspicion towards the synchronous Java calls made by the Tomcat server. If so,



I ntroduction

85

which exact Java method is slowing down the transaction? To identify the same, let us zoom into the Tomcat
server by clicking on it in Figure 1.39. An intermediate window depicted by Figure 1.40 will then appear.

Figure 1.40: An intermediate modular window

This intermediate window will appear only under the following circumstances:

l If a node receives and processes multiple synchronous / asynchronous requests from one/more
external sources; and/or

l If one/more asynchronous threads are invoked by a node in response to requests to it;

Typically, from this window, you will be able to quickly determine the number of synchronous and
asynchronous calls that a particular JVM node processed. In the case of our example, we can clearly infer
from the intermediate window that the Tomcat193_8181:8181 server executed a single synchronous call and
a single asynchronous call.

For each synchronous and asynchronous call, this window will also display the self execution time and total
execution time of that call. Self execution time is the time it took for the synchronous/asynchronous call to
perform Java processing alone. Total execution time is the time taken by the synchronous/asynchronous call
to perform both Java and non-Java (eg., HTTP, Database, etc.) processing. By comparing the self and total
execution times across calls, you will be able to accurately identify the exact call that took too long to
execute, the call type, and whether such a call was slow in processing Java or non-Java. Accordingly, we can
clearly deduce from the intermediate window of Figure 1.40 that the synchronous calls made by the
Tomcat193_8181:8181 server in our example performed Java processing for a much longer time than desired.
To be able to precisely identify the exact Java method that caused the delay, click on the synchronous call
in Figure 1.40.

Figure 1.41 will then appear.



I ntroduction

86

Figure 1.41: The call graph of the synchronous call

Figure 1.41 provides a detailed Execution Analysis of the synchronous call. As part of this analysis, a pie
chart is presented that quickly reveals the percentage of time the Tomcat server in our example spent
processing the server’s Java code and making external JMS / SAP JCO / SQL query calls. The table below
the pie chart in Figure 1.41 lists the exact methods that performed Java processing or made the remote calls.
A quick look at this table reveals that the Java method,
org.apache.tomcat.websocket.server.WsFilter.doFilter (ServletRequest,ServletResponse,FilterChain),
invoked a series of child methods and external calls, which together took 35901 milliseconds to execute.
Scrolling down the table (seeFigure 1.42) points you to exact Javamethod that took maximum execution time.
In the case of our example, it is the sun.net.www.protocol.http.HttpURLConnection.connect() method, which
took over 20000milliseconds for execution.



I ntroduction

87

Figure 1.42: The Execution Analysis window pointing you to exact method that contributed to the slowness

Interestingly, Figure 1.42 also reveals that the parent Java method made an asynchronous (Async) call as
well. Is it the same call that took over 8000 milliseconds for execution, as per the intermediate window of
Figure 1.40? Let's find out. For that, click on the magnifying glass icon adjacent to the call type 'Async' in
Figure 1.42. Figure 1.43 will then appear.



I ntroduction

88

Figure 1.43: The Execution Analysis of the Async call

The Async call executed a Javamethod that totally took 8516ms to execute. This is the same execution time
that the Async call displayed in the intermediate window of Figure 1.40 has registered. This proves that both
calls are one and the same! The intermediate window also reveals that the asynchronous call is slow as well.
The Execution Analysis window points you to an HTTP call that this asynchronous thread made that took
over 6500 seconds! It is clear that it is this HTTP call that slowed down the asynchronous processing!

This way, eG BTM enables you to diagnose the root- cause of slowness in your synchronous and
asynchronous calls using just a few mouse clicks!

1.6.3 Detailed Diagnostics Revealing the Root- cause of an Error
Transaction

The detailed diagnosis of the Error transactions measure reveals the complete URLs of the error transactions
of a particular business transaction pattern. The total response time of each error transaction and the time at
wihich every such transaction was requested can be ascertained from the detailed diagnosis. To zoom into
the nature of the error and where it occurred, click on the ‘magnifying glass’ icon against the corresponding
‘Error’ icon in the TRANSACTION USER EXPERIENCE column of Figure 1.44.



I ntroduction

89

Figure 1.44: The detailed diagnosis of the Error transactions measure

1.6.3 will then appear, which will chart the entire path of the error transaction end-to-end. Using conventional
color-codes, this visual representation will accurately pinpoint where the error has occurred

Figure 1.45: The error transaction path revealing where the error has occurred

In the example of 1.6.3 above, the error seems to have occurred on the EasyKart:80 (OracleWebLogic) server
beingmonitored. To know what the error is, click on the EasyKart:80 server in 1.6.3.

Figure 1.46 that appears next opens an Error Details section, which displays the complete details of the
error.



I ntroduction

90

Figure 1.46: Error details

1.6.4 Detailed Diagnostics Revealing that a Remote Service Call is the
Reason Why a Transaction Slowed Down

According to Figure 1.47 below, slowness has been detected in 9 transactions of the pattern,
/EasyKart/PaymentPage.jsp. To know the exact URLs of the slow transactions, click on the ‘magnifying
glass’ icon against Slow transactions in Figure 1.47.

Figure 1.47: The Layers tab page revealing that 9 transactions of the pattern /EasyKart/PaymentPage.jsp are slow



I ntroduction

91

Figure 1.48 will then appear listing the slow transactions URLs. To drill down to the source of the slowness of
any of these transactions, click on the ‘magnifying glass’ icon alongside the ‘Slow’ icon of that transaction.

Figure 1.48: Detailed diagnosis listing the slow transactions of the pattern /EasyKart/PaymentPage.jsp

Figure 1.49 will then appear depicting how the transaction flows across the JVM and non-JVM nodes in its
path. From Figure 1.49, it is clear that aWeb service call made by the Tomcat OrderProcessing server to a
mastercard site in the backend – probably for processing a credit card payment - is slowing down the
transaction.



I ntroduction

92

Figure 1.49: Cross-application transaction flow depicting that the problem is with the Web Service call

To know more about this call, click theWeb Service icon in Figure 1.49. A Remote Call Details window will
then open listing all the remote calls made by the Tomcat OrderProcessing server. From this window you can
infer that theWeb Service call made to themastercard site is consuming nearly 75% of the transaction
execution time. As you can see, a few quick mouse clicks from a Slow transaction in Figure 1.48 has lead you
to the precise web service call that is delaying the transaction.



I ntroduction

93

Figure 1.50: List of remote service calls made by the Tomcat OrderProcessing server

2



Conclus ion

94

2
Conclusion
This document has clearly explained how eG Enterprise monitors Business Transactions . For more
information on eG Enterprise, please visit our web site at www.eginnovations.com or write to us at
sales@eginnovations.com.


	Introduction
	1.1 The eG Business Transaction Monitor (BTM)
	1.2 Pre-requisites for Business Transaction Monitoring Using eG
	1.3 How does the eG BTM Work?
	1.3.1 Installing eG BTM on a Generic JVM Node
	1.3.2 Installing eG BTM on an Apache Tomcat Server
	1.3.3 Installing eG BTM on an IBM WebSphere
	1.3.4 Installing eG BTM on an Oracle WebLogic Server
	1.3.5 Installing eG BTM on GlassFish

	1.4 Java Business Transactions Test
	1.5 Key Java Business Transactions Test
	1.6 Detailed Diagnostics
	1.6.1 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction
	1.6.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown
	1.6.3 Detailed Diagnostics Revealing the Root-cause of an Error Transaction
	1.6.4 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down


	Conclusion

