
eG Integration With Trouble Ticketing Systems

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice.
No part of this document may be reproduced or disclosed to others without the prior permission
of eG Innovations Inc. eG Innovations Inc. makes no warranty of any kind with regard to the
software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 7, Windows 8, Windows 10, Windows 2012,
Windows 2016 and Windows 2019 are either registered trademarks or trademarks of Microsoft
Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Copyright

©2020 eG Innovations Inc. All rights reserved.

Table of Contents
CHAPTER 1: INTRODUCTION 1

1.1 How the eGEnterprise to TT System IntegrationWorks? 1

1.1.1 Alarms in eG Enterprise 1

1.1.2 Integration with Trouble Ticketing Systems 2

1.1.3 Handling eG Alarms in a Trouble Ticketing System 3

1.1.4 Integration with Trouble Ticketing Systems 6

1.1.5 Handling eG Alarms in a Trouble Ticketing System 6

CHAPTER 2: TROUBLE TICKET INTEGRATION USING THE TTMAIL INTERFACE 8

2.1 Pre-requisites for Integrating with a TT System via a TT Mail Interface 8

2.2 Integrating the eGManager with a TT System via a TT Mail Interface 8

CHAPTER 3: TROUBLE TICKET INTEGRATION USINGSNMP TRAPS 15

3.1 How to Enable TT Integration over SNMP Traps? 15

3.1.1 Configuring a Third-party SNMP Manager 15

3.1.2 Sending Trouble Tickets over SNMP Traps 19

3.2 Enabling Logging of SNMP Trap Transmissions 20

CHAPTER 4: TROUBLE TICKET INTEGRATION USING THE EGTT CLI 22

CHAPTER 5: TROUBLE TICKET INTEGRATION USINGAWEB SERVICES FRAMEWORK 30

5.1 Integrating with ManageEngine’s ServiceDesk 31

5.2 Integrating with ServiceNow 35

5.3 Integrating with Autotask 40

5.4 Integrating with BMC RemedyForce 43

5.5 Integration with PagerDuty 45

5.6 Integrating with HipChat 48

5.7 Integrating with Slack 51

5.8 Integrating with JIRA 54

5.9 Integration with ATF 58

5.10 Integration with Ivanti ServiceManager 61

5.11 Integration with Moogsoft 64

5.12 Integration with ConnectWise 66

5.13 Integration with MS Teams 69

5.14 Integration with Opsgenie 72

5.15 Integration-with-SapphireIMS 75

5.16 Integration with SNOW ITOM 79

5.17 Integration with Zendesk 82

5.18 Integration with VictorOps 85

5.19Webhook Integration 89

5.20 Adding Custom Fields to the Trouble Ticket Integration Page 92

5.20.1 Adding Custom Fields for Service Now Integration 93

5.20.2 Adding Custom Fields for JIRA Integration 97

5.20.3 Adding Custom Fields for Pager Duty, Hip Chat, and Slack 102

CHAPTER 6: CONCLUSION 104

Table of Figures
Figure 2.1: Viewing the ITSM/Collaboration tool options 9

Figure 2.2: Configuring the TT mail settings 9

Figure 3.1: Adding an SNMP manager 16

Figure 3.2: Configuring the SNMP trap settings 18

Figure 3.3: Enabling TT integration over SNMP traps 19

Figure 4.1: Viewing the ITSM/Collaboration tool options 22

Figure 4.2: Configuring the TT mail settings 23

Figure 5.1: Viewing the ITSM/Collaboration tool options 31

Figure 5.2: Configuring integration with ManageEngine ServiceDesk 32

Figure 5.3: Viewing the ITSM/Collaboration tool options 35

Figure 5.4: Configuring integration with ServiceNow 36

Figure 5.5: Viewing the ITSM/Collaboration tool options 40

Figure 5.6: Configuring integration with Autotask 41

Figure 5.7: Viewing the ITSM/Collaboration tool options 44

Figure 5.8: Configuring integration with Remedyforce 44

Figure 5.9: Viewing the ITSM/Collaboration tool options 45

Figure 5.10: Configuring integration with PagerDuty 46

Figure 5.11: Viewing the ITSM/Collaboration tool options 49

Figure 5.12: Configuring integration with HipChat 49

Figure 5.13: Viewing the ITSM/Collaboration tool options 52

Figure 5.14: Configuring integration with Slack 52

Figure 5.15: Viewing the ITSM/Collaboration tool options 55

Figure 5.16: Configuring integration with JIRA 55

Figure 5.17: Viewing the ITSM/Collaboration tool options 59

Figure 5.18: Configuring integration with ATF 59

Figure 5.19: Viewing the ITSM/Collaboration tool options 61

Figure 5.20: Configuring integration with Ivanti Service Manager 62

Figure 5.21: Viewing the ITSM/Collaboration tool options 65

Figure 5.22: Configuring integration with Moogsoft 65

Figure 5.23: Viewing the ITSM/Collaboration tool options 67

Figure 5.24: Configuring integration with ConnectWise 68

Figure 5.25: Viewing the ITSM/Collaboration tool options 70

Figure 5.26: Configuring integration with MS Teams 70

Figure 5.27: Viewing the ITSM/Collaboration tool options 73

Figure 5.28: Configuring integration with Opsgenie 73

Figure 5.29: Viewing the ITSM/Collaboration tool options 76

Figure 5.30: Configuring integration with SapphireIMS 76

Figure 5.31: Viewing the ITSM/Collaboration tool options 79

Figure 5.32: Configuring integration with SNOW ITOM 80

Figure 5.33: Viewing the ITSM/Collaboration tool options 82

Figure 5.34: Configuring integration with Zendesk 83

Figure 5.35: Viewing the ITSM/Collaboration tool options 86

Figure 5.36: Configuring integration with VictorOps 86

Figure 5.37: Viewing the ITSM/Collaboration tool options 89

Figure 5.38: Configuring integration using Webhooks 90

Figure 5.39: Setting Authorization Type to API Key 91

Figure 5.40: Creating a new incident 93

Figure 5.41: Selecting the Configure -> Table menu option 94

Figure 5.42: Clicking on the column ‘contact’ 94

Figure 5.43: The column name of the ‘Contact’ field 95

Figure 5.44: The custom field appearing in the Trouble Ticket Integration page of Service Now in the eG admin
interface 97

Figure 5.45: Selecting the Issues option 98

Figure 5.46: Clicking on the Custom Fields option 98

Figure 5.47: Locating the ‘eG manager URL’ field 99

Figure 5.48: Selecting the Edit option from the drop-down menu 99

Figure 5.49: Determining the ID of the ‘eG manager URL’ custom field 100

Figure 5.50: The custom field appearing in the Trouble Ticket Integration page of JIRA in the eG admin interface102

Chapter 1: Introduction

1

Chapter 1: Introduction

eGEnterprise includes extensive monitoring capabilities for IT Infrastructure components. Problems
detected by eG products can be reported to users in various ways – via the web, over email, and via
SNMP traps to any SNMP console. Many enterprises use Trouble Ticketing (TT) systems to track
problems with their IT infrastructures. Besides tracking the current problems, a trouble ticketing
system enables an operator to dispatch service requests to the appropriate maintenance personnel.
Maintenance personnel can use the trouble ticket system to update and monitor the status of current
problems and follow these through to final resolution.

The integration of eG Enterprise with TT systems facilitates the following actions to be automatically
performed in the TT system based on the open alarms in eGEnterprise:

l trouble tickets to be opened in the TT systems as and when a new alarm is detected by eG
Enterprise;

l trouble tickets to bemodified as and when an existing alarm ismodified in eGEnterprise;

l trouble tickets to be closed as and when an alarm is removed in eGEnterprise;

1.1 How the eG Enterprise to TT System Integration Works?

1.1.1 Alarms in eG Enterprise

To understand how the integration of the eGmanager with a trouble ticketing systemworks, lets first
consider what is an alarm. An alarm in eG Enterprise, is identified by an Alarm ID. At any given
instant of time, anAlarm ID is a unique combination of the following attributes:

a. The problem component-type

b. The problem component (i.e., network device, application, etc.)

c. The problem layer

d. The problem priority (Critical, Major, Minor)

The eGmonitoring interface lists alarms that currently exist in the eG Enterprise system. The goal of
the eG Enterprise integration with TT systems is to be able to forward updated information on
current alarms to the TT system.

Every time there is a state change (e.g., change of priority or correction of a problem) detected in the
monitored environment, the eG manager checks the combination of component, component-type,

Chapter 1: Introduction

2

layer, and priority combination for all open problems with their previous values to determine whether
a new alarm has been generated, an existing alarm has beenmodified, or whether an existing alarm
has been closed. If a new alarm has been generated, the eGmanager assigns a distinct alarm ID for
this alarm. If an existing alarm has been modified or closed, the eG manager retains the earlier
assigned alarm ID for this alarm. Modification of an alarm can include any of the following cases:

l A change in the alarm priority: This could be a switch to a higher or lower priority.

l A change in the alarm description: For example, originally, a usage-related alarm may have been
raised on disk ‘D’ of a server. Later, disk ‘C’ of the same server might have experienced a space
crunch, causing another alarm to be raised. In this case, the description of the original alarm will
change to indicate that both disks C and D are experiencing a problem, but the alarm ID will not
change. Changes in alarm description may also happen if additional tests being run for the same
layer indicate a problem. A change may involve either an addition to the description (as in the
example above) or a removal of one or more descriptors (e.g., the space usage of disk ‘C’ in the
example above returning to a normal condition).

l A change in the list of impacted services

Each alarm is associated with a start date and time. The start date and time signifies when the alarm
was first generated by the eG manager. Any change in the state of the alarm during a subsequent
time does not cause a change in the start date and time of the alarm. Hence, even if an alarm
changes in priority at a later time, its start date and time remain the same, until the alarm is finally
closed. When an alarm is closed, a normal alert is generated, which will bear the current date and
time.

In order to avoid conflicts/duplication of alarm IDs generated by each of themanagers in a redundant
eG manager cluster, the alarm ID is expressed as a string that is of the form <eG_Manager>_
<numeric_value> , where the <numeric_value> is a timestamp of when the alarm was first
generated.

Prior to generating an alarm, the eG managers in a cluster synchronize with each other to ensure
that duplicate alarms are not generated or that different alarm IDs are not generated for the same
problem. As in the case of email alerts and SNMP traps, each manager in the cluster is responsible
for generating alarms for agents that are directly reporting to themanager.

1.1.2 Integration with Trouble Ticketing Systems

The eG manager can be configured so that whenever an alarm undergoes a change - either
generation, modification, or closure - themanager communicates this information to a TT system.

This communication can be in any of the formsmentioned below:

Chapter 1: Introduction

3

l In recent times, many trouble ticketing systems have been found to embed a unique mail interface
that receives email alerts of problems in the environment. The eG Enterprise system can be
configured to use this interface to send alarms generated by the eGmanager as email alerts to the
trouble ticketing system. Based on the mails so received, the trouble ticketing system may
generate trouble tickets and forward them to the concerned maintenance personnel. For the
detailed discussion on this, refer to Trouble Ticket Integration Using the TT Mail Interface
chapter.

l The eG manager can also send its alarms as SNMP traps to third-party SNMP management
systems. When doing so, you can specifically configure the eG manager to send these traps as
trouble tickets to the third-party system. This ensures that every SNMP trap sent by the eG
manager is tagged with a unique TT ID, which helps track the status of the problem for which the
trap was originally raised. To know how this is done, refer to Trouble Ticket Integration Using
SNMP Traps chapter.

l The eG Manager supports a command line interface, that can be configured to automatically
execute TT system-specific commands as and when alarms are added, modified, or deleted in eG
Enterprise. This interface offers a way of communication between the eG Manager and a TT
system. Trouble Ticket Integration Using the eG TT CLI chapter discusses this in great detail.

l The eG Manager can also forward its alarm information to any web services interface that the
Trouble Ticketing System may support to trigger the automatic creation/closure (as the case may
be) of trouble tickets. See Trouble Ticket Integration Using a Web Services Framework.

1.1.3 Handling eG Alarms in a Trouble Ticketing System

A trouble ticket system must be configured to process alarms reported to it by an eG manager. The
alarm ID must be used to uniquely identify an alarm. The functions that the TT systemmust perform
are:

l Determine if an alarm ID indicates a new alarm. If yes, open a new trouble ticket.

l If an alarm ID indicates an existing alarm, check the priority of the alarm. If the priority is Normal,
this implies that the alarm has been closed in eG Enterprise. Hence, close the corresponding
trouble ticket in the TT system.

l If an alarm ID indicates an existing alarm and the priority of the alarm is not Normal, update the
corresponding trouble ticket with the current priority of the alarm and with its current description.

These functions often involve scripting/configurations on the TT system.

Chapter 1: Introduction

4

Once the above steps are accomplished, by reviewing the status of the trouble tickets,
administrators can be immediately aware of the current status of the infrastructure being monitored,
without having to login to the eGEnterprise console.

Note:

l If a standalone (i.e., non-redundant) eG manager is restarted, all outstanding alarms and hence,
all open trouble tickets will be closed. After the restart, if an old problem re-occurs, the restarted
manager will assign a new alarm ID to this problem; as a result, new trouble tickets will be opened
for such problems.

l In a redundant configuration, when a manager is restarted, it checks if the other manager is
available. If the other manager in the cluster is not available, all outstanding alarms will be closed.
On the other hand, if the other manager in the cluster is available, then the manager being
restarted will synchronize alarm information with the other manager. When it detects a problem,
the restarted manager checks to see if the other manager in the cluster has already assigned an
alarm ID to this problem. If so, then the restarted manager assigns the same ID to the problem. In
such a case, new trouble tickets will not be opened for the existing problems.

l In rare instances, when there are rapid alarm transitions (eg., from critical to normal to critical
state) for the same component type-component name-layer-priority combination in a redundant
eGmanager configuration, the same alarm ID may be re-used to refer to the new alarm.

l The same eGmanager can be configured to different modes of integration with a TT system - be it
email integration, command line integration, or web services-based integration.

l Since the eG manager forwards the current status of an alarm to the TT system, and since such
transmission is done only at periodic intervals, the eG Enterprise-TT system integration does not
capture all state transitions in the infrastructure being monitored. For instance, if the
MailCheckPeriod setting is 3 mins, an event that happens and gets corrected within 1 min is never
captured in the TT system. Consider changing the MailCheckPeriod setting to a lower value (upto
1sec), if you require higher sensitivity in trouble ticket tracking. Obviously, lower the value of the
MailCheckPeriod, greater is the overhead on the eGmanager.

Alarms in eGEnterprise

To understand how the integration of the eGmanager with a trouble ticketing systemworks, lets first
consider what is an alarm. An alarm in eGEnterprise, is identified by an Alarm ID. At any given
instant of time, an Alarm ID is a unique combination of the following attributes:

a. The problem component-type

b. The problem component (i.e., network device, application, etc.)

c. The problem layer

Chapter 1: Introduction

5

d. The problem priority (Critical, Major, Minor)

The eGmonitoring interface lists alarms that currently exist in the eGEnterprise system. The goal of
the eGEnterprise integration with TT systems is to be able to forward updated information on
current alarms to the TT system.

Every time there is a state change (e.g., change of priority or correction of a problem) detected in the
monitored environment, the eGmanager checks the combination of component, component-type,
layer, and priority combination for all open problemswith their previous values to determine whether
a new alarm has been generated, an existing alarm has beenmodified, or whether an existing alarm
has been closed. If a new alarm has been generated, the eGmanager assigns a distinct alarm ID for
this alarm. If an existing alarm has beenmodified or closed, the eGmanager retains the earlier
assigned alarm ID for this alarm. Modification of an alarm can include any of the following cases:

l A change in the alarm priority: This could be a switch to a higher or lower priority.

l A change in the alarm description: For example, originally, a usage-related alarm may
have been raised on disk ‘D’ of a server. Later, disk ‘C’ of the same server might have
experienced a space crunch, causing another alarm to be raised. In this case, the
description of the original alarm will change to indicate that both disks C and D are
experiencing a problem, but the alarm ID will not change. Changes in alarm description
may also happen if additional tests being run for the same layer indicate a problem. A
change may involve either an addition to the description (as in the example above) or a
removal of one or more descriptors (e.g., the space usage of disk ‘C’ in the example
above returning to a normal condition).

l A change in the list of impacted services

Each alarm is associated with a start date and time. The start date and time signifies when the alarm
was first generated by the eGmanager. Any change in the state of the alarm during a subsequent
time does not cause a change in the start date and time of the alarm. Hence, even if an alarm
changes in priority at a later time, its start date and time remain the same, until the alarm is finally
closed.When an alarm is closed, a normal alert is generated, which will bear the current date and
time.

In order to avoid conflicts/duplication of alarm IDs generated by each of themanagers in a redundant
eGmanager cluster, the alarm ID is expressed as a string that is of the form <eG_Manager>_
<numeric_value>, where the <numeric_value> is a timestamp of when the alarmwas first
generated.

Prior to generating an alarm, the eGmanagers in a cluster synchronize with each other to ensure
that duplicate alarms are not generated or that different alarm IDs are not generated for the same
problem. As in the case of email alerts and SNMP traps, eachmanager in the cluster is responsible
for generating alarms for agents that are directly reporting to themanager.

Chapter 1: Introduction

6

1.1.4 Integration with Trouble Ticketing Systems

The eG manager can be configured so that whenever an alarm undergoes a change - either
generation, modification, or closure - themanager communicates this information to a TT system.

This communication can be in any of the formsmentioned below:

l In recent times, many trouble ticketing systems have been found to embed a unique mail interface
that receives email alerts of problems in the environment. The eG Enterprise system can be
configured to use this interface to send alarms generated by the eGmanager as email alerts to the
trouble ticketing system. Based on the mails so received, the trouble ticketing system may
generate trouble tickets and forward them to the concerned maintenance personnel. For the
detailed discussion on this, refer to Trouble Ticket Integration Using the TT Mail Interface
chapter.

l The eG manager can also send its alarms as SNMP traps to third-party SNMP management
systems. When doing so, you can specifically configure the eG manager to send these traps as
trouble tickets to the third-party system. This ensures that every SNMP trap sent by the eG
manager is tagged with a unique TT ID, which helps track the status of the problem for which the
trap was originally raised. To know how this is done, refer to Trouble Ticket Integration Using
SNMP Traps chapter.

l The eG Manager supports a command line interface, that can be configured to automatically
execute TT system-specific commands as and when alarms are added, modified, or deleted in eG
Enterprise. This interface offers a way of communication between the eG Manager and a TT
system. Trouble Ticket Integration Using the eG TT CLIchapter discusses this in great detail.

l The eG Manager can also forward its alarm information to any web services interface that the
Trouble Ticketing System may support to trigger the automatic creation/closure (as the case may
be) of trouble tickets. See Trouble Ticket Integration Using a Web Services Framework.

1.1.5 Handling eG Alarms in a Trouble Ticketing System

A trouble ticket systemmust be configured to process alarms reported to it by an eGmanager. The
alarm ID must be used to uniquely identify an alarm. The functions that the TT systemmust perform
are:

l Determine if an alarm ID indicates a new alarm. If yes, open a new trouble ticket.

l If an alarm ID indicates an existing alarm, check the priority of the alarm. If the priority is Normal,
this implies that the alarm has been closed in eG Enterprise. Hence, close the corresponding
trouble ticket in the TT system.

Chapter 1: Introduction

7

l If an alarm ID indicates an existing alarm and the priority of the alarm is not Normal, update the
corresponding trouble ticket with the current priority of the alarm and with its current description.

These functions often involve scripting/configurations on the TT system.

Once the above steps are accomplished, by reviewing the status of the trouble tickets,
administrators can be immediately aware of the current status of the infrastructure beingmonitored,
without having to login to the eGEnterprise console.
Note:

l If a standalone (i.e., non-redundant) eG manager is restarted, all outstanding alarms and hence,
all open trouble tickets will be closed. After the restart, if an old problem re-occurs, the restarted
manager will assign a new alarm ID to this problem; as a result, new trouble tickets will be opened
for such problems.

l In a redundant configuration, when a manager is restarted, it checks if the other manager is
available. If the other manager in the cluster is not available, all outstanding alarms will be closed.
On the other hand, if the other manager in the cluster is available, then the manager being
restarted will synchronize alarm information with the other manager. When it detects a problem,
the restarted manager checks to see if the other manager in the cluster has already assigned an
alarm ID to this problem. If so, then the restarted manager assigns the same ID to the problem. In
such a case, new trouble tickets will not be opened for the existing problems.

l In rare instances, when there are rapid alarm transitions (eg., from critical to normal to critical
state) for the same component type-component name-layer-priority combination in a redundant
eGmanager configuration, the same alarm ID may be re-used to refer to the new alarm.

l The same eGmanager can be configured to different modes of integration with a TT system – be
it email integration, command line integration, or web services-based integration.

l Since the eG manager forwards the current status of an alarm to the TT system, and since such
transmission is done only at periodic intervals, the eG Enterprise-TT system integration does not
capture all state transitions in the infrastructure being monitored. For instance, if the
MailCheckPeriod setting is 3 mins, an event that happens and gets corrected within 1 min is never
captured in the TT system. Consider changing the MailCheckPeriod setting to a lower value (upto
1sec), if you require higher sensitivity in trouble ticket tracking. Obviously, lower the value of the
MailCheckPeriod, greater is the overhead on the eGmanager.

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

8

Chapter 2: Trouble Ticket Integration Using the TT Mail
Interface

The eG manager can be configured so that whenever an alarm undergoes a change – either
generation, modification, or closure - the manager communicates this information to a TT system.
This communication can be in the form of formatted email messages that can be processed by a TT
system using email interfaces that it supports.

2.1 Pre-requisites for Integrating with a TT System via a TT Mail
Interface
Before configuring an eG manager to integrate with a TT system via its email interface, make sure
that the eG manager has been configured with a Mail server and an Admin mail ID. Refer to the
Administering eGEnterprise document to know how to configure themail server.

2.2 Integrating the eG Manager with a TT System via a TT Mail
Interface
To achieve this, follow the steps below:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 2.1 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 2.1,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

9

Figure 2.1: Viewing the ITSM/Collaboration tool options

4. Now, click on theMail option in the right panel (see Figure 2.1). A Mail section will now appear in
the right panel (see Figure 2.2).

Figure 2.2: Configuring the TT mail settings

5. To enable TT integration using a mail interface, slide the Enable mail alerts slider in the Figure
2.2 to the left.

6. Next, specify the Subject of the email alerts that the eGmanager will send to the TT system. To
ensure that the mail subject reflects the problem component name, problem component type, the
problem priority, etc., variables can be used in the Subject definition, in the following format:
$alarmid#$user#$cname#$ctype#$layer#$prior#$pdesc. The variable $alarmid in the Subject
ensures that the subject of the TTmail contains the alarm id. Similarly, the $user, $cname, $ctype

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

10

variables represent the user with whom the alarm is associated, the name of the problem
component, and the problem component type, respectively. Likewise, the $layer , $prior , and
$pdesc variables denote the problem layer, the alarm priority, and the alarm description,
respectively. The ‘#’ is the separator, but it can be changed. You can rearrange the order of the
variables, and even omit a few variables if need be; but, the variable names and the ‘$’ symbol
preceding the name should not be changed. A sample subject has been provided below:

192.168.10.12_14678945321#john#printer:NULL#Host_system#NETWORK#Critical#Network

connection down

Thismail subject has been described below:

l 192.168.10.12_ 14678945321 is the alarm id that eG’s trouble ticketing engine
automatically generates every time a new alarm is processed by it; typically, this will be of
the format: <ManagerIP>_<a long value>

l john is the user with whom the problem component is associated

l printer:NULL is the hostname of the problem component

l Host_system is the component type

l network is the layer name

l Critical is the alarm priority

l Network connection down is the alarm description

Note:

Note that a mail Subject specification characterized by variables discussed above will work only
if the SeparateMails flag in the [TTMAIL] section of the eg_services.ini file (in the <EG_
INSTALL_DIR>\manager\config directory) is switched on. By default, this flag is set to No ,
indicating that a single TT mail will comprise of details pertaining to all the alarms that were raised
by the eGEnterprise during that point in time. In such a case, the variables in the Subject cannot
be substituted by the corresponding problem information; in this case therefore, by default,
eGTTMail will appear as the subject of the TT mail. However, if every problem event in the
environment should generate a separate TT mail, then set the SeparateMails flag to Yes. In
such a case, the variables in the Subject will be substituted by the corresponding details from the
problem information.

7. Next, against the Mail ID field, provide a comma-separated list of email IDs to which the email
alerts are to be delivered.

8. Then, specify theMail output format. This represents the format in which alarm content needs to

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

11

be emailed. The default format is as follows:

<eG_

Alarm>\n<Priority>$prior</Priority>\n<AlarmId>$alarmid</AlarmId>\n<User>$user</User>\n

<ComponentName>$cname</ComponentName>\n<ComponentType>$ctype</ComponentType>\n<Layer>$

layer</Layer>\n<Problem>$pdesc</Problem>\n<Service(s)>$Service</Service

(s)>\n<DD>$DD</DD>\n</eG_Alarm>

As stated earlier, a single TT mail can comprise of details pertaining to numerous alarms. Every
such alarm definition within a TT mail will typically begin with the tag <eG_Alarm> and end with
the tag </eG_Alarm> . This essentially indicates that the details contained within these tags
pertain to a single alarm. These tags can be changed if so required. For example, you can specify
<Alarm_info> and </Alarm_Info> instead of <eG_Alarm> and </eG_Alarm> . The variables
$prior, $alarmid, $user, $cname, $ctype, $layer, $pdesc, $service , and $dd, during run-time, will
display the alarm priority, alarm id, the user associated with the problem component, the problem
component’s name, the problem component type, the problem layer, the problem description, the
service affected by the problem, and the detailed diagnosis of the problem (if any), respectively.
In a TT mail, the value of each of the defined variables will be enclosed within the opening and
closing tags defined in the Mail output format. For example, take the case of the specification
<Priority>$prior</Priority> . In the TT mail for a critical alarm, this specification will appear as
<Priority> critical </Priority> . These tags serve as qualifiers for the enclosed values. In other
words, they indicate what value is displayed within. These tags can also be modified, if need be.
However, the dollared variable names cannot be changed. ‘/n’ acts as a separator for the values.
A sample TTmail output has been provided below:

<eG_Alarm>

<Priority>Normal</Priority>

<AlarmId>2</AlarmId>

<User>john</User>

<ComponentName>king:7001</ComponentName>

<ComponentType>WebLogic_server</ComponentType>

<Layer>WL_SERVICE</Layer>

<Problem>Many invocations{DD}</Problem>

</eG_Alarm>

9. If the problem component is associated with multiple users, then the $user variable, if used in the
Mail output format, will display a comma-separated user list. Typically, these users will be the
ones responsible for resolving the issues with the corresponding component. However, some
users will be authorized by the eG Enterprise system to oversee the performance of all the
components in the environment (for eg., the default users of the eG Enterprise system – admin
and supermonitor). In most cases, the responsibilities of such users will be more ‘supervisory’ in

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

12

nature, and not administrative – i.e. might not involve troubleshooting and problem redressal.
Therefore, by default, the eG Enterprise system will hide the ID of this user from the user list
displayed in the TT mail output. To ensure that the user list displays such a user ID too, slide the
Include user details in mail slider to the right. By default, this flag is turned off .

10. Typically, every new alert generated by the eG Enterprise system will be associated with a
unique alarm ID. By default, when every new alarm is processed by eG’s trouble ticketing engine,
a different alarm ID is generated by the engine, which will be of the format: <ManagerIP>:<a long
value> . Instead of this TT engine- generated alarm ID, if you want the original, manager-
generated alarm ID to be associated with the alarm and be part of the TT mail output, slide the
Use unique ID slider to the right. By default, this flag is turned off.

11. If need be, you can make sure that the TT mails indicate the alarm priority using numbers instead
of priority names such as critical, major, minor, or normal. For this purpose, you will have to slide
the Priority as numeric slider in 2.2 to the right. By default, this flag is turned off, indicating that
the priority of an alarm is indicated using the priority name by default. If this flag is turned on
instead, then the default priority name-number mappings defined in the [TTMAIL] section of the
eg_services.ini file (in the <EG_ INSTALL_DIR>\manager\config folder) will automatically
apply.

According to these mappings, if the Priority as numeric flag turned on, then, in every TT mail
sent subsequently, critical priority will be represented by number 1, major priority by number 2,
and minor priority by number 3. If required, you can even change the numbers that should
represent the alarm priorities. For instance, your priority name-number mapping can be as
follows:

Critical=10

Major=11

Minor=12

12. Also, by toggling the Apply priority for all TT mails flag, you can indicate whether the Alarm
preference setting (see Figure 2) applies only to each new alarm ID that is raised by the eG
manager or to modified alarms as well. As already stated, if an existing alarm has been modified,
the eGmanager retains the earlier assigned alarm ID for this alarm. The following are considered
alarmmodifications:

l A change in the alarm priority: This could be a switch to a higher or lower priority.

l A change in the alarm description: For example, originally, a usage-related alarm may have
been raised on disk ‘D’ of a server. Later, disk ‘C’ of the same server might have experienced a
space crunch, causing another alarm to be raised. In this case, the description of the original

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

13

alarmwill change to indicate that both disks C and D are experiencing a problem, but the alarm
ID will not change. Changes in alarm description may also happen if additional tests being run
for the same layer indicate a problem. A change may involve either an addition to the
description (as in the example above) or a removal of one or more descriptors (e.g., the space
usage of disk ‘C’ in the example / above returning to a normal condition).

l A change in the list of impacted services

If theApply priority for all TT mails slider is moved to the right, then the eGmanager will send
an email alert into the TT system even if one of the above modifications occur on an existing
alarm, as long as the priority of the modified alarm belongs to the list of priorities configured
against Alarm preference in the Settings page (see Figure 2). On the other hand, if theApply
priority for all TT mails slider is moved to the left, then the eG manager will send email alerts
only for every new alarm ID. In this case, the manager will ignore all subsequent changes to the
priority of the alarm.

13. Finally, click theUpdate button.

Note:

You can even configure the specific tests for which TT mails are to be sent using the TestsList
parameter in the [TTMAIL] section. By default, this parameter is set to All, indicating that the eG
manager, by default, sends out TT mails for alarms related to all tests. To restrict TT mail
transmission to specific tests, provide a comma-separated list of tests against TestsList . While
providing test names here, make sure you provide the <internaltestnames> and not the display
names. For instance, say, you want TT mails to be sent only when the eGmanager raises alarms for
the Processes test and the System Details test. To achieve this, your TestsList specification
should be as follows:

TestsList=ProcessTest,SystemTest

In the specification above, the internal name for Processes test is ProcessTest, and the same for
SystemDetails test isSystemTest. To determine the internal name of a test, do the following:

l Open the eg_lang*.ini file (from the <EG_INSTALL_DIR>\manager\config directory), where * is
the language code that represents the language preference that you have set using the user
profile page. In this file, the component types, measure names, test names, layer names,
measure descriptions, and a wide range of other display information are expressed in a particular
language, and aremapped to their eG equivalents.

l Now, search the eg_lang*.ini file for the test name of interest to you. For example, to know the
internal name of theSystemDetails test, search the language file for the text, SystemDetails.

Chapter 2: Trouble Ti cket Integration Using the TT Mai l Interface

14

l Since the eG equivalent of the SystemDetails test is SystemTest, you will find a specification to
that effect in the [TEST_NAME_MAPPING] section of that file. For our example, the specification
would be as follows:

SystemTest=SystemDetails

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

15

Chapter 3: Trouble Ticket Integration Using SNMP Traps

eGEnterprise is capable of transmitting alarms generated by the eGmanager via SNMP traps to an
SNMP management console such as HP OpenView, Netcool etc. In this case typically, for every
alert that is generated in the eGEnterprise system, individual trapswill be generated. In other words,
a new SNMP trap will be sent out whenever a new problem is detected or an old problem changes
(eg., a change in alarm priority, a change in alarm description, a change in the services impacted,
etc.). This means that if a problem occurs across multiple descriptors of the same test, traps will be
sent for each of the descriptors to the SNMP management system. Sometimes however, you may
want to track an issue closely so that you can tell when it actually occurred and when it 'changed'. To
ensure this, the eG Enterprise system provides you with the option to implement SNMP traps in the
trouble ticketing integration module. When this is done, each trap sent by the eG manager to the
third-party SNMP management console will be accompanied by a unique TTID. The SNMP console
should be able to recognize the TT ID, and if a trap with the same TT ID re-appears, it should
overwrite the last state it has for that TT ID. This way, the SNMP management system can
differentiate between new alarms andmodified alarms.

To enable integration via SNMP traps, the following steps should be followed:

l Configure at least one SNMP manager for the eG manager to integrate with. Refer to Section
3.1.1 to know how to configure an SNMPmanager.

l Configure the eG manager to send traps to the SNMP manager(s) as trouble tickets (i.e., with a
TTID). Refer to Sending Trouble Tickets over SNMP Traps to know how to configure the eG
manager so.

3.1 How to Enable TT Integration over SNMP Traps?
There are two broad steps for enabling the TT integration over SNMP traps:

l Configure a Third-party SNMPManager

l Send Trouble Tickets over SNMP Traps

These steps have been elaborately explained in relevant sections.

3.1.1 Configuring a Third-party SNMPManager

To configure the SNMP managers/trap receivers to which the eG manager needs to send SNMP
traps, do the following:

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

16

1. Select theReceivers and Settings option from theSNMP Trapsmenu in theAlerts tile.

2. Figure 3.1 will then appear.

Figure 3.1: Adding an SNMP manager

3. The IP address of the SNMPmanager on which the SNMPmanager application is executing has
to be provided in the SNMP manager text box in Figure 3.1. The port number on which the
SNMP manager is listening for traps from the eG manager is to be specified in the SNMP
manager port field. The default port is 162.

4. By default, the eG agent supports SNMP version 1. Accordingly, the default selection in the
SNMP version list is v1. However, if a different SNMP framework is in use in your environment,
say SNMP v2 or v3, then select the corresponding option from this list.

5. The SNMP community field appears only if the SNMP version chosen is 1 or 2. Here, specify
the community string that is used by an eGmanager to report alarm information via SNMP to an
SNMPmanager.

6. If theSNMP version is 3, then you will have to specify the following parameters (see Figure 3.1):

l Engine ID: Specify the engine ID of the trap sender. This should be in hexadecimal.

l User name: As SNMPv3 traps require authentication, specify a valid user name here.

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

17

l Authentication password: Enter the password of the above-mentioned User name.

l Confirm password: Confirm the Authentication Password by retyping it here.

l Authentication type: Choose the authentication algorithm using which SNMP v3 converts
the specified User name and Authentication password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

o MD5 - Message Digest Algorithm

o SHA - Secure Hash Algorithm

l Encrypt flag: By default, the eG manager does not encrypt SNMP traps. Accordingly, this
parameter is set to No by default. To ensure that SNMP traps sent by the eG manager are
encrypted, select theYes option.

l Encrypt type: If the Encrypt flag is set to Yes, then you will have to mention the encryption
type by selecting an option from the Encrypt type list. SNMP v3 supports the following
encryption types:

o DES - Data Encryption Standard

o AES - Advanced Encryption Standard

l Encrypt password: Specify the encryption password here.

l Confirm password: Confirm the encryption password by retyping the password here.

7. Select the required check boxes against Alarm types to indicate which alarm priorities need to
be sent out as SNMP traps to the third-party SNMPmanagement console.

8. Finally, click theUpdate button to add the new SNMPmanager.

9. Next, proceed to configure the SNMP trap settings. For this, click the SNMP trap settings tab
page in Figure 3.1. Figure 3.2 will appear.

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

18

Figure 3.2: Configuring the SNMP trap settings

10. To ensure that the SNMP trap's source field includes the IP address of the eG manager from
which the traps originated, set the Use the manager's IP address (not name) in the SNMP
trap's source field flag in Figure 3.2 to Yes. Setting this flag to No will include the host name of
the eGmanager in the source field.

11. Set the Send traps for individual metrics flag to Yes, if you want the eGmanager to send out
SNMP trapswhenever:

l A new alarm is raised on ameasure

l An existing alarm related to a measure changes - an alarm change can be a change in the
alarm priority, a change in the alarm description (eg., an addition/removal of a descriptor from
an alarm), or change in the list of impacted services

If you set the Send traps for individual metrics flag to No, then the test will send only new
alarms raised on a measure as SNMP traps, and will disregard alarm changes. By default, this
flag is set toYes.

12. If multiple applications operate on a single host - i.e., if multiple components are managed using
the same nick name - then, you can set the Send SNMP traps for systems (not servers) flag
toYes, so that the eGmanager generates an SNMP trap for only the very first alarm that is raised
on that nick name. In this case therefore, subsequent alarms for the same nick name will not be
considered for trap generation. To turn off this capability, set this flag toNo.

13. Indicate the frequency (in seconds) with which the eGmanager needs to check the state of a host
for SNMP trap generation, in the Frequency of system state checks (secs) text box. The
default is 60 seconds (i.e., 1 minute).

14. Finally, click theUpdate button to enable the transmission of SNMP traps.

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

19

3.1.2 Sending Trouble Tickets over SNMPTraps

For this, do the following:

1. Select theManager option from theSettings tile.

2. When Figure 3.3 appears, expand the Trouble Ticket Integration node in the MANAGER
SETTINGS tree-structure in the left panel, and select theMail / SNMP sub-node within.

Figure 3.3: Enabling TT integration over SNMP traps

3. Set theEnabling TT integration over SNMP traps flag toYes.

4. Finally, click theUpdate button.

5. Upon clicking Update , the 'trouble tickets as traps' capability will be automatically
enabled for all the SNMP managers that have been pre-defined in the eG Enterprise
system.

Once the capability is enabled, then, for each alert generated by the eG manager, an SNMP trap
carrying the following information will be sent to all the third-party SNMP management systems
registered with the eGEnterprise system:

l TT ID - unique identifier of the trouble ticket; TTID will be generated based on the settings defined
for the third-party SNMPmanagement system;

l Component name - The name of the problem component

l Component type - The problem component type (as it appears in the Current Alarms window of
the eGmonitoring console)

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

20

l Layer - The problematic layer

l Problem Time - the date/time when the problem started (as in the eGalarmwindow). The format
to be used for date and time will be taken from the default setting of the eGEnterprise suite.

l Problem description - A brief description of the problem

Note:
Once an SNMP manager is configured, the eG manager will start sending SNMP traps to that
manager, even if theEnable TT integration over SNMP traps flag is set toNo. Such SNMP traps
will be governed by the Alarm types and SNMP Trap Settings configured using Figure 3.1 and
Figure 3.2, respectively. Moreover, such trapswill not carry the TTID.

On the other hand, as soon as the Enable TT integration over SNMP traps flag is switched on,
the eG manager will start sending SNMP traps with TTID to the same SNMP manager, alongside
the SNMP traps without the TTID. The traps with TTID will be governed by theAlarm preferences
and other settings configured in the Common Settings page of Figure 1. Also, such traps will not
be affected by the Alarm types and SNMP Trap Settings configured using Figure 3.1 and Figure
3.2.

Note:
If you select a set of Alarm types to be sent as SNMP traps using the snmp manager configuration
page (see Figure 3.1), and also set Alarm preferences for TT integration in the Common
Settings page of Figure 1, then, once the Enable TT integration over SNMP traps flag is set to
Yes, the eG manager will send separate traps for the alarm priorities chosen from both pages. For
instance, say that the Critical and Major check boxes are chosen from the Alarm types section of
Figure 3.1 and only the Critical check box is selected from the Alarm preferences section of
Figure 1. In this case, the eG manager will send two traps for every Critical alarm – one with TTID
and one without TTID – and one trap for everyMajor alarm. The Critical alarm with the TTID will be
sent from eG’s trouble ticketing engine to match with the Alarm preferences setting for TT
integration, and the Critical alarm without the TTID will be sent from eG’s SNMP trap engine to
match with theAlarm types setting.

3.2 Enabling Logging of SNMP Trap Transmissions
To know which alarms have been sent as traps to the SNMP manager, you can configure the
automatic creation of log files, where the time at which traps were sent and the details of the traps
are logged. To enable logging for the SNMP trap transmissions, do the following:

Chapter 3: Trouble Ti cket Integration Using SNMP Traps

21

1. Edit the eg_services.ini file in the <EG_INSTALL_DIR>\manager\config directory.

2. In the [MISC_ARGS] section of that file, set the SnmpTrapLogsEnabled flag to Yes and save
the file. Once this is done, a log file named <IP_address_of_SNMP_manager>_snmptrap_log
will be automatically created in the <EG_INSTALL_DIR>\manager\logs directory on the eG
manager host.

3. By default, the eG manager will keep writing to the <IP_address_of_SNMP_manager>_
snmptrap_log file, until the size of the log file grows upto 2 MB. As soon as the log file size
crosses 2MB, themanager will automatically copy the contents of the <IP_address_of_SNMP_
manager>_snmptrap_log file to a new <IP_address_of_SNMP_manager>_snmptrap_
log.1 file, and will then continue writing newer logs to the original <IP_address_of_SNMP_
manager>_ snmptrap_ log . This default behavior is governed by the
SnmpTrapLogMaxRollSize parameter in the eg_services.ini file. By default, this parameter is
set to 2, which represents 2 MB. If you want the log file rotation to occur much sooner or later,
then set the SnmpTrapLogMaxRollSize parameter accordingly. For instance, if you want the
eG manager to wait until the size of the <IP_address_of_SNMP_manager>_snmptrap_log
file becomes 4 MB to copy its contents to the <IP_address_of_SNMP_manager>_snmptrap_
log.1 file, then, set theSnmpTrapLogMaxRollSize to 4, and save the file.

4. By default, the eGmanager will continue to rotate the log files (as described in step 3 above) until
a maximumof 10 log files are created. After this point, the last log file created (i.e., <IP_address_
of_SNMP_manager>_snmptrap_log.9 file, by default), will be deleted, as it contains the oldest
logs. This default behavior is governed by the SnmpTrap_log_max_files parameter in the eg_
services.ini file. This parameter is set to 10 by default. If you want the roll over to occur much
sooner or later, then change the value of this parameter accordingly. For instance, if you want the
log files to roll over only if the total number of log files created crosses 20, then set the
SnmpTrap_log_max_files parameter to 20, and save the file.

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

22

Chapter 4: Trouble Ticket Integration Using the eG TT CLI

The eG manager can also be configured so that whenever it detects a new alarm, a change in an
existing alarm, or a closure of an existing alarm, it executes a command with the appropriate
parameters indicating the current status of the alarm. Note that this capability is available for stand-
aloneWindowsmanagers, andWindowsmanagers operating in redundant clusters only.

To configure this capability, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 4.1 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 4.1,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 4.1: Viewing the ITSM/Collaboration tool options

4. Now, click on the CLIoption in the right panel (see Figure 4.1). A CLI section will now appear in
the right panel (see Figure 4.2).

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

23

Figure 4.2: Configuring the TT mail settings

5. Slide theEnable CLI slider (see Figure 2) to the right to enable this capability.

6. In the Command text box, echo is displayed by default, indicating that the eG manager will
execute an echo command by default to communicate with the TT system.

7. The Command arguments text box displays the default input parameters that the echo
command takes during execution. These default parameters are as follows:

AlarmId $AlarmId -DATE $DATE -TIME $TIME -Priority $Priority -ComponentType

$ComponentType -ComponentName $ComponentName -Layer $Layer -Desc $Desc –Service(s)

$Service.

As you can see, each parameter is represented by a qualifier and a variable name. While the
qualifier is typically prefixed by a hyphen (-), the variable name is prefixed by a $ symbol. These
variables will be substituted by actual values during runtime. Using the qualifiers, you will be able
to tell what value follows. For instance, at runtime, the parameter –Priority $Priority could appear
as –Priority Critical. This implies that thePriority of the problem isCritical.

Note:

l You can alter the qualifier if you need to, but the variable names (the $ preceded strings in the
previous example) should not be changed.

l The position of the qualifier-variable pairs can be changed in the command line – for instance,
you can move the –Service $Service parameter to appear next to the AlarmID $AlarmId if you
want to.

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

24

l Though the eGmanager executes a command line by default, you can change this Command
specification to execute a batch file/script file/executable instead.

l The Command Arguments specification can include any special character that will work
from the Windows command prompt or Unix shell, except the # (hash) character, which is
used as a separator between the command and the arguments.

l On Windows, the eG manager runs as a service, and hence, has access to all the sysem-
defined environment variables. You can use these variables as required in the script that is
invoked by theCommand specification.

Given below is the list of parameters the default Command arguments display takes, and a
brief description of each parameter:

l AlarmId $AlarmId – unique identifier of the alarm

l -DATE $DATE – the date on which the problem occurred

l -TIME $TIME – the time at which the problem occurred.

l -Priority $Priority – the problem priority - whether Critical, Major, Minor, Normal

o -ComponentType $ComponentType – The problem component type

o -ComponentName $ComponentName – The problem component name

l -Layer $Layer – the protocol layer to which the problem relates.

l -Desc $Desc – a brief description of the problem. This will include a pipe (|) separated list of
the following fields – the site name (if relevant to the test), test name, the alarm string (a textual
description of the problem), and measurement host. The description is not applicable if the
alarm severity isNormal.

l –Service(s) $Service – If more than one service is impacted, this will include a comma-
separated list of services.

l -DD $DD - This parameter is not available by default. If required, you can configure this
parameter additionally for the command so that, the output includes detailed diagnosis
information. In the output, $DD will be represented in the following format:

“DDcolumn1 DDcolumn2 DDcolumn… ~#~DDdata1~!~DDdata2~!~DDdata3~!~...”

In the eG user interface, the detailed diagnosis pertaining to a single test/measure/descriptor
combination is typically presented in a tabular format, with rows and columns. Accordingly, in
the command output for a specific test- measure- descriptor combination, the variables
DDcolum1, DDcolumn2, etc., will be substituted by the names of the columns in the detailed

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

25

diagnosis, and the variables DDdata, DDdata2, etc., will report the values that correspond to
each column.

Note:

l The detailed diagnosis information reported in the CLI output will typically be the DD
information available in the eG database, at the time of command execution by the eG
manager.

l A single alarm could have multiple tests, measures, and descriptors associated with it. For
each test-measure-descriptor combination, there will be a corresponding DD entry in the
command output line (subject to the length restriction discussed in the Limitations section
below). The DD output for a single test-measure-descriptor combination will include the
column names and data. In the output, these columns and their corresponding data will be
separated using the separator ~#~. If a specific combination does not have DD configured
or there is no DD reported for that descriptor, a value “-“ will be reported.

l TheDD output for each test-measure-descriptor combination will be separated using #~#.

l Detailed diagnosis information for a test-measure-descriptor combination could include
rows of data. In the command output, the separator !~! is used to separate multiple rows of
DD data.

l Each row of data in the DD would report values for several columns. The values that
correspond to each columnwill be separated using ~!~ in the DD output.

AlarmId “192.168.10.133_1264839507765” -DATE “Jan 30, 2010” -TIME “13:48:24” -

Priority “1” -ComponentType “Host system” -ComponentName “win: NULL” -Layer

“Operating System” -Desc “-|SystemDetails|High CPU utilization{Processor_0}|win,-

|SystemDetails|Free memory is low{Processor_0}|win” -Service “-“ -DD “ PID %CPU

ARGS ~#~692~!~1.60~!~csrss!~!760~!~0.53~!~services!~!6960.53~!~ js #~# PID %MEM

ARGS~#~4032~!~7.83~!~tomcat!~!2112~!~6.33~!~firefox!~!3472~!~5.52~!~dbvis”

According to the above output, the following alarm information will be sent to the third-party
TT system:

A sample standard output of the default Command specification is given below:

Qualifier Variable

AlarmId 192.168.10.133_1256878963888

DATE 30/10/2009

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

26

Qualifier Variable

TIME 10:32:43

Priority Critical

ComponentType Generic

ComponentName gen133:NULL

Layer Application Processes

Desc In our example, the command line output clubs the information pertaining to
two alarms related to a single test. The description of the first alarm indicates
the following:

l the site affected (if applicable) : In the case of our example, no web site

has been impacted by the Critical problem; therefore, only a ‘-’ (hyphen) is

displayed instead in the output line.

l The test that reported the problem: In the case of our example, this is

SystemDetails test

l The alarm description: In the case of the sample output, this is -High
CPU utilization { Processor_0}

l Themeasurement host: In the case of the sample output, this is – win

The description of the second alarm includes the following:

l the site affected (if applicable) : In the case of the second alarm also, no

web site has been impacted by the Critical problem; therefore, only a ‘-’

(hyphen) is displayed instead in the output line.

l The test that reported the problem: In the case of our example, this is

SystemDetails test

l The alarm description: In the case of the sample output, this is - Free
memory is low{Processor_0}

l Themeasurement host: In the case of the sample output, this is – win

Service Since no service has been impacted by the problem at hand, only a ‘-’ is
displayed here instead

DD The sample output above includes the DD information pertaining to two test-

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

27

Qualifier Variable

measure-descriptor combinations.

For the first test-measure-descriptor combination - i.e., for theCPU
utilizationmeasure of the descriptorProcessor_0 reported by the
SystemDetails test - the DD output includes the following:

l The columns in the DD are as follows: PID, %CPU, and ARGS (as in

‘arguments’).

l The DD for this test-measure-combination includes three rows of data. In

the first row of data, the following values will be reported:

l 692 as the PID

l 1.60 as the CPU%

l csrss as the ARGS

l In the second row of data, the following values will be reported:

l 760 as the PID

l 0.53 as the CPU%

l services as the ARGS

l In the third row of data, the following values will be reported:

l 696 as the PID

l 0.53 as the CPU%

l js as the ARGS

For the second test-measure-descriptor combination - i.e., for the Free
memorymeasure of the descriptorProcessor_0 reported by the
SystemDetails test - the DD output includes the following:

l The columns in the DD are as follows: PID, %MEM, and ARGS (as in

‘arguments’).

l The DD for this test-measure-combination includes three rows of data. In

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

28

Qualifier Variable

the first row of data, the following values will be reported:

l 4032 as the PID

l 7.83 as theMEM%

l tomcat as the ARGS

l In the second row of data, the following values will be reported:

l 2112 as the PID

l 6.33 as theMEM%

l firefox as the ARGS

l In the third row of data, the following values will be reported:

l 3472 as the PID

l 5.52 as theMEM%

l dbvis as the ARGS

Note:

l DD information will be formatted for better display in eG user interface. From the CLI
however, no such special formatting can be effected on the DD output.

l If an alert is raised on multiple descriptors, hyphen (-) will be provided if DD is not
available for a specific descriptor.

l Detailed diagnosis could have special characters (e.g., double quotes) that may require
special handling when passed to a CLI.

l If the command line execution fails when including DD, CLI will resume execution by
excluding the DD, so that the alert does not get lost.

8. From the Date format to be used list box, select the format in which the date/time of the
problem should be reported in the command output.

9. Specify the maximum permissible length of the command in the Command length text box. By
default, the command line can have a maximum of 8191 characters. You can alter this default
setting by specifying a length of your choice in the Command length text box. If the actual
command length exceeds the specified limit, then the output will not return the list of affected

Chapter 4: Trouble Ti cket Integration Using the eG TT CLI

29

services and the detailed diagnosis information; instead, an empty string will appear next to the –
Services qualifier. If the command length continues to exceed the specified limit even after
truncating the services list and the DD, the command execution will return an error.

10. Specify the length of the problem description in the Problem description length text box. If the
actual problem description exceeds the specified length, the characters that fall beyond the
specified limit will be truncated.

11. Finally, click on theUpdate button to save the changes.

As described above, the eG manager offers a high degree of flexibility in the configuration of the
command that should be executed. The periodicity at which the eG manager checks alarms and
determines what information it should send to a TT system is determined by the setting of the
MailCheckPeriod attribute in the [MISC_ARGS] section of the eg_services.ini file (in the <EG_
INSTALL_DIR>\manager\config directory). By default, this value is 180 seconds (3minutes).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

30

Chapter 5: Trouble Ticket Integration Using aWeb Services
Framework

eG Enterprise can integrate with TT systems that support a web services framework. The eG
manager establishes an HTTP/S connection to a web services URL on the third-party system and
communicates alarm information to that TT system using its web services API. Upon receipt of an
alarm, the TT system automatically generates/modifies/closes trouble tickets.

Without the need for any complex instrumentation, eG Enterprise can readily integrate with the
following help desk systems via their web services interface:

l Manage Engine’s ServiceDesk

l Autotask

l ServiceNow

l Remedy Force

l PagerDuty

l HipChat

l Slack

l JIRA

Section 5.1 to Section 5.8 that follow will discuss how eG integrateswith each of the TT systems
mentioned above.

The topics will discuss how eG integrateswith each of the TT systemsmentioned above.

l Section 5.1

l Section 5.2

l Section 5.3

l Section 5.4

l Section 5.5

l Section 5.6

l Section 5.7

l Section 5.8

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

31

To enable you to integrate with any other help desk system that supports a web services interface,
eG Enterprise provides a proprietary web services-based integration framework, which can be
easily fine-tuned to enable the integration.

5.1 Integrating with ManageEngine’s ServiceDesk
ManageEngine ServiceDesk is a comprehensive Help Desk and Asset Management software that
provides help desk agents and IT managers an integrated console to monitor and maintain the
assets and IT requests generated from the users of the IT resources in an organization.

To integrate the eGmanager with ServiceDesk, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.1 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 5.1,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 5.1: Viewing the ITSM/Collaboration tool options

4. Now, click on the ManageEngineoption in the right panel (see Figure 5.1). A ManageEngine
section will now appear in the right panel (see Figure 5.2).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

32

Figure 5.2: Configuring integration with ManageEngine ServiceDesk

5. To enable integration with ManageEngine ServiceDesk, first slide the ManageEngine slider
in Figure 5.2 to the right.

6. Then, against URL, specify theWeb Services Description Language (WSDL) URL via which the
eGmanager should connect to ServiceDesk’s web services interface.

7. If the connection needs to be authenticated, then provide a valid user name and password
againstUser andPassword text boxes, respectively.

8. ServiceDesk’s web services API, known as REST API, is capable of interpreting problem inputs
it receives and automatically generating/updating trouble tickets, only if the inputs are in XML
format. This is why, by default, the eG manager sends its alarm output in XML format to
ServiceDesk. The standard format, as displayed against Output format in 5.1, is as follows:

<Operation>\n<Details>\n<requester>eG_

manager</requester>\n<subject>$cname/$ctype/$pdesc/$prior</subject>\n<description>$pde

sc</description>\n<callbackURL>CustomReportHandler.do</callbackURL>\n<requesttemplat

e>-

</requesttemplate>\n<priority>$prior</priority>\n<layer>$layer</layer>\n<group>$user</

group>\n<technician>eG_

manager</technician>\n<level>1</level>\n<status>$status</status>\n<service>$Service</s

ervice>\n</Details>\n</Operation>

The text enclosed within angular brackets – eg., <Operation> - are the XML tags that
ServiceDesk’s web services API recognizes. These tags cannot be changed. The text enclosed
within an opening and a closing tag can either be static text or a variable. These tags and the
values they contain are discussed hereunder:

<Operation>\n<Details>\n The operations performed with REST API are based on

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

33

the ‘operation’ parameter and is sent to the URL via HTTP
POSTmethod.

<requester></requester> Should contain a static text indicating the user requesting for
a trouble ticket.

Using ServiceDesk’s self-service portal, you can add, edit,
or remove requesters. In the case of the standard output
format above, a requester named eG_manager has
apparently being created. Therefore, the static text eG_
manager is enclosed within these tags. If the name of the
requester is changed in ServiceDesk, make sure that this
text is also changed.

<subject></subject> Should contain a slash-separated list of 'keys' representing
the subject of the trouble ticket. In the case of the standard
output format above, the following keys have been used in
the subject and this is what they denote:

l $cname – at run time, this variable will change to display

the exact name of the problem component

l $cname – at run time, this variable will change to report

the problem component-type

l $pdesc- at run time, this variable will change to report the

problem description.

l $prior – at run time, this variable will change to report the

problem priority

You can remove the keys at will, and can also alter the
position of the keys in the output.

<description></description> Should contain the key that represents the problem
description – i.e., $pdesc. At run time, this key will change
to report the precise problem description.

<callbackURL</callbackURL> Provide a valid callback URLwithin these tags.

When the cause for an eG alarm is resolved, ServiceDesk
will invoke this URL. The URL functions as a notification to
the eGmanager indicating that the ticket is resolved. If this
URL (callback URL) is not provided, ServiceDesk will not
perform any additional operation on the ticket.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

34

<requesttemplate></requesttemplate> Within these tags, specify the name of the request template
to be used (if any). If no request template applies, as in the
case of our example above, then enclose a – (hyphen) within
these tags.

Using ServiceDesk, one can create different
incident/request templates, each configured with a set of
fields using which an incident is to be reported.

<priority></priority> Should contain the key that represents the problem priority –
i.e., $prior. At run time, this key will change to report the
precise problem priority.

<layer</layer> Should contain the key that represents the problem layer –
i.e., $layer. At run time, this key will change to report the
problematic layer.

<group></group> Should contain the key that represents the user/support
group to which the technician responsible for resolving this
alarm belongs. At run time, this key will change to report the
exact user group.

<technician></technician> Should contain the static text that indicates the name of the
technician responsible for resolving the alarm. In the case of
our standard output format, eG_manager is the technician.
You can change this to reflect the name of any other
technician who has been configured in ServiceDesk. .

<level></level> Should indicate the support level. In the case of our standard
output format, the support level is 1.

<status></status> Should contain the key $status that represents the status of
the ticket. At run time, this key will change to report the exact
status.

<service></service> Should contain the key $service that represents the name of
the business service impacted by the problem. At run time,
this key will change to to report the correct business service
name.

9. Then, specify the API key of the TT system. The eG manager will be able to communicate with
ServiceDesk through this API key only. ManageEngine generates a unique key for the user,
whose credentials are specified against User and Password parameters in Figure 5.2 above.
The eG manager will not be able to use the ServiceDesk API, if this key is not specified
or an invalid key is specified.

10. Finally, click theUpdate button.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

35

5.2 Integrating with ServiceNow
ServiceNow is a platform-as-a-service (PaaS) provider of Service Management (SM) software for
the entire enterprise. The ServiceNow platform also supports the incident management process
with the ability to log incidents, classify according to impact and urgency, assign to appropriate
groups, escalate, andmanage through to resolution and reporting.

To integrate the eG manager with the incident management process of ServiceNow, do the
following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.3 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 5.3,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 5.3: Viewing the ITSM/Collaboration tool options

4. Now, click on the ServiceNowoption in the right panel (see Figure 5.3). A ServiceNow section
will now appear in the right panel (see Figure 5.4).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

36

Figure 5.4: Configuring integration with ServiceNow

5. To enable integration with ServiceNow, first slide the ServiceNow slider in Figure 5.4 to the
right.

6. Then, specify the following in Figure 5.4:

l URL: The URL using which the eG manager should connect to the ServiceNow installation in
your environment.

l Port: The Port at which ServiceNow listens for problem information sent by the eGmanager.

l Authorization Type : The eG manager sends alarm information to ServiceNow as a web
service request to the configured URL. Upon receipt of the request, ServiceNow will attempt
to validate the source of the request using one of the following authenticationmethods:

o Basic authentication

o O Auth 2.0 authentication

If ServiceNow enforces Basic Authentication, then select the Basic option from the
Authorization Type drop- down. Where Basic Authentication is enforced, ServiceNow

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

37

requires that web service requests be accompanied by the username and password of a user
who has access to the ServiceNow instance. Accordingly, ifBasic is set as theAuthorization
Type, you need to provide the credentials of a user with the right to access ServiceNow in the
User andPassword text boxes.

On the other hand, if ServiceNow enforces the O Auth 2.0 authentication method, then select
the OAuth 2.0 option from theAuthorization Type drop-down. O Auth 2.0 lets users access
instance resources through external clients by obtaining a token rather than by entering
credentials with each resource request. This means that where O Auth 2.0 is enforced, the
eG manager needs to obtain an access token, so it can create/modify trouble tickets in
ServiceNow. For this, the eG manager should first connect to the ServiceNow instance as a
user who is authorized to request for an access token, and then submit web service requests
as a valid 'Client'. This is why, if OAuth 2.0 is set as the Authorization Type, you will have to
specify the following:

o User and Password: The credentials of a user who is authorized to request for an access
token

o Client ID and Client Secret Key: The Client ID is an auto-generated unique ID of the
client application - i.e., in our case, the eG manager application - requesting the access
token. The Client Secret Key is a shared secret string that the ServiceNow instance and
the client applications - i.e., the eG manager - use to authorize communications with one
another.

l Does ServiceNow use proxy for connections: If the eG manager needs to communicate
with the ServiceNow instance via a Proxy server, then set this flag toYes.

l Proxy IP/Hostname and Proxy Port: If the Does ServiceNow use proxy flag is set to
Yes, then specify the IP/host name of the Proxy server and the port number at which the Proxy
server listens in the respective text boxes.

l Does Proxy require authentication: This flag is applicable only if the Does ServiceNow
use proxy flag is set to Yes. If so, then use this flag to indicate whether/not the Proxy server
requires authentication. Set this flag toYes, only if the Proxy server requires authentication.

l Proxy UserName and Proxy Password: If the Does Proxy require authentication flag is
set toYes, then provide the credentials of a valid Proxy user here.

l Caller ID : The ID of the user to whom the problems sent by the eG manager are to be
assigned.

l Assignment group: The assignment group to which the eGalarms are to be assigned.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

38

l Assigned to: The name of the user to whom the problems sent by the eGmanager are to be
assigned.

l Category: Indicate how to categorize the eGalarms in the ServiceNow system –whether as a
request, enhancement, or an incident.

l Critical due period : The time (in millisecs) by which tickets of a Critical priority will be
resolved.

l Major due period: The time (in millisecs) bywhich tickets of aMajor priority will be resolved.

l Minor due period: The time (in millisecs) bywhich tickets of aMinor priority will be resolved.

l Incident title: Next, using the Incident title text box, specify the format in which the title of the
trouble ticket is to be displayed in the ServiceNow console. The default format is as follows:

Priority :$prior Component : $cname Component Type : $ctype Layer : $layer Problem

Description : $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, Priority is a label that indicates that the information that follows the ‘:’ is the priority of the
alarm. The key $prior that succeeds the ‘:’ represents the alarm priority, and changes
according to the priority of the actual alarm that is sent by the eG manager to ServiceNow.
While you can change the labels, you are advised against changing any of the keys.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$pdesc Will display a brief problem description

So, if a Critical alarm raised by the eG manager for a high CPU usage problem detected in
the Operating System layer of the Windows server, 192.168.10.15, is routed to ServiceNow,
the web services API of ServiceNow will convert the alarm into a trouble ticket titled (by
default) as follows:

Priority:Critical Component:192.168.10.15 Component Type:Windows Layer:Operating

System Problem Description:High CPU usage

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

39

l Problem description: The eG manager sends alarm information to ServiceNow in the form
of a JSON file. Every piece of information contained within an eG alert - eg., priority,
component name, component type etc. - is represented in the JSON file as a $key:$value pair,
where 'key' denotes the alert field, and 'value' denotes the actual value of that field at run time.
In the Problem description text box, specify the exact key in the JSON file that is used to
capture the problem description. By default, $pdesc is the key used for reporting the problem
description to ServiceNow. Note that the keys in the JSON file will match the keys
supported by the ServiceNow REST API.

l Custom Payload : Use custom payload to customize the alert information you send to
ServiceNow, so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured URL. Every piece
of information contained within an eG alert - eg., priority, component name, component type
etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert field,
and 'value' denotes the actual value of that field at run time. The 'key' is configured based on
the keys supported by the ServiceNow REST API. For instance, if the REST API represents
alarm priorities using the key 'prior', then the same key will be used in the JSON file for
denoting alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be
$prior:$value. The $value will be Critical, Major, Minor, or Normal, depending upon the actual
priority of the alarm being sent.

If you want eG incidents routed to ServiceNow to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
ServiceNow incidents, do the following:

o First, check whether the ServiceNow REST API supports a 'key' that can be used for
capturing the 'source' of alerts/incidents. If no such key exists, then you cannot proceed with
the Custom Payload configuration. On the other hand, if such a key is available, then
proceed to replace the $key in your Custom Payload specification, with that key value. For
the purpose of our example, let us assume that the REST API supports the key named
'source'. In this case therefore, substitute '$key' with 'source'.

o Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

40

o The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in 5.2.

5.3 Integrating with Autotask
Autotask provides a complete IT businessmanagement solution that combines Service Desk, CRM,
Projects, Time & Expense, Billing andmore.

To ensure that the eG manager integrates with the Service Desk module of Autotask via its web
services API, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.5 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 5.5,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 5.5: Viewing the ITSM/Collaboration tool options

4. Now, click on the Autotaskoption in the right panel (see Figure 5.5). An Autotask section will
now appear in the right panel (see Figure 5.6).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

41

Figure 5.6: Configuring integration with Autotask

5. To enable integration with Autotask, first slide theAutotask slider in Figure 5.6 to the right.

6. Then, specify theURL using which the eGmanager should connect to Autotask.

7. Next, against User and Password , provide the credentials of a valid user who has rights to
access Autotask.

8. Then, in the Account discover period text box, enter how frequently the eGmanager needs to
auto-discover the user accounts configured in Autotask. By default, this is set to 3600000
millisecs. If an auto-discovered user account is mapped to one/more zones configured in eG,
then Autotask will automatically assign the trouble related to the servers in those zones, to the
corresponding user account. To map an auto-discovered user account with one/more zones, do
the following:

l Open the eg_services.ini file in the <EG_INSTALL_DIR>\manager\config directory, using an
editor.

l Typically, when user accounts are auto-discovered for the first time from Autotask, the eG
manager automatically creates a section named [AUTOTASK_ACCOUNT_MAPPING] in the
eg_services.ini file. All auto-discovered user accounts are inserted as entries in this section,
in the following format:

[AUTOTASK_ACCOUNT_MAPPING]

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

42

<AccountName1>$@$<AccountNumber1>=

<AccountName2>$@$<AccountNumber2>=

. . .

. . .

<AccountNameN>$@$<AccountNumberN>=

To map a user account to one/more zones, just configure a comma-separated list of zones
against the corresponding <AccountName1>$@$<AccountNumber1> entry in the
[AUTOTASK_ACCOUNT_MAPPING] section, as shown below

[AUTOTASK_ACCOUNT_MAPPING]

<AccountName1>$@$<AccountNumber1>=east_coast_zone,zone_singapore,zone_london

l Finally, save the eg_services.ini file.

9. In QueueID, specify the ID of the queue to which eG alarms are to be assigned. By default, 8 is
the queue to which all eG alarms are assigned.

10. Against Default account , indicate to which user account eG alarms are to be assigned by
default. If a server on which eG has raised an alarm does not belong to any zone or any zone that
ismapped to a user account, then such an alarmwill be automatically assigned to the default user
account. Likewise, if auto-discovered user accounts are not mapped to any zones configured in
eG, then all eG alarmswill be automatically assigned to the default user account.

11. In the Ticket type text box, indicate the type of ticket that is to be raised in Autotask for every eG
alarm that the eGmanager sends to it. By default, this parameter is set to 3, which indicates that
for eG alarms tickets of type, Problem, are generated by default in Autotask. You can change the
value of this parameter to 1 to indicate Service request or 2 to indicate Incident.

12. In the Work type text box, specify the work type to be assigned to the trouble tickets generated
for the eGalarms. By default, this is 29683401.

13. Next, specify the Critical due period. This is the time (in millisecs) by which tickets of a Critical
priority will be resolved.

14. Then, indicate the Major due period, which is the time (in millisecs) by which tickets of a Major
priority will be resolved.

15. Likewise, enter the Minor due period. This is the time (in millisecs) by which tickets of a Minor

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

43

priority will be resolved.

16. Next, against Incident title, specify the format in which the title of the trouble ticket is to be
displayed in the Autotask console. The default format is as follows:

Priority :$prior Component : $cname Component Type : $ctype Layer : $layer Problem

Description : $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a variable, the value of which varies at run time,
depending upon the eG alarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The variable $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the actual
alarm that is sent by the eG manager to Autotask. While you can change the labels, you are
advised against changing any of the variable names.

The other variables that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$pdesc Will display a brief problem description

So, if a Critical alarm raised by the eG manager for a high CPU usage problem detected in the
Operating System layer of the Windows server, 192.168.10.15, is routed to Autotask, the web
services API of Autotaskwill convert the alarm into a trouble ticket titled (by default) as follows:

Priority:Critical Component:192.168.10.15 Component Type:Windows Layer:Operating

System Problem Description:High CPU usage

17. Finally, click theUpdate button in Figure 5.6.

5.4 Integrating with BMC RemedyForce
Remedyforce helps you streamline IT assistance and deliver it through a cloud-based, social
platform.

To integrate the eGmanager with BMC Remedyforce, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

44

3. Figure 5.7 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 5.7,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 5.7: Viewing the ITSM/Collaboration tool options

4. Now, click on the Remedyforceoption in the right panel (see Figure 5.7). A Remedyforce
section will now appear in the right panel (see Figure 5.8).

Figure 5.8: Configuring integration with Remedyforce

5. To enable integration with Remedyforce, first slide the Remedyforce slider in Figure 5.8 to the
right.

6. Then, specify the following in Figure 5.8:

l URL: The URL using which the eGmanager should connect to Remedyforce.

l Partner URL: The partner URL to which the eG manager should first connect to connect to
Remedyforce.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

45

l User and Password: The credentials of a valid user who has rights to access Remedyforce
through the Partner URL.

7. Finally, click theUpdate button in Figure 5.8.

5.5 Integration with PagerDuty
PagerDuty provides alerting, on-call scheduling, escalation policies and incident tracking to increase
uptime of your apps, servers, websites and databases.

To ensure that eG integrateswith PagerDuty, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.9 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure 5.9,
select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration tools that
eG Enterprise can integrate with will be listed in the right panel.

Figure 5.9: Viewing the ITSM/Collaboration tool options

4. Now, click on the PagerDutyoption in the right panel (see Figure 5.9). A PagerDuty section will
now appear in the right panel (see Figure 5.10).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

46

Figure 5.10: Configuring integration with PagerDuty

5. To enable integration with PagerDuty, first slide thePagerDuty slider in Figure 5.10 to the right.

6. Then, specify the following in Figure 2:

l Service URL : The web services URL using which the eG manager should connect to
PagerDuty.

l Service key : The unique key that is required for accessing the web services API of
PagerDuty.

l Incident title: Specify the format in which the title of the trouble ticket is to be displayed in the
PagerDuty console. The default format is as follows:

Priority :$prior Component : $cname Component Type : $ctype Layer : $layer Problem

Description : $pdesc Start Time : $starttime

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, Priority is a label that indicates that the information that follows the ‘:’ is the priority of the
alarm. The key $prior that succeeds the ‘:’ represents the alarm priority, and changes
according to the priority of the actual alarm that is sent by the eG manager to PagerDuty.
While you can change the labels, you are advised against changing any of the keys.

The other keys that are part of the default format are discussed in the table below:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

47

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$pdesc Will display a brief problem description

$starttime Will display the start time of the problem

l Problem description : Specify the format in which the problem description should be
displayed in the trouble tickets generated by PagerDuty. The default problem description
contains the following keys:

$prior Refers to the problem priority

$cname Refers to the name of the problem component

$ctype Refers to the component type to which the problem component belongs

$layer Refers to the layer affected by the problem

$pdesc Refers to a brief problem description

$starttime Refers to the start time of the problem

You can override this default format by removing one/more keys or by changing the positions
of a few keys. For instance, you may not want the problem component type to be part of the
problem description. In this case therefore, your Problem descriptionwill be.

$prior$cname $layer $pdesc $starttime

l Client : You may want the trouble ticket generated by PagerDuty to indicate which client
supplied the problem information. If so, then provide the client name here. In the case of this
integration, youmaywant to provide a unique identifier for the eGmanager againstClient.

l Client URL: You may want the trouble ticket generated by PagerDuty to indicate the URL of
the client that supplied the problem information. If so, then provide the client URL here. In the
case of this integration, you may want to provide the URL of the eG manager against Client
URL.

l Custom Payload : Use custom payload to customize the alert information you send to
PagerDuty, so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured URL. Every piece
of information contained within an eG alert - eg., priority, component name, component type
etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert field,
and 'value' denotes the actual value of that field at run time. The 'key' is configured based on

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

48

the keys supported by the PagerDuty REST API. For instance, if the REST API represents
alarm priorities using the key 'prior', then the same key will be used in the JSON file for
denoting alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be
$prior:$value. The $value will be Critical, Major, Minor, or Normal, depending upon the actual
priority of the alarm being sent.

o First, check whether the PagerDuty REST API supports a 'key' that can be used for
capturing the 'source' of alerts/incidents. If no such key exists, then you cannot proceed with
the Custom Payload configuration. On the other hand, if such a key is available, then
proceed to replace the $key in your Custom Payload specification, with that key value. For
the purpose of our example, let us assume that the REST API supports the key named
'source'. In this case therefore, substitute '$key' with 'source'.

o Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

o The complete Custom Payload specification will now be:
source:egmanager.innovations.com

If you want eG incidents routed to PagerDuty to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
PagerDuty incidents, do the following:

7. Finally, click theUpdate button in 5.5.

5.6 Integrating with HipChat
HipChat is a web service for internal private online chat and instant messaging. As well as one-on-
one and group/topic chat, it also features cloud- based file storage, video calling, searchable
message-history and inline-image viewing.

eG integration with HipChat ensures that eG alerts are automatically routed to a configured chat
room, so that they can be circulated as messages amongst all users in that chat room. For instance,
if help desk personnel are part of a single chat room on HipChat, you can have eG Enterprise
integrate with that chat room. This way, help desk personnel are instantly notified of problem
conditions, and can effectively work together for a speedy resolution.

The steps in this regard are as follows:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

49

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.11 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.11, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.11: Viewing the ITSM/Collaboration tool options

4. Now, click on the HipChatoption in the right panel (see Figure 5.11). A HiptChat section will
now appear in the right panel (see Figure 5.12).

Figure 5.12: Configuring integration with HipChat

5. To enable integration with HipChat, first slide theHipChat slider in Figure 5.12 to the right.

6. Then, specify the following in Figure 5.12:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

50

l Webhook URL: Webhooks are used by eG Enterprise to send event notifications to HipChat
via REST API. A Webhook is typically associated with a specific chat room only. Therefore,
indicate the chat room to which the eG alerts are to be transmitted by specifying that chat
room’sWebhookURL here.

l Incident title: Specify the format in which the title of the trouble ticket is to be displayed in
HipChat. The default format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eG manager to HipChat. You are advised against
changing any of the keys, as these are the keys that the HipChat REST API supports.

The other variables that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Custom payload : Use custom payload to customize the alert information you send to
HipChat, so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured Webhook URL.
Every piece of information contained within an eG alert - eg., priority, component name,
component type etc. - is represented in the JSON file as a $key:$value pair, where 'key'
denotes the alert field, and 'value' denotes the actual value of that field at run time. The 'key' is
configured based on what the HipChat REST API supports. For instance, if the
REST API represents alarm priorities using the key 'prior', then the same key will be used in
the JSON file for denoting alarm priorities. Accordingly, the entry for alarm priority in the JSON
file will be $prior:$value. The $value will be Critical, Major, Minor, or Normal, depending upon
the actual priority of the alarm being sent.

If you want eG incidents routed to HipChat to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
HipChat incidents, do the following:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

51

l First, check whether the HipChat REST API supports a 'key' that can be used for capturing
the 'source' of alerts/incidents. If no such key exists, then you cannot proceed with the
CustomPayload configuration. On the other hand, if such a key is available, then proceed to
replace the $key in your Custom Payload specification, with that key value. For the purpose
of our example, let us assume that the REST API supports the key named 'source'. In this
case therefore, substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in 5.6.

5.7 Integrating with Slack
Slack is a digital workspace that powers your organization - all the pieces and the people - so you
can get things done.

A team is a group of people that use Slack to communicate. Larger organizations - possibly
comprised of many locations, people, and sub-groups - may have multiple interconnected Slack
workspaces. The Slack workspace is comprised of channels. Channels hold conversations between
team members. They can be organized around anything - departments, projects, or even office
locations - and you can create asmany as you need.

eG integration with Slack ensures that eG alerts are automatically routed to a configured channel, so
that they can be circulated amongst all team members using that channel. For instance, if help desk
personnel are part of a team, then that team can be associated with a channel. You can have eG
Enterprise integrate with that channel. This way, help desk personnel are instantly notified of
problem conditions, and can effectively work together for a speedy resolution.

The steps in this regard are as follows:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.13 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

52

5.13, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.13: Viewing the ITSM/Collaboration tool options

4. Now, click on the Slackoption in the right panel (see Figure 5.13). A Slack section will now
appear in the right panel (see Figure 5.14).

Figure 5.14: Configuring integration with Slack

5. To enable integration with Slack, first slide theSlack slider in Figure 5.14 to the right.

6. Then, specify the following in Figure 5.14:

l Webhook URL : Incoming Webhooks are a simple way to post messages from external
sources into a Slack channel. eG Enterprise uses these Webhooks to send event notifications

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

53

to a specific Slack channel. Against Webhook URL, specify the Slack channel URL to which
the eGalerts are to be transmitted.

l Channel: Specify the name of the Slack channel to which the eGalerts are to be sent.

l Token: Specify the token required to access the SlackChannel configured above.

l Incident title: Specify the format in which the title of the trouble ticket is to be displayed in
Slack. The default format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eGmanager to Slack. You are advised against changing
any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Custom Payload: Use custom payload to customize the alert information you send to Slack,
so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured URL. Every piece
of information contained within an eG alert - eg., priority, component name, component type
etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert field,
and 'value' denotes the actual value of that field at run time. The 'key' is configured based on
the keys supported by the Slack REST API. For instance, if the REST API represents alarm
priorities using the key 'prior', then the same key will be used in the JSON file for denoting
alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be $prior:$value.
The $value will be Critical, Major, Minor, or Normal, depending upon the actual priority of the
alarm being sent.

o First, check whether the Slack REST API supports a 'key' that can be used for capturing the
'source' of alerts/incidents. If no such key exists, then you cannot proceed with the Custom
Payload configuration. On the other hand, if such a key is available, then proceed to replace
the $key in your Custom Payload specification, with that key value. For the purpose of our
example, let us assume that the REST API supports the key named 'source'. In this case

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

54

therefore, substitute '$key' with 'source'.

o Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

o The complete Custom Payload specification will now be:
source:egmanager.innovations.com

If you want eG incidents routed to Slack to include additional information, then you can define a
Custom Payload for that information as a $key:$value pair. For example, say, you want
incidents to indicate the FQDN of the eG manager that generated the incidents. Say that the
FQDN of your eG manager is egmanager.innovations.com . To include this information in
Slack incidents, do the following:

7. Finally, click theUpdate button in Figure 2.

5.8 Integrating with JIRA
JIRA is a proprietary issue tracking product, developed by Atlassian. It provides bug tracking, issue
tracking, and project management functions.

If the eG manager is integrated with JIRA, then eG alerts are automatically routed to JIRA, where
they trigger the creation and assignment of trouble tickets to relevant maintenance personnel.

To ensure that eG integrateswith JIRA, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.15 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.15, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

55

Figure 5.15: Viewing the ITSM/Collaboration tool options

4. Now, click on the JIRAoption in the right panel (see Figure 5.15). A JIRA section will now appear
in the right panel (see Figure 5.16).

Figure 5.16: Configuring integration with JIRA

5. To enable integration with JIRA, first slide the JIRA slider in Figure 5.16 to the right.

6. Then, specify the following in Figure 5.16:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

56

l URL: The web servicesURL using which the eGmanager should connect to JIRA.

l User name and Password: Specify the credentials of a user who has the rights to access
JIRA.

l Project key : A JIRA project is a collection of issues, and is defined according to an
organisation's requirements. Each project is associated with a unique Project key. Specify the
project key of the project with which the eGalerts are to be associated.

l Issue type : Indicate how you want to classify the eG alerts – as Incidents, Problems, or
Service Requests. The default selection here is Incident.

l Title format : Specify the format in which the title of the trouble ticket is to be displayed in
Slack. The default format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a 'key', the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eGmanager to JIRA. You are advised against changing
any of the variable names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Description format: Specify the format in which the problem description should be displayed
in the trouble tickets generated by JIRA. The default problem description will be as follows:

Priority: $prior *Component* *Type:* $ctype *Component:* $cname *Layer:*

$layer *Problem* *Time:* $starttime *Problem* *Description:* $pdesc

As you can see, the problem description format comprises of two types of text strings – one
that is enclosed within asterisks and one that follows a $ symbol. The text that is enclosed
within asterisks represents a label that qualifies the value that follows. The ‘dollared’ ($) text on
the other hand, is a key, the value of which varies at run time, depending upon the information
contained in the eG alarms. The asterisk (*) itself represents an empty space. For example, in
the default format above, Priority is a label that indicates that the information that follows it is
the priority of the alarm. The key $prior that succeeds the label represents the alarm priority,

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

57

and changes according to the priority of the actual alarm that is sent by the eG manager to
JIRA.While you can change the labels, you are advised against changing any of the keys.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$pdesc Will display a brief problem description

$starttime Will display the start time of the problem

You can override this default format by removing one/more keys or by changing the positions
of a few keys. For instance, you may not want the problem component type to be part of the
problem description. In this case therefore, yourDescription format will be.

Priority: $prior *Component:* $cname *Layer:* $layer *Problem* *Time:*

$starttime *Problem* *Description:* $pdesc

l Custom payload: Use custom payload to customize the alert information you send to JIRA,
so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured URL. Every piece
of information contained within an eG alert - eg., priority, component name, component type
etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert field,
and 'value' denotes the actual value of that field at run time. The 'key' is configured based on
what the JIRA REST API supports. For instance, if the REST API represents alarm priorities
using the key 'prior', then the same key will be used in the JSON file for denoting alarm
priorities. Accordingly, the entry for alarm priority in the JSON file will be $prior:$value. The
$value will be Critical, Major, Minor, or Normal, depending upon the actual priority of the alarm
being sent.

If you want eG incidents routed to JIRA to include additional information, then you can define a
Custom Payload for that information as a $key:$value pair. For example, say, you want
incidents to indicate the FQDN of the eG manager that generated the incidents. Say that the
FQDN of your eG manager is egmanager.innovations.com. To include this information in JIRA
incidents, do the following:

l First, check whether the JIRA REST API supports a 'key' that can be used for capturing the
'source' of alerts/incidents. If no such key exists, then you cannot proceed with the Custom
Payload configuration. On the other hand, if such a key is available, then proceed to replace

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

58

the $key in your Custom Payload specification, with that key value. For the purpose of our
example, let us assume that the REST API supports the key named 'source'. In this case
therefore, substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in 5.8.

5.9 Integration with ATF
With the Automated Test Framework (ATF), you create and run automated tests on your
ServiceNow instance.

eG Enterprise integrateswith ATF, so that eGalerts are automatically routed to ATF as and when
they are generated. ATF then sends the alerts to ServiceNow Event Management for automatic
creation/updation of trouble tickets.

To enable eG Enterprise to integrate with ATF, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.17 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.17, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

59

Figure 5.17: Viewing the ITSM/Collaboration tool options

4. Now, click on theATFoption in the right panel (see Figure 5.17). AnATF section will now appear
in the right panel (see Figure 5.18).

Figure 5.18: Configuring integration with ATF

5. To enable integration with ATF, first slide theATF slider in Figure 5.18 to the right.

6. Then, specify the following in Figure 5.18:

l WSDL URL :Typically, all ServiceNow tables and import sets dynamically generate WSDL
XML documents that describe its table schema and available operations. To integrate with
ServiceNow via ATF, the eG manager needs access to these dynamic
WSDL XML documents. For that, you need to configure the eGmanager with a URL targeting
the desired ServiceNow table with the WSDL parameter - eg., https://myinstance.service-

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

60

now.com/incident.do?WSDL. Specify thisWSDL URL here.

l User and Password : ServiceNow requires that any request for a web service be
accompanied by valid credentials of a user who is authorized to make that request. Specify the
user name and password of such a user, here.

l Event Sender : Specify the IP/host name of the client that is sending the events into
ServiceNow. In our case, this should be the IP/host name of the eG manager.

l Event Sender Type: Specify the event sender type.

l Work Group: A group is a set of users who share a common purpose. You can, if required,
create a special work group in ServiceNow, which will be responsible for resolving
eG incidents. If you create such a group, then specify the name of that group here.

l Category: Assigning incident tickets to categories allows for easy classification of incidents. If
you want, you can create a new category for eG incidents in ServiceNow, and specify the
name of that category here.

l Problem description: Next, using the Problem description text box, specify the format in
which eG Enterprise should describe a problem when sending problem details into
ServiceNow via ATF. The default format is as follows:

Priority :$prior Component : $cname Component Type : $ctype Layer : $layer Problem

Description : $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, Priority is a label that indicates that the information that follows the ‘:’ is the priority of the
alarm. The key $prior that succeeds the ‘:’ represents the alarm priority, and changes
according to the priority of the actual alarm that is sent by the eG manager to ServiceNow.
While you can change the labels, you are advised against changing any of the keys.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$pdesc Will display a brief problem description

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

61

So, if a Critical alarm raised by the eG manager for a high CPU usage problem detected in
the Operating System layer of the Windows server, 192.168.10.15, is routed to ServiceNow,
the web services API of will convert the alarm into a trouble ticket with the following problem
description:

Priority:Critical Component:192.168.10.15 Component Type:Windows Layer:Operating

System Problem Description:High CPU usage

7. Finally, click theUpdate button in 5.9.

5.10 Integration with Ivanti Service Manager
Ivanti ServiceManager, powered byHEAT, is a cloud-optimized ITSM solution, which automates
workflows, eliminatesmanual processes, and improves business security and efficiency. Using the
ServiceManager, you can perform IT help desk / support ticketing or more advanced ITIL service
management processes.

eG Enterprise integrateswith ServiceManager, so that eG alerts are automatically routed to Ivanti,
resulting in the automatic creation/updation of trouble tickets.

To integrate eG Enterprise with the Ivanti ServiceManager, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.19 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.19, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.19: Viewing the ITSM/Collaboration tool options

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

62

4. Now, click on the Ivantioption in the right panel (see Figure 5.19). An Ivanti section will now
appear in the right panel (see Figure 5.20).

Figure 5.20: Configuring integration with Ivanti ServiceManager

5. To enable integration with Ivanti Service Manager, first slide the Ivanti slider in Figure 5.20 to the
right.

6. Then, specify the following in Figure 5.20:

l WSDL URL: Specify theWeb Services Description Language (WSDL) URL via which the eG
manager should connect to ServiceManager's web services interface.

l User and Password: Specify the credentials of a user with access to Service Manager's web
services interface.

l Role: Service Manager uses roles to define responsibilities for the users as they work within
the application. A role consists of device- or function-specific application access to various
workspaces, business objects, and fields. The eG manager needs to be assigned a role that
has permissions to create/update trouble tickets in Service Manager. Assign such a Role to
the eGmanager.

l TenantID : A Tenant is an Ivanti Service Manager system for a particular customer or
application. Since the eG manager will be integrating with a particular customer's or
application's ServiceManager system, the corresponding tenant ID has to be specified here.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

63

l Customer: Specify the name of the person who is reporting the incident. To enable help desk
to quickly figure out that it was the eGmanager that reported the incident, you may want to use
a special customer name for all eG alerts - eg., eG Monitor.

l Team: Mention the team that will troubleshoot the incident. If there is a dedicated team for
attending to all eG alerts, then specify the name of that team here.

l Owner : Specify the login ID of the Service Desk Analyst who is assigned to work on the
incident. All trouble tickets auto-generated from eG alerts will be assigned to this analyst only.

l Service: Mention the service that has been affected by the incident.

l Category : Categorizing incidents allows the Service Manager to appropriately assign the
incidents to specialists by matching categories with skills. For example, an incident with a
category of desktop hardware could be assigned to the desktop hardware group. This means
that you can group all eG alerts into a specialized category, so they can be collectively
assigned to an expert in troubleshooting eG alerts. If such a special category exists, then
specify its name againstCategory.

l Source: Specify how the incident was submitted. Typically, this can be configured with values
such as email, phone, etc. For eGalerts, the source is set by default, and it isAutoTicket.

l Incident title: Specify the format in which the title of the trouble ticket is to be displayed in
ServiceManager. The default format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eG manager to Service Manager. You are advised
against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the trouble ticket that is auto-created for eG alerts, in the
ServiceManager. The default format is as follows:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

64

Priority: $prior Component Type: $ctype Component: $cname Layer: $layer Problem

Time: $starttime Problem Description: $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the
actual alarm that is sent by the eGmanager to the Service Manager. While you can change
the labels, you are advised against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$starttime Will display the problem start time
$pdesc Will display a brief problem description

7. Finally, click theUpdate button in Figure 5.20 to save the changes.

5.11 Integration with Moogsoft
Moogsoft AIOps is the pioneering AI platform for IT operations, powered by purpose-built machine
learning algorithms. Moogsoft helps to improve the detection and remediation of incidents, ensuring
continuous service delivery for business.

eG Enterprise integrateswith Moogsoft, so that problem events detected by eG can be automatically
sent to Moogsoft. Moogsoft then employsmachine-learning and AI to analyze, correlate,
deduplicate, and virtually share event information with all those responsible for resolving them, so as
to slash event MTTR.

To integrate eG Enterprise with Moogsoft, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.21 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.21, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

65

Figure 5.21: Viewing the ITSM/Collaboration tool options

4. Now, click on the Moogsoftoption in the right panel (see Figure 5.21). A Moogsoft section will
now appear in the right panel (see Figure 5.22).

Figure 5.22: Configuring integration with Moogsoft

5. To enable integration with Moogsoft, first slide theMoogsoft slider in Figure 5.22 to the right.

6. Then, specify the following in Figure 5.22:

l Webhook URL: eG Enterprise uses webhook integration to route eG alerts to Moogsoft. This
integration allows the eG manager to POST JSON payloads containing event information to
the webhook URL of Moogsoft AIOps. To enable this communication, first specify the
webhookURL of Moogsoft AIOps here.

l User and Password: Here, specify the credentials of a valid, basic authentication user, with
rights to hit the configured webhookURL and post event details.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

66

l Custom payload : Use custom payload to customize the alert information you send to
Moogsoft, so that it includes additional static information.

Typically, the details of an eGalert are sent as a JSON file to the configured REST URL. Every
piece of information contained within an eG alert - eg., priority, component name, component
type etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert
field, and 'value' denotes the actual value of that field at run time. The 'key' is configured based
on what the Moogsoft LAM (Link Access Module) supports. For instance, if the LAM
represents alarm priorities using the key 'prior', then the same key will be used in the JSON file
for denoting alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be
$prior:$value. The $value will be Critical, Major, Minor, or Normal, depending upon the actual
priority of the alarm being sent.

If you want eG incidents routed to Moogsoft to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
alerts sent to Moogsoft, do the following:

l First, check whether the Moogsoft LAM supports a 'key' that can be used for capturing the
'source' of alerts/incidents. If no such key exists, then you cannot proceed with the Custom
Payload configuration. On the other hand, if such a key is available, then proceed to replace
the $key in your Custom Payload specification, with that key value. For the purpose of our
example, let us assume that the supports the key named 'source'. In this case therefore,
substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in Figure 5.22 to save the changes.

5.12 Integration with ConnectWise
ConnectWise is a business process automation platform that allows your business to sell, service
and support technologymore efficiently and in amore streamlined way.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

67

ConnectWise has a CRM, ticketing system, help desk, and tools for project management, billing,
and procurement.

eG Enterprise integrates with the ConnectWise ticketing and help desk system, so that eG alerts can
be automatically forwarded to that system, thus automating the creation and updation of trouble
tickets.

To integrate eG Enterprise with ConnectWise, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.23 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.23, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.23: Viewing the ITSM/Collaboration tool options

4. Now, click on the ConnectWiseoption in the right panel (see Figure 5.23). A ConnectWise
section will now appear in the right panel (see Figure 5.24).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

68

Figure 5.24: Configuring integration with ConnectWise

5. To enable integration with ConnectWise, first slide the ConnectWise slider in Figure 5.24 to the
right.

6. Then, specify the following in Figure 5.24:

l REST Endpoint: eG Enterprise uses the ConnectWise REST API to integrate with it. One of
the key requirements for this integration, is the REST endpoint URL. eG alerts are POSTed as
JSON payloads to the ConnectWise endpoint URL via HTTP/HTTPS. Specify this URL here.

l Public key and Private key : Another key requirement for integrating eG Enterprise with
ConnectWise are API keys. API keys are public and private keys that are generated by
ConnectWise Manage for an integration account. In ConnectWise, you first need to create
API keys exclusively for the eG manager integration. Make a note of these keys and then
specify them against Public key and Private key here.

l Ticket Status: A ticket status can typically be New or Resolved. Using the Ticket Status text
box, indicate the status strings ConnectWise uses to denote a new ticket and a resolved ticket.
For that, you need to replace the '$Name' parameter that corresponds to NewTicket and
ResolvedTicket in the Ticket Status specification, with the relevant status strings used by
ConnectWise. For instance, if ConnectWise uses the status string 'New' for a new ticket, and
'Closed' for a resolved ticket, then your Ticket Status specification will be:

New:NewTicket#Closed:ResolvedTicket

l Ticket priority: eG Enterprise supports three alert/ticket priorities - Critical, Major, and Minor.
Using the Ticket priority specification, indicate the ConnectWise-equivalent for each of these
priorities - i.e., specify how ConnectWise represents Critical, Major, and Minor priorities in its
trouble tickets. For this, you need to replace the $Name parameter corresponding to each eG

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

69

alert priority in the Ticket priority specification, with the relevant priority strings used
by ConnectWise. For instance, if in a ConnectWise trouble ticket, the priority Critical is
represented as High, Major is represented as Medium, and Minor is represented as Low, your
Ticket priority specification should be:

High:Critical#Medium:Major#Low:Minor

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the ConnectWise trouble tickets that correspond to eG
alerts. The default format is as follows:

Problem Start Time : $startTime $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eG alarms. For example, in the default format above, Problem Start Time
is a label that indicates that the information that follows the ‘:’ is the start time of the problem.
The key $startTime that succeeds the ‘:’ represents the actual start time of the problem that is
sent by the eGmanager to Opsgenie. While you can change the labels, you are advised
against changing any of the key names.

The other key that is part of the default format is as follows:

$pdesc Will display a brief problem description

7. Finally, click theUpdate button in Figure 5.24 to save the changes.

5.13 Integration with MS Teams
Microsoft Teams is a unified communication and collaboration platform that combines persistent
workplace chat, videomeetings, file storage, and application integration.

eG Enterprise integrateswith a team channel, so that eGalerts are automatically routed to that
channel. This way, users connected to that channel will be notified of anomalies and will be able to
track them to closure.

To integrate eG Enterprise with MS Teams, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.25 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.25, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

70

tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.25: Viewing the ITSM/Collaboration tool options

4. Now, click on the MS Teamsoption in the right panel (see Figure 5.25). An MS Teams section
will now appear in the right panel (see Figure 5.26).

Figure 5.26: Configuring integration with MS Teams

5. To enable integration with MS Teams, first slide theMS Teams slider in Figure 5.26 to the right.

6. Then, specify the following in Figure 5.26:

l Webhook URL: Specify the incoming webhook URL of the team channel with which the eG
manager should integrate. Incoming webhooks are special type of Connector in Teams that
provide a simple way for any external app to share content in team channels and are often
used as tracking and notification tools. Teams will provide a unique URL to which the eG
manager should send a JSON payload with the alert message it wants to POST. Refer to the

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

71

MS Teams documentation to know how to generate this URL. Once you obtain the URL, enter
it here.

l Incident title: Specify the title format for all eG alerts that are routed to the team channel. The
default format is as follows:

$prior - $ctype / $cname

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eG manager to VictorOps. You are advised against
changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

l Custom payload: Use custom payload to customize the alert information you send to a team
channel, so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured Webhook URL.
Every piece of information contained within an eG alert - eg., priority, component name,
component type etc. - is represented in the JSON file as a $key:$value pair, where 'key'
denotes the alert field, and 'value' denotes the actual value of that field at run time. The 'key' is
configured based on what the MS TeamsAPI supports. For instance, if the API represents
alarm priorities using the key 'prior', then the same key will be used in the JSON file for
denoting alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be
$prior:$value. The $value will be Critical, Major, Minor, or Normal, depending upon the actual
priority of the alarm being sent.

If you want eG incidents routed to a team channel to include additional information, then you
can define a Custom Payload for that information as a $key:$value pair. For example, say,
you want incidents to indicate the FQDN of the eG manager that generated the incidents. Say
that the FQDN of your eG manager is egmanager.innovations.com. To include this information
in MS Teams incidents, do the following:

l First, check whether the MS Teams API supports a 'key' that can be used for capturing the
'source' of alerts/incidents. If no such key exists, then you cannot proceed with the Custom
Payload configuration. On the other hand, if such a key is available, then proceed to replace

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

72

the $key in your Custom Payload specification, with that key value. For the purpose of our
example, let us assume that the API supports the key named 'source'. In this case therefore,
substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in Figure 5.26 to save the changes.

5.14 Integration with Opsgenie
Opsgenie is a modern incident management platform that ensures critical incidents are never
missed, and actions are taken by the right people in the shortest possible time. Opsgenie receives
alerts from your monitoring systems and custom applications and categorizes each alert based on
importance and timing.

eG Enterprise integrates with Opsgenie, so Opsgenie automatically receives alerts raised by the
eG manager and assigns them to the right expert for a speedy resolution.

To integrate the eG manager with Opsgenie, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.27 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.27, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

73

Figure 5.27: Viewing the ITSM/Collaboration tool options

4. Now, click on the Opsgenieoption in the right panel (see Figure 5.27). An Opsgenie section will
now appear in the right panel (see Figure 5.28).

Figure 5.28: Configuring integration with Opsgenie

5. To enable integration with Opsgenie, first slide theOpsgenie slider in Figure 5.28 to the right.

6. Then, specify the following in Figure 5.28:

l API key: eG Enterprise integrates with Opsgenie using the REST API of Opsgenie. Once the
eG manager automatically routes eG alerts to Opsgenie, the REST API automatically creates
corresponding alerts in Opsgenie and assigns them to the appropriate personnel. To enable
the eG manager to make alert creation/updation requests to Opsgenie's REST API, you need

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

74

to configure the eG manager with the correct API key. This API key is auto-generated by
Opsgenie as part of account-based configurations or for specific integrations. Specify the API
key that is tied to the alert integration with eG Enterprise or with any account that is created in
Opsgenie for eG Enterprise.

l User: Specify the name of the user who is reporting the problem. In our case, since it is the
eG manager that is submitting an alert request with Opsgenie, you can tag all eG alerts going
into Opsgenie with a commonUser name.

l Source: Indicate the source of the alert. As the eG manager is the source of alerts, you can
specify the IP address of the eG manager here, or any text string that serves the same
purpose.

l Incident title : Specify the title format for all eG alerts displayed in Opsgenie. The default
format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eG manager to Opsgenie. You are advised against
changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the Opsgenie alerts that correspond to eG alerts. The
default format is as follows:

Priority: $prior Component Type: $ctype Component: $cname Layer: $layer Start Time:

$starttime Problem Description: $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

75

actual alarm that is sent by the eGmanager to Opsgenie. While you can change the labels,
you are advised against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$starttime Will display the problem start time
$pdesc Will display a brief problem description

7. Finally, click theUpdate button in Figure 5.28 to save the changes.

5.15 Integration-with-SapphireIMS
SapphireIMS Service Desk is an ITIL 2011 certified, enterprise grade, comprehensive IT Service
Management Suite. Using this solution, you can log incidents via multiple channels, categorize them,
and have them automatically triaged and assigned to appropriate technicians as tickets.

eG Enterprise integrates with SapphireIMS Service Desk, so eG alerts can be automatically routed
to Service Desk as and when they are raised by the eGmanager. Then, using its Web Service API,
Service Desk automatically converts the eG alerts into trouble tickets, and efficiently manages them
with the help of its built-in workflow.

To integrate eG Enterprise with SapphireIMS Service Desk, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.29 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.29, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

76

Figure 5.29: Viewing the ITSM/Collaboration tool options

4. Now, click on the SapphireIMSoption in the right panel (see Figure 5.29). A SapphireIMS
section will now appear in the right panel (see Figure 5.30).

Figure 5.30: Configuring integration with SapphireIMS

5. To enable integration with SapphireIMS Service Desk, first slide the SapphireIMS slider
in Figure 5.30 to the right.

6. Then, specify the following in Figure 5.30:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

77

l WSDL URL: Specify theWeb Services Description Language (WSDL) URL via which the eG
manager should connect to service desk's web services API.

l User and Password : To create tickets in service desk, the eG manager requires the
authentication key of a valid service desk user, with ticket creation rights. To obtain this
authentication key, specify the credentials of that user here.

l Schema: Specify the database schema in which the ticket should be created. For Professional
setup, schema name is ‘ims’. For MSP setup, schema name should be the customer schema.

l Project name: Set the project to which the ticket applies. To obtain the project ID, specify the
name of the project here.

l Service name: A service desk ticket has to be compulsorily mapped to a particular service.
For example, for all hardware related issues, 'DesktopManagement' servicemust be selected.
Specify the service to which you want to map eG alerts.

l Category:A service desk record should be associated with a category to enable classification
of the records. Category helps in assigning appropriate service desk technicians or users to
work on the record. By grouping eG alerts into a single category, you can collectively assign
them to an expert in troubleshooting eG alerts. Specify the name of the Category to which
eG alerts belong. If the default categories cannot be used, you can add an exclusive category
for eG alerts in service desk, and specify the name of that category here.

l Subcategory: Sub-Category is a sub set of the category. For e.g. System Administration
category can have sub-categories like 'Hardware','Software' etc. Mention the sub-category for
eG alerts here. If the default sub-categories cannot be used, you can add an exclusive sub-
category for eG alerts in service desk, and specify the name of that sub-category here.

l Department : Specify the department of the submitter - i.e., the user who is reporting the
incidents. Since in our case, the eG manager will be reporting incidents, you can create a new
department in service desk for the sole purpose of the integration, and specify that department
here.

l Work Group: Work group is useful for grouping services, categories, locations and roles. For
example, only 'Application Service' related records can bemoved to 'Application Group'. Using
work groups, you can configure privileges to a group of people to work on a service desk
record. In service desk, you can create a dedicated work group for eG alerts, and map it to
specific services, categories, sub-categories, and user roles. You can then specify the name of
this work group here. This way, you can have a select group of people troubleshooting
eG alerts.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

78

l Incident title: Specify the title format for all trouble tickets auto-generated for eG-reported
incidents. The default title format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eGmanager to Slack. You are advised against changing
any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the trouble ticket that is auto-created for eG alerts, in
service desk. The default format is as follows:

Priority: $prior Component: $cname Component Type: $ctype Layer: $layer Problem

Description: $pdesc Start Time: $starttime

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the
actual alarm that is sent by the eG manager to service desk. While you can change the
labels, you are advised against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$starttime Will display the problem start time
$pdesc Will display a brief problem description

7. Finally, click theUpdate button in Figure 5.30 to save the changes.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

79

5.16 Integration with SNOW ITOM
ServiceNow® ITOM Enterprise delivers a comprehensive and integrated set of ITOM capabilities
including infrastructure discovery, event management, automation/orchestration, operational
intelligence, and many more. The ServiceNow Event Management solution in particular,
consolidates, correlates, and analyzes data from all of your monitoring tools to deliver real- time
information about the health of business services and IT infrastructure.

eG Enterprise integrates with ServiceNow Event Management, so that eG alerts can be
automatically sent into ServiceNow for correlation and analysis.

To integrate eG Enterprise with ServiceNow ITOM, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.31 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.31, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.31: Viewing the ITSM/Collaboration tool options

4. Now, click on the SNOW ITOMoption in the right panel (see Figure 5.31). A SNOW ITOM
section will now appear in the right panel (see Figure 5.32).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

80

Figure 5.32: Configuring integration with SNOW ITOM

5. To enable integration with SNOW ITOM, first slide the SNOW ITOM slider in Figure 5.32 to the
right.

6. Then, specify the following in Figure 5.32:

l URL: eG Enterprise integrates with ServiceNow using its web service API. The eG manager
POSTs eG alerts to the endpoint URL of the API as JSON payloads containing alert
information. To enable the eG manager to connect to the API, you need to specify the endpoint
URL here.

l Port: The Port at which ServiceNow listens for problem information sent by the eGmanager.

l Authorization Type : The eG manager sends alarm information to ServiceNow as a web
service request to the configured URL. Upon receipt of the request, ServiceNow will attempt
to validate the source of the request using one of the following authenticationmethods:

o Basic authentication

o O Auth 2.0 authentication

If ServiceNow enforces Basic Authentication, then select the Basic option from the
Authorization Type drop- down. Where Basic Authentication is enforced, ServiceNow
requires that web service requests be accompanied by the username and password of a user
who has access to the ServiceNow instance. Accordingly, ifBasic is set as theAuthorization

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

81

Type, you need to provide the credentials of a user with the right to access ServiceNow in the
User andPassword text boxes.

On the other hand, if ServiceNow enforces the O Auth 2.0 authentication method, then select
the OAuth 2.0 option from theAuthorization Type drop-down. O Auth 2.0 lets users access
instance resources through external clients by obtaining a token rather than by entering
credentials with each resource request. This means that where O Auth 2.0 is enforced, the
eG manager needs to obtain an access token, so it can create/modify trouble tickets in
ServiceNow. For this, the eG manager should first connect to the ServiceNow instance as a
user who is authorized to request for an access token, and then submit web service requests
as a valid 'Client'. This is why, if OAuth 2.0 is set as the Authorization Type, you will have to
specify the following:

o User and Password: The credentials of a user who is authorized to request for an access
token

o Client ID and Client Secret Key: The Client ID is an auto-generated unique ID of the
client application - i.e., in our case, the eG manager application - requesting the access
token. The Client Secret Key is a shared secret string that the ServiceNow instance and
the client applications - i.e., the eG manager - use to authorize communications with one
another.

l Does ServiceNow use proxy for connections: If the eG manager needs to communicate
with the ServiceNow instance via a Proxy server, then set this flag toYes.

l Proxy IP/Hostname and Proxy Port: If the Does ServiceNow use proxy flag is set to
Yes, then specify the IP/host name of the Proxy server and the port number at which the Proxy
server listens in the respective text boxes.

l Does Proxy require authentication: This flag is applicable only if the Does ServiceNow
use proxy flag is set to Yes. If so, then use this flag to indicate whether/not the Proxy server
requires authentication. Set this flag toYes, only if the Proxy server requires authentication.

l Proxy UserName and Proxy Password: If the Does Proxy require authentication flag is
set toYes, then provide the credentials of a valid Proxy user here.

l Event Source: Specify the tool that is sending events into ServiceNow. For the purpose of our
integration, this can be set to eG Enterprise.

l Event Sender : Specify the IP/host name of the client that is sending the events into
ServiceNow. In our case, this should be the IP/host name of the eG manager.

7. Finally, click theUpdate button in 5.16.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

82

5.17 Integration with Zendesk
Zendesk is a customer support platform that lets you connect with customers on any channel. It
boasts of an omnichannel ticketing system that helps collect all your customer support requests from
any source and lets youmanage them from one location.

eG Enterprise integrates with Zendesk's ticketing system, so that eG alerts are automatically fed into
Zendesk as and when they are generated. This results in the automatic creation/updation of trouble
tickets, the quick assignment of tickets to the right troubleshooting agents, and the speedy resolution
of issues.

To integrate eG Enterprise with Zendesk, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.33 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.33, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.33: Viewing the ITSM/Collaboration tool options

4. Now, click on the Zendeskoption in the right panel (see Figure 5.33). A Zendesk section will now
appear in the right panel (see Figure 5.34).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

83

Figure 5.34: Configuring integration with Zendesk

5. To enable integration with Zendesk, first slide the Zendesk slider in Figure 5.34 to the right.

6. Then, specify the following in Figure 5.34:

l URL: eG Enterprise integrates with Zendesk using its REST API. Via HTTP/S, eG alerts are
POSTed to the REST endpoint URL of Zendesk as JSON payloads containing problem
information. To enable this communication, specify the REST endpoint URL here.

l User and Password: Only verified users can make requests to the Zendesk API. Therefore,
to make a POST request to the API, the eG manager has to first authorize against the API
using basic authentication. For this, it requires the privileges of a user with ticket creation
rights. Specify the credentials of such a user against User and Password.

l Incident title: Specify the title format for all trouble tickets auto-generated for eG-reported
incidents. The default title format is as follows:

Priority :$prior Component Name: $cname Component Type : $ctype Layer : $layer

Problem Description : $pdesc

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

84

actual alarm that is sent by the eGmanager to Zendesk. While you can change the labels,
you are advised against changing any of the key names.

The other keys that are part of the default title format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the name of the problematic layer

$pdesc Will display a brief problem description

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the trouble ticket that is auto-created for eG alerts, in
Zendesk. The default format is as follows:

Priority: $prior Component: $cname Component Type: $ctype Layer: $layer Problem

Description: $pdesc Problem Start Time: $starttime Service: $service

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the
actual alarm that is sent by the eG manager to service desk. While you can change the
labels, you are advised against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$starttime Will display the problem start time
$pdesc Will display a brief problem description

$service Will display the name of the affected service

l Custom payload : Use custom payload to customize the alert information you send to
Zendesk, so that it includes additional static information.

Typically, the details of an eG alert are sent as a JSON file to the configured URL. Every piece
of information contained within an eG alert - eg., priority, component name, component type
etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert field,

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

85

and 'value' denotes the actual value of that field at run time. The 'key' is configured based on
what the Zendesk REST API supports. For instance, if the REST API represents alarm
priorities using the key 'prior', then the same key will be used in the JSON file for denoting
alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be $prior:$value.
The $value will be Critical, Major, Minor, or Normal, depending upon the actual priority of the
alarm being sent.

If you want eG incidents routed to VictorOps to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
Zendesk tickets, do the following:

l First, check whether the Zendesk REST API supports a 'key' that can be used for capturing
the 'source' of alerts/incidents. If no such key exists, then you cannot proceed with the
CustomPayload configuration. On the other hand, if such a key is available, then proceed to
replace the $key in your Custom Payload specification, with that key value. For the purpose
of our example, let us assume that the REST API supports the key named 'source'. In this
case therefore, substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

7. Finally, click theUpdate button in Figure 5.34 to save the changes.

5.18 Integration with VictorOps
VictorOps is a real-time incident management and collaboration platform for IT and DevOps teams.

By integrating eG Enterprise with VictorOps, you can have the performance alerts that eG generates
sent into your VictorOps timeline and automatically trigger and resolve incidents.

To integrate eG Enterprise with VictorOps, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

86

3. Figure 5.35 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.35, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.35: Viewing the ITSM/Collaboration tool options

4. Now, click on the VictorOpsoption in the right panel (see Figure 5.35). A VictorOps section will
now appear in the right panel (see Figure 5.36).

Figure 5.36: Configuring integration with VictorOps

5. To enable integration with VictorOps, first slide theVictorOps slider in Figure 5.36 to the right.

6. Then, specify the following in Figure 5.36:

l REST URL: eG Enterprise uses the REST API of VictorOps to integrate with it. Using the API,
VictorOps converts eG Enterprise alerts into incidents, and automatically assigns these

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

87

incidents to the right person at the right time, thus ensuring the prompt redressal of
performance issues. To enable eG Enterprise to connect to the REST API, you first need to
enable the REST endpoint in VictorOps. Refer to the VictorOps documentation to know how to
achieve this. Once the REST endpoint URL is enabled, VictorOps generates an URL, where
alerts can be sent via an HTTP POST request. Specify this URL as the REST URL here.

l Incident title: Specify the title format for all eG alerts displayed in VictorOps as incidents. The
default format is as follows:

$prior - $ctype / $cname - $pdesc

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eG manager to VictorOps. You are advised against
changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

l Problem description : Against Problem description , specify the format in which the
problem description should appear in the VictorOps incidents that correspond to eGalerts. The
default format is as follows:

Priority: $prior Component: $cname Component Type: $ctype Layer: $layer Problem

Description: $pdesc Start Time: $starttime

The text preceding the ‘:’ (colon) in the format above indicates what information follows. The
‘dollared’ ($) text that follows the ‘:’ (colon) is a key, the value of which varies at run time,
depending upon the eGalarms. For example, in the default format above, Priority is a label that
indicates that the information that follows the ‘:’ is the priority of the alarm. The key $prior that
succeeds the ‘:’ represents the alarm priority, and changes according to the priority of the
actual alarm that is sent by the eGmanager to VictorOps.While you can change the labels,
you are advised against changing any of the key names.

The other keys that are part of the default format are discussed in the table below:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

88

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$layer Will display the layer affected by the problem

$starttime Will display the problem start time
$pdesc Will display a brief problem description

l Custom payload : Use custom payload to customize the alert information you send to
VictorOps, so that it includes additional static information.

Typically, the details of an eGalert are sent as a JSON file to the configured REST URL. Every
piece of information contained within an eG alert - eg., priority, component name, component
type etc. - is represented in the JSON file as a $key:$value pair, where 'key' denotes the alert
field, and 'value' denotes the actual value of that field at run time. The 'key' is configured based
on what the VictorOps REST API supports. For instance, if the REST API represents alarm
priorities using the key 'prior', then the same key will be used in the JSON file for denoting
alarm priorities. Accordingly, the entry for alarm priority in the JSON file will be $prior:$value.
The $value will be Critical, Major, Minor, or Normal, depending upon the actual priority of the
alarm being sent.

If you want eG incidents routed to VictorOps to include additional information, then you can
define a Custom Payload for that information as a $key:$value pair. For example, say, you
want incidents to indicate the FQDN of the eG manager that generated the incidents. Say that
the FQDN of your eG manager is egmanager.innovations.com. To include this information in
VictorOps incidents, do the following:

l First, check whether the VictorOps REST API supports a 'key' that can be used for
capturing the 'source' of alerts/incidents. If no such key exists, then you cannot proceed with
the Custom Payload configuration. On the other hand, if such a key is available, then
proceed to replace the $key in your Custom Payload specification, with that key value. For
the purpose of our example, let us assume that the REST API supports the key named
'source'. In this case therefore, substitute '$key' with 'source'.

l Then, proceed to explicitly specify the FQDN of your eG manager in the place of $value.
This is because, you can use the Custom Payload configuration to add only 'static'
information - i.e., information that you explicitly configure, and hence will never change. In
the case of our example therefore, the $value will be egmanager.innovations.com.

l The complete Custom Payload specification will now be:
source:egmanager.innovations.com

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

89

7. Finally, click theUpdate button in Figure 5.36 to save the changes.

5.19 Webhook Integration
A webhook is an HTTP callbackwhich allows one application to provide other applicationswith real-
time information. eG Enterprise is capable of posting event messages - i.e., eG alerts - to any third-
party trouble ticketing system that is capable of accepting incoming webhooks.

To implement this integration, do the following:

1. Login to the eGadministrative interface.

2. Select theManager option from theSettings tile.

3. Figure 5.37 will then appear. From the MANAGER SETTINGS tree in the left panel of Figure
5.37, select the ITSM/Collaboration Integration node. The third-party ITSM/Collaboration
tools that eG Enterprise can integrate with will be listed in the right panel.

Figure 5.37: Viewing the ITSM/Collaboration tool options

4. Now, click on the Webhook Integrationoption in the right panel (see Figure 5.37). A Webhook
Integration section will now appear in the right panel (see Figure 5.38).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

90

Figure 5.38: Configuring integration usingWebhooks

5. To enable integration using webhooks, first slide the Webhook Integration slider in Figure 5.38
to the right.

6. Then, specify the following in Figure 5.38:

l Integration Name: Specify the name of trouble ticketing system with which eG Enterprise
should integrate.

l Webhook URL : Here, specify the incoming webhook URL of the target trouble ticketing
system. eGalerts will be transmitted to this URL only.

l HTTP Method: Select the HTTP method that eG Enterprise uses to send event notifications
into the trouble ticketing system. The options are GET, POST, and PUT.

l Authorization Type: Some trouble ticketing systems require authorization from the external
source to accept the incoming webhook. If the target of this integration requires such an
authorization, then first select the type of authorization from this drop-down. The options are as
follows:

o Basic authentication

o API Key

If the target trouble ticketing system enforces Basic Authentication, then select the Basic
option from the Authorization Type drop-down. Where Basic Authentication is enforced, the
trouble ticketing system requires that webhooks be accompanied by the credentials of a valid
user with the right to send webhooks. In this case therefore, provide the credentials of such a
user in theUser andPassword text boxes.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

91

Some other trouble ticketing systems may authenticate incoming webhooks using a unique
API key. If the eG manager is being integrated with such a trouble ticketing system, then first
generate an API key using the third-party system. Next, when configuring eG integration with
that trouble ticketing system, set the Authorization Type to API Key and specify the correct
API key.

Figure 5.39: Setting Authorization Type to API Key

Then, by selecting the appropriate option from theAdd API Key to drop-down, indicate where
the API key needs to be inserted - in the HTTP request header? or in query params?

l Content Type: Then, indicate in what format eG alert information is to be sent to the third-
party trouble ticketing system. Since the eG manager typically sends alarm information as
JSON files, the application/json option is chosen by default here.

l Payload: Configure the event payload that is to be fed into the target trouble ticketing system.
In other words, configure the type of information that each eG alert sent to the target system
should contain. A sample payload specification is provided below:

{

"text": "$prior - $ctype/$cname - $pdesc"

}

The ‘dollared’ ($) text in the format above is a key, the value of which varies at run time,
depending upon the information contained in the eG alarms. For example, in the default format
above, $prior is a key that represents the alarms priority, and changes according to the priority
of the actual alarm that is sent by the eGmanager to the target system.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

92

The other keys that are part of the sample format are discussed in the table below:

$cname Will display the name of the problem component

$ctype Will display the component type to which the problem component belongs

$pdesc Will display a brief problem description

Before specifying the keys, you will have to check which keys are supported by the
target trouble ticketing system. Only such keys should be configured in your
payload.

7. Finally, click theUpdate button in Figure 5.38.

5.20 Adding Custom Fields to the Trouble Ticket Integration Page
Sometimes, you may want eG Enterprise to transmit more information to a TT system than what eG
Enterprise’s default monitoring and integration framework allows. For example, when integrating
with Service Now, eGEnterprise by default sends the name and type of the problem component, the
problem priority, the problem layer, and problem description as part of the eG alarm information.
Service Now usersmay however want a Subcategory to also be set for eG alerts at the time of alarm
transmission, so that, when browsing the eGalerts in the Service Now console, they can at-a-glance
determine which area of work the issue pertains to. While a Subcategory field is available in Service
Now, eG Enterprise’s monitoring framework does not by default collect or report ‘problem
subcategory’ as part of alarm information. To make sure that eG Enterprise sends this Subcategory
information to Service Now along with the eG alerts, you first need to set a subcategory for the eG
alerts in eG Enterprise. This can be achieved by adding Subcategory as a Custom field to the
Trouble Ticket Integration page (in the eGadmin interface) of Service Now.

Custom Fields enable eG Enterprise to capture and send problem information that is specific to a
TT system.

This facility is currently available for the following TT systems only:

l Service Now

l Pager Duty

l HipChat

l Slack

l JIRA

The sub-sections below discuss how this can be achieved for Service Now and JIRA alone. The
procedure for adding custom fields for other TT systems is similar to that of Service Now.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

93

5.20.1 Adding Custom Fields for Service Now Integration

The key pre-requisite for adding a custom field for a specific TT system in eG Enterprise is that the
field that you want to add should be supported by the third-party TT system at the time of addition.

Note:

The custom field that you want to add can either be available by default in the TT system or could
have been added as a custom column to the TT system.

Assume that you want to add a field/parameter named ‘Subcategory ’ to the Trouble Ticket
Integration page for Service Now in the eG admin interface. The first step towards this is to confirm
that the ‘Subcategory’ field is available in Service Now. Once this is confirmed, proceed as directed
below:

1. Find the column name that corresponds to ‘Subcategory’ (in our example) in Service Now. For
this, follow the steps below:

l Login to the Service Now console. Figure 5.40 will then appear. Follow the menu sequence
Incident -> Create New, in themenu options available in the left panel of Figure 5.40.

Figure 5.40: Creating a new incident

l Clicking on the button at the top of the right panel in Figure 5.40 will bring up a shortcut
menu as shown by Figure 5.41. From thismenu, select the Configure -> Table option.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

94

Figure 5.41: Selecting the Configure -> Tablemenu option

l Figure 5.42 will then appear. Use the Search option indicated by Figure 5.42 to search for the
column named ‘subcategory’. Once it is found, click on it as indicated by Figure 5.42.

Figure 5.42: Clicking on the column ‘contact’

l This will open Figure 5.43. The value of theColumn name field will be displayed, as shown by
Figure 5.43. As you can see, it is subcategory. This value should be used as the column name
of the ‘Subcategory’ custom field in our example.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

95

Figure 5.43: The column name of the ‘Contact’ field

2. Next, edit the eg_services.ini file (in the <EG_INSTALL_DIR>\manager\config directory). Look
for the SERVICE NOW key in the [TT_INTERGRATION_SYSTEM_FIELDS] section of the file. A
comma-separated list of parameters currently available in the Trouble Ticket Integration page
for Service Now will be displayed by default against the SERVICE NOW key in this section. Add
the new field, subcategory, to this list. Note that the field will be displayed in the Trouble
Ticket Integration page in the same position in which you insert the field here. In the
sample entry below, you can see that the new field has been inserted just before theCritical due
period field.

SERVICE

NOW=url,port,user,password,isProxyEnabled,proxyHostName,proxyPort,isProxyAuthenticated

,proxyUserName,proxyPassword,caller_ id,assignment_ group,assigned_

to,category,subcategory,subcategory,criticalDueDatePeriod,majorDueDatePeriod,minorDueD

atePeriod,ticketTitleFormat,ttIntegratorClass

3. Next, look for the [TT_INTEGRATION_FIELD_MAPPING] section of the file. Under this section,
add an entry of the following format:

<columnname>=<fieldtype>

<fieldtype> represents the type of values the new field will support. In the case of

our example, this entry will read as follows:

subcategory=Textfield

4. Then, go to the [TT_INTEGRATION_TEXT_MAPPING] section and add an entry of the following

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

96

format to it:

<columnname>=<displayname>

<displayname> represents the label using which the new field will be displayed in the Trouble
Ticket Integration page.

In the case of our example, your specification can be:

subcategory=Subcategory

5. Finally, go to the [tt_integration_service now] section and add an entry of the following format to
it:

<columnname>=<defaultvalue>

<defaultvalue> denotes the value that will be displayed by default against the new field in the
Trouble Ticket Integration page. You can either provide a valid value or leave it as unconfigured.
Let us leave it as unconfigured for the purpose of our example. The specification will therefore be:

subcategory=$unconfigured

In case you want to provide a valid value, then your specification will be:
subcategory=Internal application

6. Finally, save the file.

7. If you now visit the Trouble Ticket Integration page for Service Now, you will find that the
Subcategory field has appeared just above theCritical due period field (see Figure 5.44).

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

97

Figure 5.44: The custom field appearing in the Trouble Ticket Integration page of Service Now in the eG
admin interface

5.20.2 Adding Custom Fields for JIRA Integration

Only custom fields created in JIRA can be added as custom parameters to the Trouble
Ticket Integration page of the eG admin interface. This means that fields that pre-exist in JIRA
cannot be included in the Trouble Ticket Integration page for JIRA in the eGadmin interface.

Let us say that a custom field named ‘eg manager url’ has been added to JIRA. This field will contain
a value only for eG alerts – not for alerts from any other source. With this information displayed
alongside alerts, help desk staff will not only know where the alerts are coming from, but will also
know where to go for more details about the problem.

To make sure that the ‘eg manager url’ field in JIRA is populated with a valid eG manager URL, the
eG alerts sent into JIRA should also carry the URL of the eG manager that generated the alerts in
the first place. For this to happen, let us add a custom field named ‘eGmanager URL’ to the Trouble
Ticket Integration page for JIRA in the eG admin interface, and then configure it with a static and
valid eGmanager URL.

The steps to be followed in this regard are discussed hereunder:

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

98

1. Find the ID that JIRA internally assigns to its custom field, ‘eg manager url’. For this, follow the
steps below:

l Login to the JIRA console. Figure 5.45 will then appear. Click on the icon on the toolbar at
the right, top corner of the JIRA console to invoke a drop-downmenu. From themenu, pick the
Issues option.

Figure 5.45: Selecting the Issues option

l When Figure 5.46 appears, click on the CustomFields option under fields.

Figure 5.46: Clicking on the Custom Fields option

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

99

l Figure 5.47 will then appear listing all the custom fields that have been created in JIRA.
Browse the list until you locate the ‘egmanager url’ field.

Figure 5.47: Locating the ‘eGmanager URL’ field

l Next, click on the icon corresponding to the ‘eG manager url’ custom field, and select the
Edit option from the drop-downmenu.

Figure 5.48: Selecting the Edit option from the drop-downmenu

l When Figure 5.49 appears, shift your focus to the browser address bar. In the URL that
appears in the address bar, look for the following entry:EditCustomField!default.jspa?id=

The same has been indicated by Figure 5.49.

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

100

Figure 5.49: Determining the ID of the ‘eGmanager URL’ custom field

The value that appears after the = symbol in the entry, is the ID of the custom field that is being
edited – i.e., the ID of the ‘eG manager url’ custom field in our example. In Figure 5.49, this ID
is 10200. Make a note of this ID.

2. Next, login to the eG manager host, and edit the eg_services.ini file (in the <EG_INSTALL_
DIR>\manager\config directory). Look for the JIRA key in the [TT_INTEGRATION_SYSTEM_
FIELDS] section of the file. A comma-separated list of parameters currently available in the
Trouble Ticket Integration page for JIRA will be displayed by default against the JIRA key in this
section. Insert the ID of the new field anywhere into the list of parameters that are pre-defined
against the JIRA key. Since the field is a custom field, you need to add the prefix customfield_ to
the ID 10200. This means that your custom field specification will be, customfield_10200. Note
that the field will be displayed in the Trouble Ticket Integration page in the same position in which
you insert the field here. In the sample entry below, you can see that the new field has been
inserted just before the ttIntegratorClass field.

JIRA=url,user,password,projectKey,issueType,TitleFormat,DescriptionFormat,customfield_

10200,ttIntegratorClass

3. Next, look for the [TT_INTEGRATION_FIELD_MAPPING] section of the file. Under this section,

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

101

add an entry of the following format:

<customfieldID>=<fieldtype>

<fieldtype> represents the type of values the new field will support. In the case of our example,
this entry will read as follows:

customfield_10200=Textfield

4. Then, go to the [TT_INTEGRATION_TEXT_MAPPING] section and add an entry of the following
format to it:

<customfieldID>=<displayname>

<displayname> represents the label using which the new field will be displayed in the Trouble
Ticket Integration page.

In the case of our example, your specification can be:

customfield_10200=eGManager URL

5. Finally, go to the [TT_INTEGRATION_JIRA] section and add an entry of the following format to it:

<customfieldID>=<defaultvalue>

<defaultvalue> denotes the value that will be displayed by default against the new field in the
Trouble Ticket Integration page. You can either provide a valid value or leave it as unconfigured.
Since we know the URL of the eG manager that is integrating with JIRA, let us provide a valid
value here. For the purpose of our example, let this value be: http://192.168.9.244:7077

The specification will therefore be:

customfield_10200=http://192.168.9.244:7077

6. Finally, save the file.

7. If you now visit the Trouble Ticket Integration page for JIRA, you will find that the eGManager
URL field therein (see Figure 5.50).

http://192.168.9.244:7077/

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

102

Figure 5.50: The custom field appearing in the Trouble Ticket Integration page of JIRA in the eG admin
interface

5.20.3 Adding Custom Fields for Pager Duty, Hip Chat, and Slack

As mentioned earlier, custom fields can be added in the eG manager for only the following TT
systems: Service Now, JIRA, Pager Duty, HipChat, and Slack. The procedure for configuring a
Custom field in eG Enterprise for Service Now and JIRA are detailed in Section 5.20.1 and Section
5.20.2 (respectively). As for the other TT systems (Pager Duty, HipChat, and Slack), you can use
the same procedure detailed for Service Now in Section 5.20.1. The only differenceswill be:

l The procedure for finding the internal column name that corresponds to a custom field will vary
from one TT system to another. Refer to the corresponding TT system documentation to know
how to find the column name.

l A few section names and parameter names in the eg_services.ini file will also change according
to the TT system. The table below should help you with that:

Parameter Name

Service Now SERVICE NOW parameter in the [TT_
INTERGRATION_SYSTEM_FIELDS] section

Hip Chat HIP CHAT parameter in the [TT_
INTERGRATION_SYSTEM_FIELDS] section

Chapter 5: Trouble Ti cket Integration Using a Web Servi ces Framework

103

Slack SLACK parameter in the parameter in the [TT_
INTERGRATION_SYSTEM_FIELDS] section

Pager Duty PAGER DUTY parameter in the [TT_
INTERGRATION_SYSTEM_FIELDS] section

Section Name

Service Now [TT_INTEGRATION_SERVICE NOW] section

Hip Chat [TT_INTEGRATION_HIP CHAT] section

Slack [TT_INTEGRATION_SLACK] section

Pager Duty [TT_INTEGRATION_PAGER DUTY] section

Chapter 6: Conclus ion

104

Chapter 6: Conclusion

The eG Enterprise Suite has been specially designed keeping in mind the unique requirements of IT
infrastructure operators. For more information on the eG family of products, please visit our web site
at www.eginnovations.com.

For more details regarding eGEnterprise suite of products and the details of the metrics collected by
the eGagents, please refer to the following documents:

l Administering the eGEnterprise Suite

l Monitoring eGEnterprise

l The eG Installation Guide

l The eGMeasurementsManuals

We recognize that the success of any product depends on its ability to address real customer needs,
and are eager to hear from you regarding requests for enhancements to the products, suggestions
for modifications to the product, and feedback regarding what works and what does not. Please
provide all your inputs aswell as any bug reports via email to sales@eginnovations.com.

http://www.eginnovations.com/
mailto:sales@eginnovations.com

	Chapter 1: Introduction
	1.1 How the eG Enterprise to TT System Integration Works?
	1.1.1 Alarms in eG Enterprise
	1.1.2 Integration with Trouble Ticketing Systems
	1.1.3 Handling eG Alarms in a Trouble Ticketing System
	1.1.4 Integration with Trouble Ticketing Systems
	1.1.5 Handling eG Alarms in a Trouble Ticketing System

	Chapter 2: Trouble Ticket Integration Using the TT Mail Interface
	2.1 Pre-requisites for Integrating with a TT System via a TT Mail Interface
	2.2 Integrating the eG Manager with a TT System via a TT Mail Interface

	Chapter 3: Trouble Ticket Integration Using SNMP Traps
	3.1 How to Enable TT Integration over SNMP Traps?
	3.1.1 Configuring a Third-party SNMP Manager
	3.1.2 Sending Trouble Tickets over SNMP Traps

	3.2 Enabling Logging of SNMP Trap Transmissions

	Chapter 4: Trouble Ticket Integration Using the eG TT CLI
	Chapter 5: Trouble Ticket Integration Using a Web Services Framework
	5.1 Integrating with ManageEngine’s ServiceDesk
	5.2 Integrating with ServiceNow
	5.3 Integrating with Autotask
	5.4 Integrating with BMC RemedyForce
	5.5 Integration with PagerDuty
	5.6 Integrating with HipChat
	5.7 Integrating with Slack
	5.8 Integrating with JIRA
	5.9 Integration with ATF
	5.10 Integration with Ivanti Service Manager
	5.11 Integration with Moogsoft
	5.12 Integration with ConnectWise
	5.13 Integration with MS Teams
	5.14 Integration with Opsgenie
	5.15 Integration-with-SapphireIMS
	5.16 Integration with SNOW ITOM
	5.17 Integration with Zendesk
	5.18 Integration with VictorOps
	5.19 Webhook Integration
	5.20 Adding Custom Fields to the Trouble Ticket Integration Page
	5.20.1 Adding Custom Fields for Service Now Integration
	5.20.2 Adding Custom Fields for JIRA Integration
	5.20.3 Adding Custom Fields for Pager Duty, Hip Chat, and Slack

	Chapter 6: Conclusion

