
.NET Business Transaction
Monitoring

eG Innovations Product Documentation

www.eginnovations.com

Table of Contents
CHAPTER 1: INTRODUCTION 1

CHAPTER 2: THE EG .NET BUSINESS TRANSACTION MONITOR (BTM) 2

2.1 How does the eG .NET BTMWork? 3

2.2 How Does the .NET Profiler Communicate with the eG Agent? 5

2.3 Pre-requisites for .NET Business TransactionMonitoring 6

2.4 Installing and Configuring the .NET Profiler on an IIS Web Server 8

2.5 Installing and Configuring the .NET Profiler for Microsoft SharePoint Running as a Service Inside
IIS 12

2.6 .NET Business Transactions Test 17

2.7 Detailed Diagnostics 28

2.7.1 Detailed Diagnostics Revealing that Slow .Net Processing is the Reason for Transaction Slowness 30

2.8 Disabling/Uninstalling the eG .NET Profiler 34

2.9 PerformanceOverhead of the eG .NET Business TransactionMonitor 34

CHAPTER 3: TROUBLESHOOTING 35

3.1 Troubleshooting the Installation of the .NET Profiler 35

3.2 Troubleshooting the Failure of the eG .NET Profiler to Profile andMeasure Performance of .NET
Transactions 36

CHAPTER 4: FREQUENTLY ASKED QUESTIONS (FAQ) 45

ABOUT EG INNOVATIONS 51

Table of Figures
Figure 2.1: Tracing a .NET transaction 2

Figure 2.2: How eG .NET BTM Works? 3

Figure 2.3: How eG .NET BTM traces transaction path and computes transaction responsiveness 4

Figure 2.4: The .NET Transactions layer displaying the .NET business transactions that are being monitored on
the target IIS web server 5

Figure 2.5: Communication between the .NET Profiler and the eG Agent 6

Figure 2.6: The IIS Manager console 9

Figure 2.7: Selecting the Advanced Settings option 10

Figure 2.8: The Advanced Settings page 11

Figure 2.9: Locating the Application Pool to which the target web site/web application belongs 12

Figure 2.10: Recycling the application pool to which the target web site/web application belongs 12

Figure 2.11: The IIS Manager console 14

Figure 2.12: Selecting the Advanced Settings option 15

Figure 2.13: The Advanced Settings page 16

Figure 2.14: Locating the Application Pool to which the target web site/web application belongs 17

Figure 2.15: Recycling the application pool to which the target web site/web application belongs 17

Figure 2.16: The detailed diagnosis of the Slow transactions percentage measure of the .NET Business Trans-
actions test 29

Figure 2.17: Detailed diagnosis of the Slow transactions percentage measure 30

Figure 2.18: The cross-application flow of the slow transaction 31

Figure 2.19: The call graph of the .Net transaction 32

Figure 3.1: Selecting Properties option from shortcut menu 38

Figure 3.2: Clicking on Advanced Settings option 38

Figure 3.3: Clicking on the Environment Variables button 39

Figure 3.4: Checking the System Variables list for the COR_PROFILER and COR_ENABLE_PROFILING vari-
ables 40

Figure 3.5: Checking whether/not the 'Authenticated Users ' group is listed in the Group or User names list 42

Figure 4.1: Selecting Properties option from shortcut menu 46

Figure 4.2: Clicking on Advanced Settings option 47

Figure 4.3: Clicking on the Environment Variables button 47

Figure 4.4: Checking the System Variables list for the COR_PROFILER and COR_ENABLE_PROFILING vari-
ables 48

Chapter 1: Introduction

1

Chapter 1: Introduction

Microsoft .NET is one of the most popular technologies in the web application development space,
and provides the building blocks for many modern-day, business-critical web applications - eg.,
Windows client applications, client- server applications, distributed applications, database
applications, etc. With millions riding on these .NET applications, it is only natural that administrators
constantly fuss over "Application downtime" and "Application slowness". If users frequently complain
of application inaccessibility or its poor responsiveness to transaction requests, the enterprise can
lose dearly, in terms of revenue, support cycles, productivity, penalties, and reputation!

To avoid this, administrators should continuously observe user interactions with their
.NET applications and measure overall user experience with these applications. At the first sign of
user dissatisfaction, administrators should identify the precise transactions where users are
experiencing slowness, accurately isolate its root-cause, and resolve the bottleneck, well before
users complain!

This is where eG Enterprise helps! Using the eG Real User Monitor (RUM), administrators can track
transaction requests to a .NET application, measure the responsiveness of each transaction, rapidly
identify the slow transactions , and precisely pinpoint what is causing the slowness - is it a problem
with the application front- end (i.e., browser)? a flaky network connection? or a server- side
processing delay?

If eG RUM reveals issues in server-side processing, then the eG .NET BTM steps in to provide in-
depth visibility into transaction performance across the server- side tiers. In the process, the
eG .NET BTM leads you the exact source of your transaction troubles.

This document focuses on the eG .NET Business Transaction Monitor (BTM), discusses how it
works, and reveals how it helps ensure rapid diagnosis and resolution of delays in your mission-
critical .NET transactions.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

2

Chapter 2: The eG .NET Business TransactionMonitor
(BTM)

The eG .NET BTM employs an advanced ‘tag-and- follow’ technique to trace the path of each
business transaction to a .NET application hosted on an IIS web server. When doing so, it auto-
discovers the CLRs the transaction travels through, and also automatically ascertains what remote
service calls were made by the transaction when communicating with the CLRs. In the process, the
eG .NET BTMmeasures the following:

l The total response time of each transaction;

l The time spent by the transaction on each CLR node in the path;

l The time spent by the transaction for processing every external service call (including
SQL queries);

The eG .NET BTM is also capable of tracing a transaction across hybrid Java and .NET
architectures. For instance, if a transaction request to a .NET application makes an HTTP or a Web
services call to a Java application, then the eG .NET BTM is capable of discovering this relationship.

Figure 2.1: Tracing a .NET transaction

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

3

Using these analytics, the eG .NET BTM precisely pinpoints the slow, stalled, and failed transactions
to the .NET application, enables administrators to accurately isolate where – i.e., on which IIS web
server – the transaction was bottlenecked, and helps them figure out exactly what caused the
bottleneck – an inefficient or errored query to the database? a slow HTTP/S call to another web /
web application server? an issue in asynchronous communication with another server over WCF? a
sluggish web service call? or an error in the application code? By quickly leading administrators to
the source of transaction failures and delays, the eG .NET BTM facilitates rapid problem resolution,
which in turn results in the low downtime of and high user satisfaction with the .NET application.

2.1 How does the eG .NET BTMWork?
The eG .NET BTM is currently capable of monitoring transactions to web sites / web applications
hosted on an IIS web server only.

To be able to track the live transactions to web sites on an IIS web server, eG Enterprise requires
that a special eG .NET Profiler be deployed on that IIS web server.

If more IIS web servers are in the transaction path, then, the profiler will have to be installed on each
of the IIS web servers, for end-to-end visibility.

Figure 2.2: How eG .NET BTM Works?

Typically, requests to web site transactions are handled by application pools on an IIS web server.
Whenever an end-user requests for a transaction, the application pool spawns a worker process
(w3wp.exe) to service that transaction request. Upon receipt of a request, the worker process

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

4

automatically invokes an instance of the .NET CLR to process the request. At the same time, the
worker process also loads an instance of the .NET profiler.

Figure 2.3: How eG .NET BTM traces transaction path and computes transaction responsiveness

Once the profiler latches on to a worker process, it injects a .NET code into the .NET application
code. The injected code adds a GUID to each unique transaction to the application, and performs
the following tasks:

l Traces the path of a transaction;

l Measures the responsiveness of a transaction by computing the time difference between
when the transaction started and when it ended;

l Identifies the slow, stalled, and error transactions, and computes the count of such
transactions;

l Discovers the exit calls made by a transaction from the IIS web server, determines the
destination of the calls, and measures the average time taken by each call to process the
requests for a transaction;

The profiler then sends all these statistics to the eGagent. To know how and when the profiler
transmitsmetrics to the eGagent, refer to the How does the .NET Profiler Communicate with the
eG Agent topic.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

5

The eG agent reports these metrics to the eG manager. The eG manager associates these metrics
with the .NET Transactions layer of the target IIS web server, and displays them in the eG
monitoring console.

Figure 2.4: The .NET Transactions layer displaying the .NET business transactions that are beingmonitored
on the target IIS web server

2.2 How Does the .NET Profiler Communicate with the eG Agent?
The eG agent should be deployed on the same IIS web server that hosts the .NET profiler. The
profiler communicates with the eGagent via that port number 14001, by default. You can change the
default port by following the steps below:

l Edit the eg_DotNetServer.ini file (in the <EG_AGENT_INSTALL_DIR>\agent\config directory)

l Configure the PORT parameter in the [EG_DOTNET_SERVER_DATA] section of the file with
the new port number.

l Finally, save the file.

Typically, once the eGagent is configured with the details of the web site to bemonitored, the profiler
contacts the eGagent and downloads these details from it.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

6

Figure 2.5: Communication between the .NET Profiler and the eG Agent

Then, when a transaction request for the web site comes in, the profiler injects a code in the CLR to
trace the path of that request. In the process, the profiler also collects response time metrics related
to that transaction. Every 10 seconds, the profiler sends these metrics to the eG agent. The
eG agent stores these metrics in memory, until the next time it runs the .NET Business Transactions
test. When the test is run, the agent pulls the metrics stored in memory and sends it to the
eG manager.

2.3 Pre-requisites for .NET Business Transaction Monitoring
The following are the pre-requisites for performing .NET business transactionmonitoring using eG:

l For the eG .NET Business Transaction Monitor to function, your eG Enterprise infrastructure
should include:

o An eG Manager of version 6.3 (or above)

o eG Agents of version 6.3 (or above)

l The eG .NET BTM can be installed on IIS web servers 7.0, 7.5, 8.0, 8.5, or 10.

l Make sure that the VC++ 2012 Runtime is available on the target IIS web server, prior to
BTM-enabling it. On a 64-bit server, both the 32-bit and the 64-bit versions of the VC++ 2012
Runtime should be available. On a 32-bit server on the other hand, make sure that the 32-bit
VC++ 2012 Runtime is available.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

7

l Ensure that the IIS Management Scripts and Tools feature is installed and enabled on the
target IIS web server.

l If any other profiler - eg., NewRelic, AppDynamics, etc. - pre-exists on the IIS web server,
then, before BTM-enabling the server, make sure that the profiler is fully and properly
uninstalled.

l The eG .NET BTM is supported only in the following environments:

o Supported operating systems

o Microsoft WindowsServer 2008 (32-bit and 64-bit)

o Microsoft WindowsServer 2008 R2

o Microsoft WindowsServer 2012

o Microsoft WindowsServer 2016

o Microsoft Windows 7, 8, 8.1, 10

o Supported Frameworks

o Microsoft .NET Framework versions 3.5, 4.0, 4.5, 4.5.2, 4.6. 4.7.2

o ASP .NET MVC 2, 3. 4, 5

o OpenWeb Interface for .NET (OWIN) web API

o Supported Runtime Environments

o Microsoft IIS versions 7.0, 7.5, 8.0, 8.5,10

o Microsoft SharePoint 2010, 2013 as services running inside IIS

o Supported Remote Procedure Calls

o HTTP

o WCF

o WebServices including SOAP

o Supported Data Storage Types and Clients

The .NET profiler supports the ADO.NET data storage type and the following ADO.NET
clients:

Database Name Client Type

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

8

Oracle ODP.NET and Microsoft Provider for Oracle

MySQL Connector/Net and ADO.NET

Microsoft SQL Server ADO.NET

l For complete visibility into the transaction path, make sure that you BTM-enable each IIS web
server in the transaction path.

l To track and profile transactions to multiple web sites on an IIS web server, you need to add a
separateMicrosoft IIS component in eG Enterprise for each web site to bemonitored.

2.4 Installing and Configuring the .NET Profiler on an IIS Web
Server
To install the .NET profiler on the IIS web server, follow the steps below:

1. Login to the target IIS web server.

2. From the command-prompt, switch to the <EG_AGENT_INSTALL_DIR>\lib directory.

3. Now, issue the following command from that location:

run SetupDotNetProfiler.bat

4. Once the batch file begins execution, the followingmessageswill appear:

--

*** Setting up Registry values for the Profiler ***

--

Modifying the W3SVC service's Environment variables

Modifying the WAS service's Environment variables

5. If setup detects that a profiler (this can be an eG;s .NET profiler or any third-party profiler such as
NewRelic) pre-exists on the host, then the followingmessage will appear:

There is another profiler found in registry

--

COR_PROFILER=<71DA0A04-7777-4EC6-9643-7D28B46A8A41>

--

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

9

Setup will then prompt you to confirmwhether you want to proceed with the installation or not.

Do you wish to continue setup <yes/no> : yes

If you specify yes here, then setup will try to overwrite the GUID presently registered with the
COR_PROFILER registry key with the GUID of the eG Enterprise profiler. If the GUID is
overwritten successfully, then amessage to that effect will appear.

RegValues are modified Successfully ***

6. If setup is successful, then the followingmessageswill appear:

Registering the Profiler.

Installing assembly in Cache...

Helper assemblies Installation Successful

Applying required permissions for eGurkha directory.

7. Finally, restart the IIS web server by issuing the iisreset command at the prompt. This will restart
all the web sites and web applications on that IIS web server. If you would rather have the
monitored web sites / web applications alone to be restarted, do the following:

l Open the Internet Information Services (IIS) Manager (see Figure 2.6).

Figure 2.6: The IIS Manager console

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

10

l Expand the Sites node in the tree-structure in the left panel of Figure 2.6, and select the sub-
node representing the web site / web application you are monitoring. Right-click on that sub-
node, move your mouse pointer over Manage Website in the shortcut menu that appears,
and pick theAdvanced Settings option (see Figure 2.7).

Figure 2.7: Selecting the Advanced Settings option

l Figure 2.8 will then appear. From Figure 2.8, you can figure out which Application Pool
manages the target web site / web application.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

11

Figure 2.8: The Advanced Settings page

l Then, click theCancel button in Figure 2.8 to return to the IIS Manager console.

l Next, click the Application Pools node in the tree-structure in the left panel of the IIS Manager
console (see Figure 2.9). The right panel will then display all theApplication Pools on that IIS
web server. Browse the list to locate the Application Pool to which the target web site / web
application belongs - i.e., theApplication Pool displayed in Figure 2.8.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

12

Figure 2.9: Locating the Application Pool to which the target web site/web application belongs

l Right-click on that Application Pool and select the Recycle option from the short-cut menu
that appears (see Figure 2.10). Doing so will restart only those web sites / web applications
managed by that application pool.

Figure 2.10: Recycling the application pool to which the target web site/web application belongs

2.5 Installing and Configuring the .NET Profiler for Microsoft
SharePoint Running as a Service Inside IIS
To install the .NET profiler for Microsoft SharePoint that is running as a service inside IIS, follow the
steps below:

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

13

1. Login to the target IIS web server.

2. Before attempting to install the profiler, you will have to add a new entry to the IIS registry. For
that, follow the steps below:

l First, go to the Registry Editor (regedit).

l Under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework, create a new
DWORD "LoaderOptimization" with value 1.

l Then, under HKEY_ LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework\, create a new DWORD
"LoaderOptimization" with value 1.

These configurations disable loader optimization assemblies, which may interfere with profiler
operations.

l Finally, restart the IIS web server.

3. Then, log back into the IIS web server. From the command-prompt, switch to the <EG_AGENT_
INSTALL_DIR>\lib directory.

4. Now, issue the following command from that location:

run SetupDotNetProfiler.bat

5. Once the batch file begins execution, the followingmessageswill appear:

--

*** Setting up Registry values for the Profiler ***

--

Modifying the W3SVC service's Environment variables

Modifying the WAS service's Environment variables

6. If setup detects that a profiler (this can be an eG;s .NET profiler or any third-party profiler such as
NewRelic) pre-exists on the host, then the followingmessage will appear:

There is another profiler found in registry

--

COR_PROFILER=<71DA0A04-7777-4EC6-9643-7D28B46A8A41>

--

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

14

Setup will then prompt you to confirmwhether you want to proceed with the installation or not.

Do you wish to continue setup <yes/no> : yes

If you specify yes here, then setup will try to overwrite the GUID presently registered with the
COR_PROFILER registry key with the GUID of the eG Enterprise profiler. If the GUID is
overwritten successfully, then amessage to that effect will appear.

RegValues are modified Successfully ***

7. If setup is successful, then the followingmessageswill appear:

Registering the Profiler.

Installing assembly in Cache...

Helper assemblies Installation Successful

Applying required permissions for eGurkha directory.

8. Finally, restart the IIS web server by issuing the iisreset command at the prompt. This will restart
all the web sites and web applications on that IIS web server. If you would rather have the
monitored web sites / web applications alone to be restarted, do the following:

l Open the Internet Information Services (IIS) Manager (see Figure 2.11).

Figure 2.11: The IIS Manager console

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

15

l Expand the Sites node in the tree-structure in the left panel of Figure 2.11, and select the
sub-node representing the web site / web application you are monitoring. Right-click on that
sub-node, move your mouse pointer over Manage Website in the shortcut menu that
appears, and pick theAdvanced Settings option (see Figure 2.12).

Figure 2.12: Selecting the Advanced Settings option

l Figure 2.13 will then appear. From Figure 2.13, you can figure out which Application Pool
manages the target web site / web application.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

16

Figure 2.13: The Advanced Settings page

l Then, click theCancel button in Figure 2.13 to return to the IIS Manager console.

l Next, click the Application Pools node in the tree- structure in the left panel of the
IIS Manager console (see Figure 2.14). The right panel will then display all the Application
Pools on that IIS web server. Browse the list to locate the Application Pool to which the
target web site / web application belongs - i.e., the Application Pool displayed in Figure
2.13.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

17

Figure 2.14: Locating the Application Pool to which the target web site/web application belongs

l Right-click on that Application Pool and select the Recycle option from the short-cut
menu that appears (see Figure 2.15). Doing so will restart only those web sites / web
applicationsmanaged by that application pool.

Figure 2.15: Recycling the application pool to which the target web site/web application belongs

2.6 .NET Business Transactions Test
The responsiveness of a transaction is the key determinant of user experience with that transaction;
if response time increases, user experience deteriorates. To make users happy, a business
transaction should be rapidly processed by each of the Microsoft IIS web servers in its path.
Processing bottlenecks on a single server can slowdown/stall an entire business transaction or can
cause serious transaction errors. This in turn can badly scar the experience of users. To avoid this,

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

18

administrators should promptly identify slow/stalled/errored transactions, isolate the IIS web server
on which the slowness/error occurred, and uncover what caused the aberration on that server – is it
owing to SQL queries executed by the server? Or is it because of external calls – eg., HTTP calls,
web service calls, etc. - made by that node? The .NET Business Transactions test helps with this!

This test runs on a BTM-enabled IIS web server in an IT infrastructure and tracks all the transaction
requests received by any web site that has been configured for monitoring on that server. The test
then groups requests based on user-configured pattern specifications. For each transaction pattern,
the test then computes and reports the average time taken by that server to respond to the
transaction requests of that pattern to the configured web site. In the process, the test identifies the
slow/stalled transactions of that pattern, and reports the count of such transactions and their
responsiveness. Detailed diagnostics provided by the test accurately pinpoint the exact transaction
URLs that are slow/stalled, the total round-trip time of each transaction, and also indicate when such
transaction requests were received by that server. The slowest transaction in the group can thus be
identified.

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in
SQL query processing, the test also reports the average time the transactions of each pattern took to
execute SQL queries. If a majority of the queries are slow, then the test will instantly capture the
same and notify administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know
which are the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a web site on a IIS
web server, highlights transactions that are under-performing, and takes administrators close to the
root-cause of poor transaction performance.

Note:

This test will report metrics only if the following pre-requisites are fulfilled:

l The eG .NET Business Transaction Monitor (a.k.a the .NET Profiler) should be installed and
configured on the target IIS web server.

l The IIS Management Scripts and Tools feature should be installed and enabled on the target
IIS web server.

Target of the Test : A BTM-enabled IIS web server

Agent deploying the test : An internal agent

Output of the test :One set of results for each grouped URL

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

19

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Website Name Specify the name of the web site on the target IIS web server for which transaction
monitoring is to be performed.

Note:

If this test is configured with a web site name, then all other web site-related tests of
the target IIS web server will report metrics for this web site only.

Healthy URL Trace By default, this flag is set toNo. This means that eG Enterprise will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed
diagnosis capability for healthy transactions as well, then set this flag toYes.

Max Healthy URLs
per Test Period

This parameter is applicable only if the Healthy URL Trace flag is set to ‘Yes’. Here,
specify the number of top-n transactions that should be listed in the detailed diagnosis
of theHealthy transactionsmeasure, every time the test runs. By default, this is set
to 50, indicating that the detailed diagnosis of theHealthy transactionsmeasure will
by default list the top-50 transactions, arranged in the descending order of their
response times.

Max Slow URLs per
Test
Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theSlow transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theSlow transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Stalled URLs
per Test Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theStalled transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theStalled transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Error URLs per
Test
Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theError transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theError transactionsmeasure will by
default list the top-10 transactions, in terms of the number of errors they encountered.

Method Execution
Cutoff (MS)

From the detailed diagnosis of slow/stalled/error transactions, you can drill down and
perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which

Configurable parameters for the test

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

20

Parameter Description

the transaction calls themethods. By configuring amethod execution cutoff, you can
make sure that methods that have been executing for a duration greater the specified
cutoff are alone listed when performing execution analysis. For instance, if you specify
5 here, then theExecution Analysis window for a slow/stalled/error transaction will
list only thosemethods that have been executing for over 5milliseconds. This way,
you get to focus on only thosemethods that could have caused the slowness, without
being distracted by inconsequential methods. By default, the value of this parameter is
set to 250 ms.

SQL Execution
Cutoff (MS)

Typically, from the detailed diagnosis of a slow/stalled/error transaction to a web site,
you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By configuring a SQL Execution
Cutoff, you canmake sure that queries that have been executing for a duration greater
the specified cutoff are alone listed when performing query analysis. For instance, if
you specify 5 here, then for a slow/stalled/error transaction, theSQL Queries window
will display only those queries that have been executing for over 5milliseconds. This
way, you get to focus on only those queries that could have contributed to the
slowness. By default, the value of this parameter is set to 10 ms.

Max Grouped URLs
per Measure Period

This test groups URLs according to the 'URL Segments' specification. These grouped
URLs will be the descriptors of the test. For each grouped URL, response timemetrics
will be aggregated across all transaction URLs in that group and reported.

Whenmonitoring web sites/web applications to which the transaction volume is
normally high, this test may report metrics for hundreds of descriptors. If all these
descriptors are listed in the Layers tab page of the eGmonitoring console, it will
certainly clutter the display. To avoid this, by default, the test displays metrics for a
maximum of 50 descriptors – i.e., 50 grouped URLs alone – in the eGmonitoring
console, during every measure period. This is why, theMax Grouped URLs per
Measure Period parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eGmonitoring
console, the eG BTM follows the below-mentioned logic:

l Top priority is reserved for URL groups with error transactions. This means that eG

BTM first scans URL groups for error transactions. If error transactions are found in

50 URL groups, then eGBTM computes the aggregated response time of each of

the 50 groups, sorts the error groups in the descending order of their response time,

and displays all these 50 groups alone as the descriptors of this test, in the sorted

order.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

21

Parameter Description

l On the other hand, if error transactions are found in only one / a few URL groups –

say, only 20 URL groups – then, eG BTMwill first arrange these 20 grouped URLs in

the descending order of their response time. It will then compute the aggregated

response time of the transactions in each of the other groups (i.e., the error-free

groups) that were auto-discovered during the samemeasure period. These other

groups are then arranged in the descending order of the aggregated response time of

their transactions. Once this is done, eG BTMwill then pick the top-30 grouped

URLs from this sorted list.

l In this case, when displaying the descriptors of this test in theLayers tab page, the
20 error groups are first displayed (in the descending order of their response time),

followed by the 30 ‘error-free’ groups (also in the descending order of their response

time).

At any given point in time, you can increase/decrease themaximum number of
descriptors this test should support by modifying the value of theMAX GROUPED
URLS PER MEASURE PERIOD parameter.

Max SQLQueries
Per Transaction

Typically, from the detailed diagnosis of a slow/stalled/error transaction to a web site,
you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By default, eG picks the first 500 SQL
queries executed by the transaction, compares the execution time of each query with
the SQL Execution Cutoff configured for this test, and displays only those queries with
an execution time that is higher than the configured cutoff. This is why, the 'Max
SQL Queries Per Transaction' parameter is set to 500 by default.

To improve agent performance, youmay want the SQL EXECUTION CUTOFF to be
compared with the execution time of a less number of queries – say, 200 queries.
Similary, to increase the probability of capturingmore number of long-running queries,
youmay want the SQL Execution Cutoff to be compared with the execution time of a
large number of queries – say, 1000 queries. For this, you just need tomodify the 'Max
SQL Queries Per Transaction' specification to suit your purpose.

Filtered URL
Patterns

By default, this test does not track requests to the following URL patterns:

*.ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.lwfn, *.ffil, *.fon, *.pfm, *.pfb, *.std,
*.pro, *.xsf, *.jpg, *.jpeg, *.jpe, *.jif, *.jfif, *.jfi, *.jp2, *.j2k, *.jpf, *.jpx, *.jpm, *.jxr,
*.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png, *.apng, *.mng, *.tiff, *.tif, *.xbm, *.bmp,
*.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv, *.mov, *.rm, *.ram,
*.swf, *.flv, *.ogg, *.webm, *.mp4, *.ts, *.mid, *.midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.ogg, *.mp3, *.mp4, *.css, *.js, *.ico|/egurkha*

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

22

Parameter Description

If required, you can remove one/more patterns from this default list, so that such
patterns aremonitored, or can appendmore patterns to this list in order to exclude them
frommonitoring.

Show Cookies An HTTP cookie is a small piece of data sent from awebsite and stored on the user's
computer by the user's web browser while the user is browsing. Most commonly,
cookies are used to provide a way for users to record items they want to purchase as
they navigate throughout a website (a virtual "shopping cart" or "shopping basket"). To
keep track of which user is assigned to which shopping cart, the server sends a cookie
to the client that contains a unique session identifier (typically, a long string of random
letters and numbers). Because cookies are sent to the server with every request the
client makes, that session identifier will be sent back to the server every time the user
visits a new page on the website, which lets the server know which shopping cart to
display to the user. Another popular use of cookies is for logging into websites. When
the user visits a website's login page, the web server typically sends the client a cookie
containing a unique session identifier. When the user successfully logs in, the server
remembers that that particular session identifier has been authenticated, and grants the
user access to its services. If you want to view and analyze the useful information that
is stored in such HTTP response cookies that a web server sends, then set this flag to
Yes. By default, this flag is set toNo, indicating that cookie information is not reported
by default as part of detailed diagnostics.

Show Headers HTTP headers allow the client and the server to pass additional information with the
request or the response. A request header is a header that contains more information
about the resource to be fetched or about the client itself. If you want the additional
information stored in a request header to be displayed as part of detailed diagnostics,
then set this flag toYes. By default, this flag is set toNo indicating that request
headers are not displayed by default in the detailed diagnosis.

URL Segments This test groups transaction URLs based on the URL segments count configured for
monitoring and reports aggregated response timemetrics for every group. Using this
parameter, you can specify the number of URL segments based on which the
transactions are to be grouped.

URL segments are the parts of a URL (after the base URL) or path delimited by
slashes. So if you had the URL:
http://www.eazykart.com/web/shopping/sportsgear/login.jsp, then
http://www.eazykart.comwill be the base URL or domain, /web will be the first URL
segment, /shopping will be the second URL segment, and /sportsgear will be the
third URL segment, and /login.jsp will be the fourth URL segment. By default, this
parameter is set to 3. This default setting, when applied to the sample URL provided
above, implies that the eG agent will aggregate response timemetrics to all transaction

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

23

Parameter Description

URLs under /web/shopping/sportsgear. Note that the base URL or domain will not be
considered when counting URL segments. This in turnmeans that, if a web site
receives transaction requests for the URLs such as
http://www.eazykart.com/web/shopping/sportsgear/login.jsp,
http://www.eazykart.com/web/shopping/sportsgear/jerseys.jsp,
http://www.eazykart.com/web/shopping/sportsgear/shoes.jsp,
http://www.eazykart.com/web/shopping/sportsgear/gloves.jsp, etc., then the eG
agent will track the requests and responses for all these URLs, aggregate the results,
and present the aggregatedmetrics for the descriptor /web/shopping/sportsgear. This
way, the test will create different transaction groups based on each of the third-level
URL segments – eg. /web/shopping/weddings, /web/shopping/holiday,
/web/shopping/gifts etc. – and will report aggregatedmetrics for each group so created.

If you want, you can override the default setting by providing a different URL segment
number here. For instance, your specification can be just 2. In this case, for the
URLtp://www.eazykart.com/web/shopping/login.jsp, the test will report metrics for
the descriptorweb/shopping.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD Frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measures reported by the test:

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

24

Measurement Description Measurement
Unit Interpretation

All transactions Indicates the total number
of requests received for
transactions of this pattern
during the last
measurement period.

Number By comparing the value of this
measure across transaction patterns,
you can identify themost popular
transaction patterns. Using the
detailed diagnosis of this measure,
you can then figure out which specific
transactions of that pattern aremost
requested.

For theSummary descriptor, this
measure will reveal the total number of
transaction requests received by the
target web site during the last
measurement period. This is a good
indicator of the transaction workload
on that web site.

Avg response time Indicates the average time
taken by the transactions
of this pattern to complete
execution.

Secs Compare the value of this measure
across patterns to isolate the type of
transactions that were taking too long
to execute. You can then use the
detailed diagnosis of the All
transactions measure of that group to
know how much time each transaction
in that group took to execute. This will
lead you to the slowest transaction.

For theSummary descriptor, this
measure will reveal the average
responsiveness of all the transaction
requests received by the target web
siteduring the last measurement
period. An abnormally low value for
this measure for the Summary
descriptor could indicate a serious
processing bottleneck on the target
web site.

Healthy transactions Indicates the number of
healthy transactions of this
pattern.

Number By default, this measure will report the
count of transactions with a response
time less than 4000milliseconds. You
can change this default setting by

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

25

Measurement Description Measurement
Unit Interpretation

modifying the thresholds of theAvg
response timemeasure using the eG
admin interface.

For theSummary descriptor, this
measure will report the total number of
healthy transactions on the target web
site.

Healthy transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is healthy.

Percent To know which are the healthy
transactions, use the detailed
diagnosis of this measure. For the
Summary descriptor, this measure
will report the overall percentage of
healthy transactions on the target web
site.

Slow transactions Indicates the number of
transactions of this pattern
that were slow during the
last measurement period.

Number By default, this measure will report the
number of transactions with a
response time higher than 4000
milliseconds and lesser than 60000
milliseconds. You can change this
default setting by modifying the
thresholds of theAvg response time
measure using the eG admin interface.

A high value for this measure is a
cause for concern, as toomany slow
transactions means that user
experience with the web application is
poor. For theSummary descriptor,
this measure will report the total
number of slow transactons on the
target web site. This is a good
indicator of the processing power of
the target web site.

Slow transaction
response time

Indicates the average time
taken by the slow
transactions of this pattern
to execute.

Secs For theSummary descriptor, this
measure will report the average
response time of all the slow
transactions on the target web site.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

26

Measurement Description Measurement
Unit Interpretation

Slow transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is currently slow.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are slow. You
can drill down from a slow transaction
to know what is causing the slowness.
For theSummary descriptor, this
measure will report the overall
percentage of slow transactions on the
monitored web site.

Error transactions Indicates the number of
transactions of this pattern
that experienced errors
during the last
measurement period.

Number A high value is a cause for concern, as
toomany error transactions to a web
application can significantly damage
the user experience with that
application. For theSummary
descriptor, this measure will report the
total number of error transactons on
the target web site. This is a good
indicator of how error-prone the target
web site is.

Error transactions
response time

Indicates the average
duration for which the
transactions of this pattern
were processed before an
error condition was
detected.

Secs The value of this measure will help you
discern if error transactions were also
slow. For theSummary descriptor,
this measure will report the average
response time of all error transactions
on the target web site.

Error transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is experiencing errors.

Percent Use the detailed diagnosis of this
measure to isolate the error
transactions. You can even drill down
from an error transaction in the detailed
diagnosis to determine the cause of
the error. For theSummary descriptor,
this measure will report the overall
percentage of transactions of this
pattern on the target web site that is
currently experiencing errors.

Stalled transactions Indicates the number of
transactions of this pattern
that were stalled during the

Number By default, this measure will report the
number of transactions with a

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

27

Measurement Description Measurement
Unit Interpretation

last measurement period. response time higher than 60000
milliseconds. You can change this
default setting by modifying the
thresholds of theAvg response time
measure using the eG admin interface.

A high value is a cause for concern, as
toomany stalled transactions means
that user experience with the web
application is poor. For theSummary
descriptor, this measure will report the
total number of stalled transactons on
the target web site.

Stalled transactions
response time:

Indicates the average time
taken by the stalled
transactions of this pattern
to execute.

Secs For theSummary descriptor, this
measure will report the average
response time of all stalled
transactions on the target web site.

Stalled transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is stalling.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are stalled.
You can drill down from a stalled
transaction to know what is causing
that transaction to stall. For the
Summary descriptor, this measure
will report the overall percentage of
transactions of this pattern on the
target web site that is stalling.

Slow SQL
statements executed

Indicates the number of
slow SQL queries that
were executed by the
transactions of this pattern
during the last
measurement period.

Number For theSummary descriptor, this
measure will report the total number of
slow SQL queries executed by all
transactions to the target web site.

Slow SQL statement
time

Indicates the average
execution time of the slow
SQL queries that were run
by the transactions of this
pattern.

Secs If there are toomany slow transactions
of a pattern, youmay want to check
the value of this measure for that
pattern to figure out if query execution
is slowing down the transactions. Use

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

28

Measurement Description Measurement
Unit Interpretation

the detailed diagnosis of theSlow
transactionsmeasure to identify the
precise slow transaction. Then, drill
down from that slow transaction to
confirm whether/not database queries
have contributed to the slowness.
Deep-diving into the queries will reveal
the slowest queries and their impact
on the execution time of the
transaction.

Total transactions
per minute

Indicates the number of
transactions of this pattern
that are executed per
minute.

Number

Error transactions
per minute

Indicates the number of
error transactions of this
pattern that are executed
per minute.

Number A very low value is desired for this
measure.

Compare the value of this measure
across transaction patterns to find that
pattern of transactions that is
experiencing errors frequently.

2.7 Detailed Diagnostics
By reporting detailed diagnostics on transaction responsiveness and errors, eG Enterprise not only
points you to the slow/stalled/error transaction URLs, but also reveals what could be causing the
slowness/errors.

2.7 reveals detailed diagnosis of the Slow transactions percentage measure of the .NET Business
Transactions test.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

29

Figure 2.16: The detailed diagnosis of the Slow transactions percentagemeasure of the .NET Business
Transactions test

The detailed diagnosis reveals the individual transaction URLs in the grouped URL that users
requested for, the total response time of each transaction, the client (remote host) from which each
transaction request was received, the thread executing the transaction, and the query string of the
transaction URL.

The per-transaction response time displayed in 2.7 includes the following:

l The total time for which the transaction request was processed by the target IIS web server and
by other BTM-enabled IIS web servers in the transaction path thereafter, until the time the
response for that transaction request was sent out by the target IIS web server;

l The time taken by external calls (SQL query / HTTP / WCF / Web Service) to other IIS web
servers, applicaions, or backend servers in the transaction path;

Additionally, the overall experience of the users with each transaction – whether it is slow, stalled, or
error - is also revealed in the REQUEST PROCESSING TIME column. Furthermore, the
HTTP headers, cookies, the HTTP status code returned by the monitored node in response to the
transaction request, and the HTTP method invoked by the transaction on that node are also
revealed. The per-transaction statistics are also sorted in the descending order of the transaction
response time, starting with the slowest transaction and ending with the healthiest one. In the event
that the Avg response time of a grouped URL registers an abnormally high value, you can use these
detailed metrics to quickly and accurately identify the exact transaction in the group that is
significantly contributing to the poor user experience with the group.

Once a slow/stalled transaction is identified, the next question is what is causing the transaction to
slowdown. Transaction responsiveness can be impacted by any of the following factors:

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

30

l An inefficient database query run by the target IIS web server or any other IIS web server in the
transaction path;

l Issues in the .NET application code;

l A poorly responsiveness remote service call made by the target IIS web server or any other IIS
web server in the transaction path;

With the help of illustrated examples, the links below describe how drill-downs from the detailed
diagnostics enable accurate isolation of the root-cause of a transaction slowdown / errors in a
transaction. Detailed Diagnostics Revealing that Slow .Net Processing is the Reason for a Slow
transaction

2.7.1 Detailed Diagnostics Revealing that Slow .Net Processing is the Reason
for Transaction Slowness

Let us consider the example of a .NET application, where the following transactions are slow.

Figure 2.17: Detailed diagnosis of the Slow transactions percentagemeasure

Let us focus on the first transaction in the slow transactions list of Figure 2.17. To zoom into the
transaction, click on it. Figure 2.18 will then appear revealing the cross-application flow of that
transaction.

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

31

Figure 2.18: The cross-application flow of the slow transaction

This flow diagram clearly reveals the following:

l The IIS web servers and backends through which the transaction travelled;

l The time for which the transaction request was processed at each BTM-enabled IIS web server in
the transaction path; note that this time will not be computed for IIS web servers that are
in the transaction path, but are not BTM-enabled and those that are BTM-enabled but
are not managed by eG Enterprise;

l The exit calls made by each BTM-enabled node to another node as part of the transaction's
journey, the time consumed by each exit call,and the number of times each type of call wasmade;
the following exit calls are supported by eG BTM:

o DatabaseQuery

o HTTP

o Web service

o WCF

Note:

l If a profiled node appears 'grayed out' in the cross-application transaction flow, it denotes that
profiler could not collect detailed diagnostics for that node. The reasons for this could be either
or both of the following:

l Transaction responsiveness on the 'grayed out' node was either healthy or was only slightly
slow, and hence, did not appear in the list of Top-N slow transactions.

l Slow data transmission from eG agent to manager;

l If an IIS web server makes a call to a messaging server, then. in the transaction topology, that
messaging server will be identified by the URL of the exact queue/topic that is managing the
request. If an IIS web server makes a SQL query call to a database server, then the details
displayed for that database server in the transaction topology depends upon whether/not that
database server is managed by eG Enterprise. If the database server is not managed by
eG Enterprise, then such a database server will be represented in the topology using the
server type (whether Oracle, Microsoft SQL etc.) and the name of the database that was
accessed by the SQL query. To know the IP and port number of the unmanaged database
server, you can drill-down from theDatabase queries call in the topology. On the other hand,
if the database server in question is being monitored by eG Enterprise, then such a server will

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

32

be represented in the topology using the server type, nick name, port number, and the
database name. Additionally, the SID will be displayed in case of an Oracle database server,
and the instance namewill be displayed in case of an instance-basedMicrosoft SQL server.

l Sometimes, empty nodes – i.e., nodes without any details – will be visible in the cross-
application transaction flow topology. Likewise, the time spent on certain external calls may
also not be displayed in the topology. This is owing to inconsistencies in the collection of
detailed diagnostics.

Using conventional color codes and intuitive icons, the transaction flow chart precisely pinpoints
where the transaction slowed down. In the case of 2.7.1 above, from the color-coding it is clear that
the problem is with the .Net layer of the IIS web server, Multinode3:61728 . To zoom into the
problem, click on that IIS web server in the transaction topology. 2.7.1 will then appear providing a
detailed Execution Analysis of the .Net methods called byMultinode3:61728.

Figure 2.19: The call graph of the .Net transaction

As part of this analysis, a pie chart is presented that quickly reveals the percentage of time
Multinode3:61728 in our example spent processing the server’s .Net code and making external
HTTP/WCF/Web service calls. The table below the pie chart in Figure 2.19 lists the exact methods
that performed .Net processing or made the remote calls. A quick look at this table reveals that the
.Net method, ASP.destinationform_aspx:ProcessRequest invoked a series of child methods and
external calls, which together took over 10000 milliseconds to execute. However, the method itself
did not take any time to execute (self execution time)! Browsing the child methods called by the
parent method reveals that the transaction spent over 90% of its time on the .Net call,

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

33

'DataTransferWebsite2.DestinationForm:Page_ Load'. This means that the
'sun.net.www.protocol..' is themethod that is delaying the transaction.

This way, eG BTM enables you to diagnose the root-cause of slowness in your .Net calls using just a
few mouse clicks!

Note:

By default, the table in 2.7.1 will not include the methods/functions within those classes that are
associated with the basic .Net framework (on the target IIS web server). This is because, such
functions are less likely to encounter issues. Moreover, when a transaction slows down, application
experts will more often than not look for issues in the application code and not in the underlying .Net
code. Also, by excluding such classes from its monitoring purview, eG Enterprise also reduces its
processing overheads significantly.

If required, you can include these classes in the profiler's monitoring scope or can even exclude
more classes frommonitoring. For this, do the following:

1. Edit the eG_DotNetBTM.ini in the <EG_INSTALL_DIR>\manager\config directory on the eG
manager host.

2. In the [EXCLUDE] section of the file, you will find a CLASSES parameter. By default, this
parameter will be set to a semicolon-separated list of (.Net framework) class patterns to be
excluded frommonitoring. The default specification will be as follows:

[EXCLUDE]

CLASSES=System.*;Microsoft.*;AsyncInvocationWithFilters.*;

3. If you want the profiler to monitor any of the excluded files, then simply remove the corresponding
file pattern from the semicolon-separated list. For instance, if you want the profiler to monitor all
classes that begin with System., then remove the System.* pattern from the CLASSES listed
under [EXCLUDE]. If this is done, then the specification will be as shown below:

[EXCLUDE]

CLASSES=Microsoft.*;AsyncInvocationWithFilters.*;

4. Likewise, if only a sub-set of the excluded class patterns are to be included in the profiler's
monitoring scope, then use the CLASSES parameter in the [INCLUDE] section of the file. For
instance, of all classes of theSystem.* pattern, if you want only theSystem.Security classes to be
monitored, then, your specification in the [INCLUDE] section will be as follows:

Chapter 2: The eG .NET Business Transaction Moni tor (BTM)

34

[INCLUDE]

CLASSES=Microsoft.CRM.*;System.Security.*;

5. Additional class patterns or classes can be appended to the CLASSES list under [INCLUDE] by
separating each class pattern/class name by a semi-colon.

6. Finally, save the file.

2.8 Disabling/Uninstalling the eG .NET Profiler
To disable/uninstall the eG .NET Profiler, follow the steps below:

1. Login to the system hosting the eG .NET Profiler.

2. Go to the command prompt and switch to the <EG_INSTALL_DIR>\lib directory.

3. Issue the following command at the prompt to disable the profiler:

uninstall_Profiler.bat

4. Once the batch file successfully executes, the eG .NET Profiler will get uninstalled. However,
even after uninstallation, the .NET Profiler will continue to remain attached to the worker process
that first loaded the profiler. To detach the profiler from that worker process, run IISRESET at the
command prompt. Alternatively, wait till the worker process stops by itself.

Note:

If the eG agent on a profiled IIS web server is uninstalled, the eG .NET Profiler also gets
automatically uninstalled. Here again, the profiler will continue to be associated with the worker
process that originally loaded it. To detach the profiler from that worker process, you either have to
run IISRESET at the command prompt after uninstalling the eG agent, or wait till the worker process
stops by itself.

2.9 Performance Overhead of the eG .NET Business Transaction
Monitor
eG BTM leaves a very minimal resource footprint on the application it monitors. Typically, it adds a
meagre 2-5% to the application overhead.

Chapter 3: Troubleshooting

35

Chapter 3: Troubleshooting

This chapter provides tips for easily and effectively troubleshooting issues that may surface when
installing and/or working with the eG .NET Profiler.

3.1 Troubleshooting the Installation of the .NET Profiler
The profiler installation will fail under the following circumstances:

l The absence of VC++ Runtime on the host.

l The presence of multiple profiler GUIDs in the registry because of dirty installations of older
profilers;

l Issueswhen accessing the Registry key;

The errors that the batch file will throw in each of the above situations and how to resolve such errors
has been discussed below:

1. The absence of VC++ Runtime on the profiler host

In this case, you will see the following error when running theSetupDotNetProfiler.bat file:

ERROR: Pre-Requisite VC++ Runtime 2012 is not found

You then have to exit the profiler setup, install the VC++ Runtime 2012, and then begin the
profiler installation.

2. The presence of multiple profiler GUIDs in the registry because of dirty installations of
older profilers

In this case, the followingmessage will pop up when running the SetupDotNetProfiler.bat file:

There is another profiler found in registry

--

COR_PROFILER=<71DA0A04-7777-4EC6-9643-7D28B46A8A41>

--

Setup will then prompt you to confirmwhether you want to proceed with the installation or not.

Do you wish to continue setup <yes/no> : yes

Chapter 3: Troubleshooting

36

If you specify yes here, then setup will try to overwrite the GUID presently registered with the COR_
PROFILER registry key with the GUID of the eG Enterprise profiler. If the GUID is overwritten
successfully, then amessage to that effect will appear.

RegValues are modified Successfully ***

However, sometimes, if multiple GUIDs are registered with the COR_PROFILER registry key, then
setup may not be able to update the GUID. This can happen, if previously, many profiler installation
attempts failed on the host or if many profilers were not installed / uninstalled properly. In this case,
setup will automatically terminate with the following error message:

Multiple COR_PROFILER entries found in the Registry

Aborting the Setup

3. Issue when accessing the registry key

If setup is unable to access the COR_PROFILER registry key to write the eG profiler's GUID into it,
the following error message will appear. Setup will automatically abort soon after.

ERROR in Accessing the Registry Key : 0x5

Setup Aborted

This can happen if setup is run by a user without local administrator privileges. In this case therefore,
you will have to run setup again as a local administrator to ensure that it is successful.

3.2 Troubleshooting the Failure of the eG .NET Profiler to Profile
and Measure Performance of .NET Transactions
This section discusseswhat to do to resolve some common problems that youmay face when
working with the eG .NET Profiler.

1. What are the very basic checks that need to be done when .NET BTM test for a website (say,
SampleWebsite) is not reporting anymetrics?

l IP / Port cross-check – The IP and Port number of the “SampleWebsite” needs to be
cross-checked while adding a component.

Chapter 3: Troubleshooting

37

l Website Name in Test Config – The website name “SampleWebsite” (Case sensitive - as
in the IIS server) needs to be specified in test configuration page of “.NET Business
Transactions” Test.

l Successful execution of SetupDotNetProfiler.bat – Check if a “Setup Aborted” error
message appeared when the SetupDotnetProfiler.bat was executed.

l IISRESET – Check if the IISRESET command was run after successful execution of batch
file.

l Initiate requests for website – Ensure that the user hits the URL of the SampleWebsite.

l Enable IIS Management Scripting & Tools – Enable IIS Management scripts and
tools from theMicrosoft Windows features.

l Check for the existence of other Profiling tools – For this, follow the checks discussed
in response to question 2 of the Section Chapter 4 topic. If these checks reveal that some
other profiler pre-exists, you will have to uninstall that profiler for the eG .NET profiler to
work.

2. How to verify that the eG .NET BTM has been successfully installed?

You can check the System Environment Variables and Event Logs to verify whether/not the eG
.NET pofiler has been installed on a server.

Checking SystemEnvironment Variables

l Login to the system hosting the eG .NET BTM.

l Open Windows Explorer and go to the Computer or My Computer node therein, depending
upon the version of Windows in use. In someWindows versions, you can even type This PC
inSearch.

l Right-click on the relevant node and selectProperties.

Chapter 3: Troubleshooting

38

Figure 3.1: Selecting Properties option from shortcut menu

l Figure 3.2 will appear. Click onAdvanced Settings in Figure 3.2.

Figure 3.2: Clicking on Advanced Settings option

l Then Figure 3.3 appears. Under Advanced tab, click on theEnvironment Variables button.

Chapter 3: Troubleshooting

39

Figure 3.3: Clicking on the Environment Variables button

l In the list of Environment Variables that then appears, look for the COR_PROFILER and
COR_ENABLE_PROFILING variables.

Chapter 3: Troubleshooting

40

Figure 3.4: Checking the System Variables list for the COR_PROFILER and COR_ENABLE_
PROFILING variables

l If the COR_ PROFILER variable is set to the GUID, 947734AF- 7AE7- 41DD- BAE5-
5EA8E4AE89BB, and the COR_ENABLE_PROFILING variable is set to 1, it means that the
eG .NET profiler is installed on the server. If theCOR_PROFILER variable is set to a different
GUID, it means that some other third-party profiler is installed on the server.

Checking the Event Logs

l Open the Windows Event Viewer and check for “NET Runtime” information in Windows
Logs > Application.

l Look for amessage of the following format:

The profiler was loaded successfully. Profiler CLSID: '{<GUID_of_Profiler>}'

l If a message of the above format exists, and the <GUID_of_Profiler> that is displayed as
part of the message is 947734AF-7AE7-41DD-BAE5-5EA8E4AE89BB, it means that the
eG .NET profiler is installed on the server. On the other hand, if a different GUID is displayed
as part of themessage, it means that some other third-party profiler is installed on the server.

Chapter 3: Troubleshooting

41

3. How to verify whether the eG .NET BTM module is successfully attached to a worker process
(w3wp.exe)?

l If you are using a .NET Runtime version 2.0 (and above), then follow the steps below:

o Open the Windows Event Viewer and check for “NET Runtime” information in Windows
Logs > Application.

o If you find the followingmessage therein, it means that the attachment is successful.

The profiler was loaded successfully. Profiler CLSID: '{947734AF-7AE7-41DD-BAE5-
5EA8E4AE89BB}'

l If you are using a .NET Runtime version prior to v2.0, then follow the steps below:

o Download ProcessExplorer.exe and run in Administrator mode.

o PressCTRL+ F and search for eGCLRMonitor.

o Check if w3wp.exe of the web site’s application pool contains eG .NET BTM. If so, it
means that eG .NET BTM is successfully attached to the worker process.

4. What do I do if no messages are logged in .NetProfLogs or if the .NetProfLogs directory is
empty?

The eG .NET Profiler automatically creates log files in the .NetProfLogs directory, and logs
each operation it performs and its status in these log files.

If the .NetProflogs directory is empty or if no messages are logged in the log files in this
directory, it couldmean one/both of the following:

l The BTM module has not loaded properly: To check this, follow the steps detailed in the
response to question 3 above.

l The <EG_ INSTALL_DIR> cannot be accessed by Authenticated Users: Check
whether Authenticated Users are allowed access to the <EG_INSTALL_DIR> that contains
the .NetProfLogs directory. For that, do the following:

o First, navigate to the <EG_INSTALL_DIR> inWindowsExplorer.

o Then, right-click on the <EG_INSTALL_DIR>, and selectProperties.

o In theProperties dialog box that then appears, click theSecurity tab page.

o Check for the Authenticated Users group in the Group or user names list in the

Chapter 3: Troubleshooting

42

Security tab page.

Figure 3.5: Checking whether/not the 'Authenticated Users ' group is listed in the Group or User
names list

o If you do not find that group name in the Group or User names list, it means that the
authenticated users cannot access the <EG_INSTALL_DIR> or its sub-directories. In this
case, make sure that the Authenticated Users are allowed read/write access to the <EG_
INSTALL_DIR>.

5. What do I do to save web application when the web site crashes / throws ERROR in web page,
after .NET BTM is setup?

l First, open <EG_ INSTALL_ DIR>\agent\config\eg_ DotnetServer.ini file and change
INSTRUMENTATION_LEVEL to ‘2’. Then, run the IISRESET command.

Chapter 3: Troubleshooting

43

l If the web site crashes even after the instrumentation level is changed, then run the
uninstall_Profiler.bat in the <EG_INSTALL_DIR>\lib directory to uninstall the profiler.
Once the profiler is uninstalled, run the IISRESET command

l If the web site crashes even after the profiler is uninstalled, please contact the eG
development team.

6. How can I check if .NET BTMmodule is sending data to eGagent?

Open the AgentComm.log file (in the <EG_ INSTALL_ DIR>\agent\logs\.NetProfLogs
directory) and do the following:

l Check for the followingmessage in log file:

“[ERROR] unable to Connect with server 10061”

If themessage is found, it indicates that the test has not started.

l Check for the followingmessage in log file:

“REQSWAPPED - 1 & REQSENT: 0 “

If the message is found, it indicates that the request was filtered/discarded, since the request
does not pertain to the web site beingmonitored.

7. What if .Net BTM could not capture the requests even after all basic checks were performed
and passed?

Open the AgentComm.log file (in the <EG_ INSTALL_ DIR>\agent\logs\.NetProfLogs
directory) and check if REQ_SWAPPED is ‘0’ for the w3wp.exe Process ID of the web site
being monitored, even after the user hits the URL of the web site. If so, it indicates that the
requests were not captured. Typically, requests to the following page types will not be
captured:

l Pure HTML pages

l Pure ASP pages

l Pageswith any other extensions

This is because, the eG .NET BTM can trace the path of requests to only .NET web
applications.

Please contact the development team if the problem persists.

Chapter 3: Troubleshooting

44

8. I have installed the eG .NET Profiler on a Microsoft Sharepoint portal, but it is not working.
What do I do?

Loader optimization assemblies in Sharepoint can interfere with profiler operations. If these
assemblies are not disabled before you install the profiler, the profiler may not be able to profile
transactions or measure their performance. Therefore, its imperative that you disable the
loader optimization assemblies before BTM-enabling a Sharepoint portal/site. To achieve this,
follow the steps below:

l First, go to the Registry Editor (regedit).

l Under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework, create a new
DWORD "LoaderOptimization" with value 1.

l Then, under HKEY_ LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework\, create a new
DWORD "LoaderOptimization" with value 1.

These configurations disable loader optimization assemblies, which may interfere with
profiler operations.

l Finally, restart the IIS web server.

Chapter 4: Frequently Asked Questions (FAQ)

45

Chapter 4: Frequently AskedQuestions (FAQ)

This chapter topic provides answers to some of the frequently asked questions related to the eG
.NET Profiler.

1. What entries are written in registry during Profiler Setup?

l The profiler related values are written to the “Environment” key in the following locations:

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WAS

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC

l The “Environment” key should have the following values in it:

COR_PROFILER={947734AF-7AE7-41DD-BAE5-5EA8E4AE89BB} --> eG .NET BTM
Module’s GUID

COR_ENABLE_PROFILING=1

2. How to confirm that no profiler is installed on the server?

Any profiler that is installed on a server leaves a footprint in one/more of the following locations:

l TheWindowsRegistry

l The SystemEnvironment Variables

l TheWindowsEvent Logs

You will have to check each of these locations to determine whether/not any profiler has been
installed on the server.

Checking theWindowsRegistry

l Login to the systemwhere the eG .NET BTM is installed.

l Look for COR_PROFILER and COR_ENABLE_PROFILING entries in the “Environment”
key in the following registry locations:

Chapter 4: Frequently Asked Questions (FAQ)

46

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WAS

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC

l If no such entries are present, then it means that no profiler is installed on the server
machine.

Checking System Environment Variables

l Open Windows Explorer and go to the Computer or My Computer node therein, depending
upon the version of Windows in use. In someWindows versions, you can even type This PC
inSearch.

l Right-click on the relevant node and selectProperties.

Figure 4.1: Selecting Properties option from shortcut menu

l Figure 4.2 will appear. Click onAdvanced Settings in Figure 4.2.

Chapter 4: Frequently Asked Questions (FAQ)

47

Figure 4.2: Clicking on Advanced Settings option

l Then Figure 4.3 appears. Under Advanced tab, click on theEnvironment Variables button.

Figure 4.3: Clicking on the Environment Variables button

Chapter 4: Frequently Asked Questions (FAQ)

48

l In the list of Environment Variables that then appears, look for the COR_PROFILER and
COR_ENABLE_PROFILING variables.

Figure 4.4: Checking the System Variables list for the COR_PROFILER and COR_ENABLE_
PROFILING variables

l If you do not find the COR_PROFILER and COR_ENABLE_PROFILING variables displayed
therein, it means that no profiler is installed on the server.

Checking the Event Logs

l Open the Windows Event Viewer and check for “NET Runtime” information in Windows
Logs > Application.

If you find the following message therein, it means that a profiler exists. If you do not find this
message, it means that no profiler exists.

The profiler was loaded successfully. Profiler CLSID: ' {947734AF-7AE7-41DD-BAE5-
5EA8E4AE89BB}'

3. Which VC++ runtime is required for profiler dlls?

Chapter 4: Frequently Asked Questions (FAQ)

49

VC++ redistributable for Visual Studio 2012 Runtime (64bit or 32 bit) needs to be installed for
profiler to run.

4. What are the Healthy transactions and how tomonitor them?

Transactions with a response time that is less than the slow threshold (4000 ms) are
considered as healthy transactions. Tracking of such transactions is disabled by default in the
test configuration page of the .NET Transactions test. If you want such transactions to be
monitored, then set the Healthy URL Trace flag of the .NET Transactions test to Yes.

5. Can eGmonitor .NET client applications?

No - .NET BTM is currently supported for web applications developed using .NET only.

6. How to remove the BTMModule after the agent is uninstalled from themachine?

Run uninstall_Profiler.bat from the <EG_ INSTALL_DIR>\lib directory to uninstall the
profiler. Then, run the IISRESET command to remove the BTMModule.

7. What happens if the agent is stopped and the BTMModule is running?

The .NET BTM continues to collect metrics for transactions that occur after the agent is
stopped. However, suchmetrics will be discarded once the transactions end.

8. What should I do if the web server is running on load balancer mode?

.NET BTMmodule must not be installed on the load balancer machine. The BTMmodule must
be set up on the server where the web site is deployed and running.

9. What should I do for monitoring a transaction which spans both java and .NET web apps?

BTM must be enabled for both the Java and .NET web apps to trace the complete path of the
transaction.

10. How to identify whether the web server is using .NET CORE for runtime?

Check if BTM module is attached to the worker. Then, check if there is a process named
“dotnet.exe”. If it exists, then it means that the web server is using .NET CORE. For additional
confirmation, cross-checkwith the customer.

11. How can I fetch the User Name and BusinessContext for the transactions?

Chapter 4: Frequently Asked Questions (FAQ)

50

There are four methods to fetch Username and Business Context. Refer to the Configuring
User Name and BusinessContext topic for more details.

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	Chapter 2: The eG .NET Business Transaction Monitor (BTM)
	2.1 How does the eG .NET BTM Work?
	2.2 How Does the .NET Profiler Communicate with the eG Agent?
	2.3 Pre-requisites for .NET Business Transaction Monitoring
	2.4 Installing and Configuring the .NET Profiler on an IIS Web Server
	2.5 Installing and Configuring the .NET Profiler for Microsoft SharePoint Running as a Service Inside IIS
	2.6 .NET Business Transactions Test
	2.7 Detailed Diagnostics
	2.7.1 Detailed Diagnostics Revealing that Slow .Net Processing is the Reason for Transaction Slowness

	2.8 Disabling/Uninstalling the eG .NET Profiler
	2.9 Performance Overhead of the eG .NET Business Transaction Monitor

	Chapter 3: Troubleshooting
	3.1 Troubleshooting the Installation of the .NET Profiler
	3.2 Troubleshooting the Failure of the eG .NET Profiler to Profile and Measure Performance of .NET Transactions

	Chapter 4: Frequently Asked Questions (FAQ)
	About eG Innovations

