P
%
)”.ff
&
\)///’]
.)00

Oct

Jul Aug Sep

Monitoring Voyager FrontEnd

eG Innovations Product Documentation

e

Total Performance Visibility

www.eginnovations.com

Table of Contents

CHAPTER 1: INTRODU CTION i 1
CHAPTER 2: HOW TO MONITOR VOYAGER FRONTEND USINGEG ENTERPRISE? 3
2.1 Managing the Voyager FrontEnd 3
CHAPTER 3: MONITORING THE VOYAGER FRONT END (FE) 4
3.1 The ASP .Net CORE Layer ... 4
3.1.1 ASP NetWorkers Test . 5
3.2The ASP .Net CLR Layer il 8
3.2.1 ASP Lock Thread Test e 9
3.2.2 ASP .Net CLR Exceptions Test 10
3.2.3 ASP .Net CLR GC TSt ...ttt e e e e 11
3.2.4 ASP CLR Load Test _ .. il 12
3.2.5 Clr Lock ThreadsTest e e 15
3.2.6 Clr SecuUrity Test ...t e 16
3.2.7 ASP Net CLR JIT Test 17

3.3 The ASP INet Apps Layer ... o L 19
3.3.1 ASP Net App Cache Test _ . e e e 20
3.3.2 ASP .Net App Compile Test 21
3.3.3 ASP .Net App Requests Test 23
3.3.4 ASP INet App Test 24
3.3.5 ASP Sql Clients Test ... 25
3.3.6 ASP .Net Sessions Test 26

3.4 The Voyager Service Layer . il 28
34 Voyager Ul Test oo 28
ABOUT EGINNOV ATIONS 30

Table of Figures

Figure 1.1: The topology of Voyager il 2
Figure 2.1: Figure 2.1: Adding a Voyager FrontEnd component 3
Figure 3.1: The layer model of the Voyager Front End component 4
Figure 3.2: The tests associated with the ASP Net CORE Layer 5
Figure 3.3: The tests associated with the ASP Net CLR layer 8
Figure 3.4: The tests associated with the ASP .Net Apps layer e 20
Figure 3.5: The test associated with the Voyager Service layer i, 28

Chapter 1: Introduction

Chapter 1: Introduction

The advent of Internet technologies has probably had the most radical change in the banking and
finance sector. Consumers and businesses alike can now perform transactions with banks on-line.
Real-time payment and credit processing are now the norm.

Corillian, Inc.'s Voyager platform offers a secure, flexible, scalable set of Internet banking solutions
for financial institutions. Voyager is a single platform that supports multiple lines of business -
Consumer banking, Small Business Banking, Wealth Management, Credit Card Management, and
Corporate Cash Management. Besides supporting all of Corillian's Line of Business Solutions and
Enterprise Applications, Voyager also offers a quick and easy way to integrate the Corillian
applications with third party and legacy applications.

To provide scalability, improved security, and enhanced performance, most Internet platforms are
designed to include a number of tiers of applications. Corillian Voyager is no different. A web server
front-end handles all user requests, while a Voyager Load Balancer (VLB) software on the web
front-end serves to balance the load across all the servers in the farm. Along with the Transaction
Processor (TP), the VLB handles session creation and management. Microsoft COM serves as the
transport medium between the VLB and the TP. The Voyager TP processes customer requests
received from the web server. Authentication and authorization of users is handled by the
Authentication server (ATC) which is an integral part of the TP. Another component of the TP, the
Voyager Response Engine interacts with the repositories to retrieve customer-specific data and
providing responses back in XML format to the web front-end. The TP also includes a VLOG service
which generates a comprehensive log of all customer operations. All log information as well as
customer- specific data repositories are maintained in Microsoft SQL database. Some of the
operations performed by Voyager involve interaction with third party hosts of the financial institution.
The Host Servers handle these operations. The host servers are mainly responsible for
communicating with the client systems and converting data from these systems into the Voyager
format.

Figure 1.1 depicts the topology of the Voyager application.

Chapter 1: Introduction

|_ Component Topology

| ®

&8

al_rowter ch_firewallld is_webB2 B0 yg_ui?
s

L

) =
irs_sweb@0; B0 yib_2 vg_tpld ms_sql53:1433
&
\,

4 O

Figure 1.1: The topology of Voyager

The eG Enterprise system treats each component as a separate server and extracts critical
performance statistics from them. This document deals with each of the components in great detail.

Chapter 2: How to Monitor Voyager FrontEnd using eG Enterprise?

Chapter 2: How to Monitor Voyager FrontEnd using eG
Enterprise?

eG is capable of monitoring the Voyager FrontEnd in both agent based and agentless manners.

2.1 Managing the Voyager FrontEnd

The eG Enterprise cannot automatically discover the Voyager FrontEnd so that you need to
manually add the component for monitoring. Remember that the eG Enterprise automatically
manages the components that are added manually. To manage a Voyager FrontEnd component, do
the following:

1. Loginto the eG administrative interface.

2. Follow the Components -> Add/Modify menu sequence in the Infrastructure tile of the Admin
menu.

3. Inthe COMPONENT page that appears next, select Voyager FrontEnd as the Component type.
Then, click the Add New Component button. This will invoke Figure 2.1.

COMPONENT BACK

@ This page enables the administrator to provide the details of new component

Category Component type
All v Voyager FrontEnd v

Component information

Host IP/Name 192.168.10.1

Nick name voyafrong

Port number NULL

Monitoring approach

Agentless
Internal agent assignment Auto Manual

ext_8.137
External agents Rem_8.164

Rem_8. 64

Figure 2.1: Figure 2.1: Adding a Voyager FrontEnd component

3. Specify the Host IP/Name and the Nick name of the Voyager FrontEnd in Chapter 2. Then,
click the Add button to register the changes.

4. Then, sign out of the eG administrative interface.

Chapter 3: Monitoring the Voyager Front End (FE)

Chapter 3: Monitoring the Voyager Front End (FE)

eG Enterprise uses the Voyager FrontEnd hierarchical model (see Figure 3.1) to represent the front
end of the Voyager application.

ﬂ'l ‘oyager Service r =
[+ 31 ASP .Met Apps -

%.‘1 ASP Met CLR r

ﬁj AE5P MNet CORE

ﬂj liteh Server

ﬁj Windows Sarvice r

& Application Processes I

ﬂ'l Teo I

B‘I MNetwork

u‘| Operating System

Figure 3.1: The layer model of the VVoyager Front End component

Of the top 4 layers in Figure 3.1, the last 3 layers execute tests that extract .NET-specific statistics.
The first layer — i.e., the Voyager Service layer- is the one that reports Voyager presentation layer
metrics. The sections to come discuss the top 4 layers of Figure 3.1 only, as all other layers have
been dealt with in the Monitoring Unix and Windows Servers document.

3.1 The ASP .Net CORE Layer

The test mapped to this layer (see Figure 3.3) monitors the performance of the worker process of the
ASP .NET objects.

Chapter 3: Monitoring the Voyager Front End (FE)

ASP .Net CORE search @ = Al

B aspuetworker

Figure 3.2: The tests associated with the ASP .Net CORE Layer

3.1.1 ASP .Net Workers Test

This reports statistics pertaining to the performance of the worker process of the ASP .NET objects
in the Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description ﬂiiatsurement Interpretation
Application restarts | The number of application | Number In a perfect world, the application
restarts. domain will and should survive for the

life of the process. Even if a single
restart occurs, it is a cause for concemn
because proactive and reactive

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement
Unit

Measurement Description

Interpretation

restarts cause automatic recycling of
the worker process. Moreover, restarts
warrant recreation of the application
domain and recompilation of the
pages, both of which consume a lot of
time. To investigate the reasons for a
restart, check the values set in the
processModel configuration.

Applications running | The number of Number
applications currently
running.

Requests current The number of requests Number
currently handled by the

ASP.NET ISAPI. This
includes those that are
queued , executing, or
waiting to be written to the
client.

Request execution | The number of seconds Number In version 1.0 of the framework, the
time taken to execute the last execution time begins when the worker
request. process receives the request, and stop
when the ASP.NET ISAPI sends
HSE_REQ_DONE_WITH_SESSION
to lIS. In version 1.1 of the framework,
execution begins when the
HttpContext for the request is created,
and stop before the response is sent to
11S. The value of this measure should
be stable. Any sudden change from the
previous recorded values should be
notified.

Requests queued The number of requests Number When running on 11S 5.0, there is a
currently queued. queue between inetinfo and aspnet_
wp, and there is one queue for each
virtual directory. When running on |IS
6.0, there is a queue where requests
are posted to the managed ThreadPool

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Description

Measurement
Unit

Interpretation

from native code, and a queue for each
virtual directory. This counter includes
requests in all queues. The queue
between inetinfo and aspnet_wp is a
named pipe through which the request
is sent from one process to the other.
The number of requests in this queue
increases if there is a shortage of
available I/O threads in the aspnet_wp
process. On IS 6.0 it increases when
there are incoming requests and a
shortage of worker threads.

processes

Requests rejected The number of rejected Number Requests are rejected when one of the
requests queue limits is exceeded. An
excessive value of this measure hence
indicates that the worker process is
unable to process the requests due to
overwhelming load or low memory in
the processor.
Requests wait time | The number of seconds Secs
that the most recent
request spent waiting in
the queue, or named pipe
that exists between
inetinfo and aspnet_wp.
This does not include any
time spent waiting in the
application queues.
Worker processes The current number of Number Every application executing on the
running aspnet_wp worker .NET server corresponds to a worker

process. Sometimes, during active or
proactive recycling, a new worker
process and the worker process that is
being replaced may coexist. Under
such circumstances, a single
application might have multiple worker
processes executing for it. Therefore,
if the value of this measure is not the

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Description

Measurement

Unit Interpretation

same as that of Applications running,
then it calls for closer examination of
the reasons behind the occurence.

Worker process
restarts

The number of aspnet_wp
process restarts in the
machine

Number Process restarts are expensive and
undesirable. The values of this metric
are dependent upon the process model
configuration settings, as well as
unforeseen access violations, memory
leaks, and deadlocks.

3.2 The ASP .Net CLR Layer

The tests associated with this layer (see Figure 3.3) monitor the following:

« Managed locks and threads

» Exceptions that occur in the CLR

« Garbage collection activity

« Thelocking activity

« the security system activity

« JIT compilation

'F@ ASP .NetCLR

M+ Aspclrioad

W wawp
#splockThread
B AspNetCirException

W w3iwp
B~ AsphletCirGe

B w3wp
Aspletcirit
ClrLockThread
Clrsecurity

P —) =

Figure 3.3: The tests associated with the ASP .Net CLR layer

Chapter 3: Monitoring the Voyager Front End (FE)

3.2.1 ASP Lock Thread Test

This test provides information about managed locks and threads that an application uses.
Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description gﬁﬁsurement Interpretation
Current logical The number of current Number
threads managed thread objects in

the application. This
measure maintains the
count of both running and

stopped threads.
Current physical The number of native Number
threads operating system threads

created and owned by the
common language runtime
to act as underlying threads
for managed thread
objects. This measure
does not include the
threads used by the
runtime in its internal
operations.

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Measurement Description Unit

Interpretation

Current recognized | The number of threads that | Number
threads are currently recognized by
the runtime. These threads
are associated with a
corresponding managed
thread object.

Contention rate The rate at which threads in | Rate/Sec
the runtime attempt to
acquire a managed lock
unsuccessfully.

Current queue length | The total number of threads | Number
that are currently waiting to
acquire a managed lock in
the application.

3.2.2 ASP .Net CLR Exceptions Test

This test reports statistics related to the exceptions that occur in the CLR due to managed and
unmanaged exceptions.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface being monitored.

Configurable parameters for the test

Parameter Description
Test Period How often should the test be executed.
Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

10

Chapter 3: Monitoring the Voyager Front End (FE)

Measurements made by the test

Measurement Description m(:ia;surement Interpretation

Clr exceptions The total number of Exceptions/Sec | Exceptions are very costly and can
managed exceptions severely degrade your application
thrown per second. performance. A high value of this

measure is therefore an indicator of
potential performance issues.

3.2.3 ASP .Net CLR GC Test

This test monitors the memory allocation activity of the ASP .NET objects in the Voyager user
interface, in terms of heaps when objects are created and managed.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

Heap memory usage | The number of bytes MB
committed by managed
objects. This is the sum of
the large object heap and
the generation 0, 1, and 2
heaps.

11

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Description

Measurement
Unit

Interpretation

Gen 0 collections

The rate at which the
generation 0 objects
(youngest; most recently
allocated) are garbage
collected (Gen 0 GC)
since the start of the
application.

Collections/Sec

Gen 1 collections

The rate at which the
generation 1 objects have
been garbage collected
since the start of the
application. Objects that
survive are promoted to
generation 2.

Collections/Sec

Gen 2 collections The number of seconds Number The number of times generation 2
taken to execute the last objects have been garbage collected
request. since the start of the application.

Generation 2 is the highest, thus
objects that survive collection remain
in generation 2. Gen 2 collections can
be very expensive, especially if the
size of the Gen 2 heap is huge.

Timeingc % Time in GC is the Percent This measure is usually an indicator of
percentage of elapsed the work done by the Garbage
time that was spent in Collector on behalf of the application
performing a garbage to collect and conserve memory. This
collection (GC) since the measure is updated only at the end of
last GC cycle. every GC and the measure reflects the

last observed value; its not an
average.
3.2.4 ASP CLR Load Test

This test monitors the classes and assemblies loaded on to an ASP .Net application. A class is
essentially the blueprint for an object. It contains the definition for how a particular object will be
instantiated at runtime, such as the properties and methods that will be exposed publicly by the
object and any internal storage structures.

12

Chapter 3: Monitoring the Voyager Front End (FE)

Also known as Managed DLLs, assemblies are the fundamental unit of deployment for the .NET
platform. The .NET Framework itself is made up of a number of assembilies, including mscorlib.dll,
among others. The assembly boundary is also where versioning and security are applied. An
assembly contains Intermediate Language generated by a specific language compiler, an assembly
manifest (containing information about the assembly), type metadata, and resources.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description m(:iatsurement Interpretation

Classes loaded The number of classes Number An unusually high value may indicate
currently loaded in all a sudden increase in classes which
assemblies. loaded on to this .NET application.

Current assemblies | The rate at which Assembles/Sec | If the Assembly is loaded as domain-
Assemblies were loaded neutral from multiple AppDomains
across all AppDomains. then this counter is incremented once

only. Assemblies can be loaded as
domain-neutral when their code can be
shared by all AppDomains or they can
be loaded as domain-specific when
their code is private to the
AppDomain. This counteris not an
average over time; it displays the
difference between the values
observed in the last two samples
divided by the duration of the sample

13

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Description

Measurement
Unit

Interpretation

interval.

Rate of classes
loaded

This rate at which the
classes loaded in all
Assemblies.

Classes/Sec

This counter is not an average over
time; it displays the difference
between the values observed in the
last two samples divided by the
duration of the sample interval.

Rate of load failures

The rate of load failures on
the application.

Failures/Sec

This counter is not an average over
time; it displays the difference
between the values observed in the
last two samples divided by the
duration of the sample interval. These
load failures could be due to many
reasons like inadequate security or
illegal format.

Current appdomains | The number of Number AppDomains (application domains)
AppDomains currently provide a secure and versatile unit of
loaded in this application. processing that the CLR can use to

provide isolation between applications
running in the same process.

Current assemblies | The number of assemblies | Number If the Assembly is loaded as domain-
currently loaded across all neutral from multiple AppDomains
AppDomains in this then this counter is incremented once
application. only. Assemblies can be loaded as

domain-neutral when their code can be
shared by all AppDomains or they can
be loaded as domain-specific when
their code is private to the
AppDomain.

Loader heap size The size of the memory MB Committed memory is the physical
committed by the class memory for which space has been
loader across all reserved on the disk paging file.
AppDomains.

Load failures The number of classes Number These load failures could be due to
that have failed to load many reasons like inadequate security
during the last or illegal format.
measurement period,

Appdomains loaded | The number of Number

14

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement

Measurement Description Unit

Interpretation

AppDomains loaded during
the last measurement
period.

Number of The number of assemblies | Number
assemblies loaded during the last

measurement period.

3.2.5 CIr Lock ThreadsTest

This test monitors the thread locking activity on the ASP .NET objects in the Voyager user interface.
Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

Queue lengthrate | Indicates the rate at Threads/Sec
which threads are waiting
to acquire some lock in
the application.

Recognized threads | Indicates the number of | Threads/Sec | The recognized threads have a

rate threads per second that corresponding .NET thread object

have been recognized by associated with them. These threads are
the CLR.

15

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement
Unit

Measurement Description

Interpretation

not created by the CLR; they are created
outside the CLR but have since run inside
the CLR at least once. Only unique
threads are tracked; threads with the
same thread ID re-entering the CLR or
recreated after thread exit are not counted

twice.

Queue length peak | Indicates the total Number A high turnover rate indicates that items
number of threads that are being quickly added and removed,
waited to acquire some which can be expensive.
managed lock during the
last measurement period.

Recognized threads | Indicates the total Number The recognized threads have a
number of threads that corresponding .NET thread object
have been recognized by associated with them. These threads are
the CLR during the last not created by the CLR; they are created
measurement period. outside the CLR but have since run inside

the CLR at least once. Only unique
threads are tracked; threads with the
same thread ID re-entering the CLR or
recreated after thread exit are not counted

twice.

Contention threads | Indicates the total Number Managed locks can be acquired in many
number of times threads ways; by the lock statement in C# or by
inthe CLR have calling System.Monitor.Enter or by using
attempted to acquire a MethodImplOptions.Synchronized
managed lock custom attribute.

unsuccessfully.

3.2.6 ClIr Security Test
This test monitors the security system activity of the ASP .NET objects in the Voyager user interface.
Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : Aninternal agent

16

Chapter 3: Monitoring the Voyager Front End (FE)

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description Il\jllﬁiatsurement Interpretation

Time in runtime Indicates the percentage of | Percent If this counter is high, revisit what is

checks elapsed time spent in being checked and how often. The
performing runtime Code application may be executing
Access Security (CAS) unnecessary stack walk depths.
checks during the last Another cause for a high percentage of
measurement period. time spent in runtime checks could be

numerous linktime checks.

Stack walk depth Indicates the depth of the | Number
stack during that last
measurement period.

Link time checks Indicates the total number | Number The value displayed is not indicative of
of linktime Code Access serious performance issues, but it is
Security (CAS) checks indicative of the health of the security
during the last system activity.
measurement period.

Runtime checks Indicates the total number | Number A high number for the total runtime
of runtime CAS checks checks along with a high stack walk
performed during the last depth indicates performance
measurement period. overhead.

3.2.7 ASP .Net CLR JIT Test

The CLR (Common Language Runtime) is the execution environment for code written for the .NET
Framework. The CLR manages the execution of .NET code, including memory allocation and

17

Chapter 3: Monitoring the Voyager Front End (FE)

garbage collection (which helps avoid memory leaks), security (including applying differing trust
levels to code from different sources), thread management, enforcing type-safety, and many other
tasks.

The CLR works with every language available for the .NET Framework, so there is no need to have
a separate runtime for each language. Code developed in a .NET language is compiled by the
individual language compiler (such as the Visual Basic .NET compiler) into an intermediate format
called Intermediate Language (IL). At runtime, this IL code generated by the compiler is just-in-time
(JIT) compiled by the CLR into native code for the processor type the CLR is running on.

This test monitors the JIT compilation performed by the CLR. This compilation provides the flexibility
of being able to develop with multiple languages and target multiple processor types while still
retaining the performance of native code at execution time.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

ASP .Net—-Timein |Indicates the percentage of | Percent
JIT elapsed time spent in JIT
compilation; a JIT
compilation phase is the
phase when a method and
its dependencies are being
compiled..

ASP .Net —Data JIT |Indicates the rate at which | KB/Sec

18

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement Description gziatsurement Interpretation
rate IL bytes are jitted.
ASP .Net—JIT Indicates the number of Number An unusually high value may indicate
failures methods the JIT compiler a sudden increase in jit failures
has failed to JIT during the occured in the application.

last measurement period.

ASP .Net—Data Indicates the total IL bytes | KB/Sec

jitted jitted during the last
measurement period.

ASP .Net —Methods | Indicates the methods Number AppDomains (application domains)

jitted compiled Just-In-Time provide a secure and versatile unit of
(JIT) by the CLR JIT processing that the CLR can use to
compiler during the last provide isolation between applications
measurement period. running in the same process.

3.3 The ASP .Net Apps Layer

The tests associated with this layer (see Figure 3.4) monitor the following:

The application cache

How well the appdomains perform during compilation

« How well the appdomains handle requests

« Performance of the applications deployed on the ASP .Net objects of the Voyager FrontEnd

Client connections to the ASP.Net objects of the Voyager FrontEnd

Sessions to the ASP .Net objects of the Voyager FrontEnd

19

Chapter 3: Monitoring the Voyager Front End (FE)

'F@ asp .Net apps Search 2] 7w |

E+ AspietippCache
B LM_W3SVYC_1_Root_MSPetshop
B LM_w3sve_L_root_STOREVE

u

i+ AcpletappCompile u
B LM_W3SWC_1 Root MSPetShop
B LM_w3swe 1_root STOREVE

B+ AspNetippRequest 5]

B LM_W3SWC_1_Root_MEPetShop

B LM_wisve 1_root STOREVE

Aszphetipp

AsphetSession

AspSqlclient

Figure 3.4: The tests associated with the ASP .Net Apps layer
3.3.1 ASP .Net App Cache Test
This test monitors the performance of the ASP.NET Application (or Application Domain) Cache.
Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for every ASP .NET application/application domain cache
on a monitored Voyager user interface.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

Cache total entries | The current number of Number
entries in the cache (both
User and Internal).

20

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement Description l\Jnﬁ?tsurement Interpretation

Cache hit ratio The current hit-to-miss Percent Physical I/0 takes a significant
ratio of all cache requests amount of time, and also increases the
(both user and internal). CPU resources required. The server

configuration should therefore ensure
that the required information is
available on the memory. A low value
of this measure indicates that physical
I/Ois greater.

Cache tumoverrate | The number of additions Cached/Sec A high turnover rate indicates that

and removals to the cache items are being quickly added and
per second (both user and removed, which can be expensive.
internal).

Cache api entries The number of entries Number

currently in the user cache.

Cache user hit ratio | Total hit-to-miss ratio of Percent A high value of this measure is
user cache requests. indicative of the good health of the
server.

Cache user turnover | The number of additions Cached/Sec A high turnover rate indicates that

rate and removals to the user items are being quickly added and
cache per second. removed, which can be expensive.
Output cache entries | The number of entries Number
currently in the Output
Cache.
Output cache hit ratio | The total hit-to-miss ratio | Percent A high value of this measure is a sign
of Output Cache requests of good health.
Output cache The number of additions Cached/Sec Sudden increases in the value of this
turnover rate and removals to the output measure are indicative of backend
cache per second latency.

3.3.2 ASP .Net App Compile Test

This test reports how well the AppDomains perform during the compilation of the aspx, asmx, ascx
or ashx files, loading of assemblies, and execution of assemblies to generate the page.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : Aninternal agent

21

Chapter 3: Monitoring the Voyager Front End (FE)

Outputs of the test : One set of results for every ASP .NET application domain on a monitored
Voyager user interface.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

Compilation total The total number of Number
compilations that have
taken place during the
lifetime of the current Web
server process. This
occurs when a file with a
.aspx, .asmx, asax,.ascx,
or .ashx extension or
code-behind source files
are dynamically compiled

on the server.

Preprocessing errors | The rate at which Errors/Sec A consistent increase in the value of
configuration and parsing this measure could prove to be fatal for
errors occur. the application domain.

Compilation errors The rate at which Errors/Sec

compilation errors occur.
The response is cached,
and this counter
increments only once until
recompilation is forced by

afile change.
Runtime errors The rate at which run-time | Errors/Sec

errors occur.
Unhandled runtime | The rate of unhandled Errors/Sec A consistent increase in the value of
errors runtime exceptions.

22

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement
Unit

Measurement Description

Interpretation

this measure could prove to be fatal for
the application domain. This measure
however, does not include the
following:
« Errors cleared by an event
handler (for example, by Page

Error or Application_Error)

« Errors handled by a redirect

page

« Errors that occur within a

try/catch block

3.3.3 ASP .Net App Requests Test

This test monitors how well the application domain handles requests.
Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for every ASP .NET application domain on a monitored
Voyager user interface.

Configurable parameters for the test

Parameter Description
Test Period How often should the test be executed.
Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

23

Chapter 3: Monitoring the Voyager Front End (FE)

Measurements made by the test

Measurement Description ﬁ::?tsurement Interpretation
Requests executing | The number of requests Number This measure is incremented when the
currently executing. HttpRuntime begins to process the

request and is decremented after the
HttpRuntime finishes the request.

Requests app queue | The number of requests Number
currently in the application
request queue.

Requests not found | The number of requests Number
that did not find the
required resource.

Requests not The number of request Number Values greater than 0 indicate that
authorized failed due to unauthorized proper authorization has not been
access. provided, or invalid authors are trying

to access a particular resource.

Requests timed out | The number of requests Number
timed out.

Requests succeeded | The rate at which requests | Requests/Sec
succeeded

3.3.4 ASP .Net App Test

This test reports key statistics pertaining to applications deployed on the ASP .NET objects in the
Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Chapter 3: Monitoring the Voyager Front End (FE)

Parameter Description
Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement

Description

Measurement
Unit

Interpretation

Request rate Indicates the number of Number This represents the current throughput
requests executed per of the application.
second.

Pipeline instances Indicates the number of Number Since only one execution thread can
active pipeline instances run within a pipeline instance, this
forthe ASP.NET number gives the maximum number of
application. concurrent requests that are being

processed for a given application.
Ideally, the value of this measure
should be low.

Number of errors Indicates the total sum of | Number This measure should be kept at O ora
all errors that occur during very low value.
the execution of HTTP
requests.

3.3.5 ASP Sql Clients Test

This test reports metrics pertaining to client connections to the ASP .NET objects in the Voyager
user interface.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

25

Chapter 3: Monitoring the Voyager Front End (FE)

Parameter Description
Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description xﬁﬁsurement Interpretation
Number of Indicates the number of Number If the connection pool maxes out while
connection pools connection pools that have new connection requests are still
been created. coming in, you willl see connection
requests refused, apparently at
random. The cure in this case is
simply to specify a higher value for the
Max Pool Size property.
Number of Indicates the number of Number
connections connections currently in
the pool.
Pooled connections | Indicates the number of Number
connections that have
been pooled.
Pooled connections | Indicates the highest Number If the value of this measure is at the
peak number of connections Max Pool Size value, and the value of
that have been used. the Failed connects measure
increases while the application is
running, you might have to consider
increasing the size of the connection
pool.
Failed connects Indicates the number of Number If the connection pool maxes out while
connection attempts that new connection requests are still
have failed. coming in, you will see connection
requests refused, apparently at
random. The cure in this case is
simply to specify a higher value for the
Max Pool Size property.

3.3.6 ASP .Net Sessions Test

This test monitors the sessions on the ASP .NET server.

26

Chapter 3: Monitoring the Voyager Front End (FE)

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : Aninternal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface

being monitored.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement

Description

Measurement
Unit

Interpretation

application sessions

of sessions during the last
measurement period.

SQL connections Indicates the number of Number An unusually high value may indicate
connections to the SQL a sudden increase in sessions to the
Server used by session SQL Server.
state.
State server Indicates the number of Number An unusually high value may indicate
connections connections to the a sudden increase in sessions to the
StateServer used by StateServer.
session state.
Abandoned ASPNet | Indicates the number of Number
application sessions | sessions that have been
explicitly abandoned during
the last measurement
period.
Active ASPNet Indicates the currently Number
application sessions | active sessions.
Timedout ASPNet Indicates the number of Number
application sessions | sessions that timed out
during the last
measurement period.
Total ASPNet Indicates the total number | Number

27

Chapter 3: Monitoring the Voyager Front End (FE)

3.4 The Voyager Service Layer

This layer reports the presentation server statistics of the Voyager FrontEnd.

[

Yoyager Service s::ml:lo ¥ a1
B~ CinTrace
m corillian.platform . router
i+ vibDatabases 1|
| dlihost g xe-celogging
| dlihost gxe-voyager
Wik

Woyagerll

Figure 3.5: The test associated with the Voyager Service layer

Since the VIbTest, VIbDatabaseTest, and CInTraceTest in Figure 3.5 have been dealt with in the
Monitoring Transaction Processor document, this section will discuss only the VoyagerUI test.

3.4.1 Voyager Ul Test

The test reports statistics pertaining to the Voyager Ul.

Target of the test : The ASP .NET objects in the Voyager user interface
Agent deploying the test : Aninternal agent

Outputs of the test : One set of outputs for the monitored Voyager user interface.

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.
Port Refers to the port at which the specified host listens to.

Measurements made by the test

Measurement Description g::?tsurement Interpretation
Number of Indicates the number of Number
executions executions.

28

Chapter 3: Monitoring the Voyager Front End (FE)

Measurement Description ﬁﬁiatsurement Interpretation
Transaction Indicates the average time | Secs
processing time taken to process

transactions.

Avg operation time Indicates the average time | Secs
for performing operations.

Input data rate Indicates the rate of KB/Sec
incoming data.

Output data rate Indicates the rate of KB/Sec
outgoing data.

Operation rate Indicates the rate of Operations/Sec
operations performed
using the Voyager Ul.

29

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even the most challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learn more visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2018 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fithess for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	Chapter 2: How to Monitor Voyager FrontEnd using eG Enterprise?
	2.1 Managing the Voyager FrontEnd

	Chapter 3: Monitoring the Voyager Front End (FE)
	3.1 The ASP .Net CORE Layer
	3.1.1 ASP .Net Workers Test

	3.2 The ASP .Net CLR Layer
	3.2.1 ASP Lock Thread Test
	3.2.2 ASP .Net CLR Exceptions Test
	3.2.3 ASP .Net CLR GC Test
	3.2.4 ASP CLR Load Test
	3.2.5 Clr Lock ThreadsTest
	3.2.6 Clr Security Test
	3.2.7 ASP .Net CLR JIT Test

	3.3 The ASP .Net Apps Layer
	3.3.1 ASP .Net App Cache Test
	3.3.2 ASP .Net App Compile Test
	3.3.3 ASP .Net App Requests Test
	3.3.4 ASP .Net App Test
	3.3.5 ASP Sql Clients Test
	3.3.6 ASP .Net Sessions Test

	3.4 The Voyager Service Layer
	3.4.1 Voyager UI Test

	About eG Innovations

