
Monitoring Voyager FrontEnd

eG Innovations Product Documentation

www.eginnovations.com



Table of Contents
CHAPTER 1: INTRODUCTION 1

CHAPTER 2: HOW TOMONITOR VOYAGER FRONTEND USINGEGENTERPRISE? 3

2.1Managing the Voyager FrontEnd 3

CHAPTER 3: MONITORING THE VOYAGER FRONT END (FE) 4

3.1 The ASP .Net CORE Layer 4

3.1.1 ASP .Net Workers Test 5

3.2 The ASP .Net CLR Layer 8

3.2.1 ASP Lock Thread Test 9

3.2.2 ASP .Net CLR Exceptions Test 10

3.2.3 ASP .Net CLR GC Test 11

3.2.4 ASP CLR Load Test 12

3.2.5 Clr Lock ThreadsTest 15

3.2.6 Clr Security Test 16

3.2.7 ASP .Net CLR JIT Test 17

3.3 The ASP .Net Apps Layer 19

3.3.1 ASP .Net App Cache Test 20

3.3.2 ASP .Net App Compile Test 21

3.3.3 ASP .Net App Requests Test 23

3.3.4 ASP .Net App Test 24

3.3.5 ASP Sql Clients Test 25

3.3.6 ASP .Net Sessions Test 26

3.4 The Voyager Service Layer 28

3.4.1 Voyager UI Test 28

ABOUT EG INNOVATIONS 30



Table of Figures
Figure 1.1: The topology of Voyager 2

Figure 2.1: Figure 2.1: Adding a Voyager FrontEnd component 3

Figure 3.1: The layer model of the Voyager Front End component 4

Figure 3.2: The tests associated with the ASP .Net CORE Layer 5

Figure 3.3: The tests associated with the ASP .Net CLR layer 8

Figure 3.4: The tests associated with the ASP .Net Apps layer 20

Figure 3.5: The test associated with the Voyager Service layer 28



Chapter 1: Introduction

1

Chapter 1: Introduction

The advent of Internet technologies has probably had the most radical change in the banking and
finance sector. Consumers and businesses alike can now perform transactions with banks on-line.
Real-time payment and credit processing are now the norm.

Corillian, Inc.'s Voyager platform offers a secure, flexible, scalable set of Internet banking solutions
for financial institutions. Voyager is a single platform that supports multiple lines of business -
Consumer banking, Small Business Banking, Wealth Management, Credit Card Management, and
Corporate Cash Management. Besides supporting all of Corillian's Line of Business Solutions and
Enterprise Applications, Voyager also offers a quick and easy way to integrate the Corillian
applicationswith third party and legacy applications.

To provide scalability, improved security, and enhanced performance, most Internet platforms are
designed to include a number of tiers of applications. Corillian Voyager is no different. A web server
front-end handles all user requests, while a Voyager Load Balancer (VLB) software on the web
front-end serves to balance the load across all the servers in the farm. Along with the Transaction
Processor (TP), the VLB handles session creation and management. Microsoft COM serves as the
transport medium between the VLB and the TP. The Voyager TP processes customer requests
received from the web server. Authentication and authorization of users is handled by the
Authentication server (ATC) which is an integral part of the TP. Another component of the TP, the
Voyager Response Engine interacts with the repositories to retrieve customer-specific data and
providing responses back in XML format to the web front-end. The TP also includes a VLOG service
which generates a comprehensive log of all customer operations. All log information as well as
customer- specific data repositories are maintained in Microsoft SQL database. Some of the
operations performed by Voyager involve interaction with third party hosts of the financial institution.
The Host Servers handle these operations. The host servers are mainly responsible for
communicating with the client systems and converting data from these systems into the Voyager
format.

Figure 1.1 depicts the topology of the Voyager application.



Chapter 1: Introduction

2

Figure 1.1: The topology of Voyager

The eG Enterprise system treats each component as a separate server and extracts critical
performance statistics from them. This document deals with each of the components in great detail.



Chapter 2: How to Moni tor Voyager FrontEnd using eG Enterpri se?

3

Chapter 2: How toMonitor Voyager FrontEnd using eG
Enterprise?

eG is capable of monitoring the Voyager FrontEnd in both agent based and agentlessmanners.

2.1 Managing the Voyager FrontEnd
The eG Enterprise cannot automatically discover the Voyager FrontEnd so that you need to
manually add the component for monitoring. Remember that the eG Enterprise automatically
manages the components that are addedmanually. Tomanage a Voyager FrontEnd component, do
the following:

1. Log into the eGadministrative interface.

2. Follow the Components -> Add/Modify menu sequence in the Infrastructure tile of the Admin
menu.

3. In theCOMPONENT page that appears next, select Voyager FrontEnd as theComponent type.
Then, click theAdd New Component button. This will invoke Figure 2.1.

Figure 2.1: Figure 2.1: Adding a Voyager FrontEnd component

3. Specify the Host IP/Name and the Nick name of the Voyager FrontEnd in Chapter 2. Then,
click theAdd button to register the changes.

4. Then, sign out of the eGadministrative interface.



Chapter 3: Moni toring the Voyager Front End (FE)

4

Chapter 3: Monitoring the Voyager Front End (FE)

eGEnterprise uses the Voyager FrontEnd hierarchical model (see Figure 3.1)  to represent the front
end of the Voyager application.

Figure 3.1: The layer model of the Voyager Front End component

Of the top 4 layers in Figure 3.1, the last 3 layers execute tests that extract .NET-specific statistics.
The first layer – i.e., the Voyager Service layer- is the one that reports Voyager presentation layer
metrics. The sections to come discuss the top 4 layers of Figure 3.1 only, as all other layers have
been dealt with in theMonitoring Unix andWindowsServers document.

3.1 The ASP .Net CORE Layer
The test mapped to this layer (see Figure 3.3) monitors the performance of the worker process of the
ASP .NET objects.



Chapter 3: Moni toring the Voyager Front End (FE)

5

Figure 3.2: The tests associated with the ASP .Net CORE Layer

3.1.1 ASP .NetWorkers Test

This reports statistics pertaining to the performance of the worker process of the ASP .NET objects
in the Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Application restarts The number of application
restarts.

Number In a perfect world, the application
domain will and should survive for the
life of the process. Even if a single
restart occurs, it is a cause for concern
because proactive and reactive

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

6

Measurement Description Measurement
Unit Interpretation

restarts cause automatic recycling of
the worker process. Moreover, restarts
warrant recreation of the application
domain and recompilation of the
pages, both of which consume a lot of
time. To investigate the reasons for a
restart, check the values set in the
processModel configuration.

Applications running The number of
applications currently
running.

Number

Requests current The number of requests
currently handled by the
ASP.NET ISAPI. This
includes those that are
queued , executing, or
waiting to be written to the
client.

Number

Request execution
time

The number of seconds
taken to execute the last
request.

Number In version 1.0 of the framework, the
execution time begins when the worker
process receives the request, and stop
when the ASP.NET ISAPI sends
HSE_REQ_DONE_WITH_SESSION
to IIS. In version 1.1 of the framework,
execution begins when the
HttpContext for the request is created,
and stop before the response is sent to
IIS. The value of this measure should
be stable. Any sudden change from the
previous recorded values should be
notified.

Requests queued The number of requests
currently queued.

Number When running on IIS 5.0, there is a
queue between inetinfo and aspnet_
wp, and there is one queue for each
virtual directory. When running on IIS
6.0, there is a queue where requests
are posted to themanaged ThreadPool



Chapter 3: Moni toring the Voyager Front End (FE)

7

Measurement Description Measurement
Unit Interpretation

from native code, and a queue for each
virtual directory. This counter includes
requests in all queues. The queue
between inetinfo and aspnet_wp is a
named pipe through which the request
is sent from one process to the other.
The number of requests in this queue
increases if there is a shortage of
available I/O threads in the aspnet_wp
process. On IIS 6.0 it increases when
there are incoming requests and a
shortage of worker threads.

Requests rejected The number of rejected
requests

Number Requests are rejected when one of the
queue limits is exceeded. An
excessive value of this measure hence
indicates that the worker process is
unable to process the requests due to
overwhelming load or low memory in
the processor.

Requests wait time The number of seconds
that themost recent
request spent waiting in
the queue, or named pipe
that exists between
inetinfo and aspnet_wp.
This does not include any
time spent waiting in the
application queues.

Secs

Worker processes
running

The current number of
aspnet_wpworker
processes

Number Every application executing on the
.NET server corresponds to a worker
process. Sometimes, during active or
proactive recycling, a new worker
process and the worker process that is
being replacedmay coexist. Under
such circumstances, a single
applicationmight havemultiple worker
processes executing for it. Therefore,
if the value of this measure is not the



Chapter 3: Moni toring the Voyager Front End (FE)

8

Measurement Description Measurement
Unit Interpretation

same as that of Applications running,
then it calls for closer examination of
the reasons behind the occurence.

Worker process
restarts

The number of aspnet_wp
process restarts in the
machine

Number Process restarts are expensive and
undesirable. The values of this metric
are dependent upon the process model
configuration settings, as well as
unforeseen access violations, memory
leaks, and deadlocks.

3.2 The ASP .Net CLR Layer
The tests associated with this layer (see Figure 3.3) monitor the following:

l Managed locks and threads

l Exceptions that occur in the CLR

l Garbage collection activity

l The locking activity

l the security system activity

l JIT compilation

Figure 3.3: The tests associated with the ASP .Net CLR layer



Chapter 3: Moni toring the Voyager Front End (FE)

9

3.2.1 ASP Lock Thread Test

This test provides information about managed locks and threads that an application uses.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Current logical
threads

The number of current
managed thread objects in
the application. This
measuremaintains the
count of both running and
stopped threads.

Number

Current physical
threads

The number of native
operating system threads
created and owned by the
common language runtime
to act as underlying threads
for managed thread
objects. This measure
does not include the
threads used by the
runtime in its internal
operations.

Number

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

10

Measurement Description Measurement
Unit Interpretation

Current recognized
threads

The number of threads that
are currently recognized by
the runtime. These threads
are associated with a
correspondingmanaged
thread object.

Number

Contention rate The rate at which threads in
the runtime attempt to
acquire amanaged lock
unsuccessfully.

Rate/Sec

Current queue length The total number of threads
that are currently waiting to
acquire amanaged lock in
the application.

Number

3.2.2 ASP .Net CLRExceptions Test

This test reports statistics related to the exceptions that occur in the CLR due to managed and
unmanaged exceptions.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test



Chapter 3: Moni toring the Voyager Front End (FE)

11

Measurement Description Measurement
Unit Interpretation

Clr exceptions The total number of
managed exceptions
thrown per second.

Exceptions/Sec Exceptions are very costly and can
severely degrade your application
performance. A high value of this
measure is therefore an indicator of
potential performance issues.

Measurements made by the test

3.2.3 ASP .Net CLRGCTest

This test monitors the memory allocation activity of the ASP .NET objects in the Voyager user
interface, in terms of heapswhen objects are created andmanaged.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Heapmemory usage The number of bytes
committed by managed
objects. This is the sum of
the large object heap and
the generation 0, 1, and 2
heaps.

MB

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

12

Measurement Description Measurement
Unit Interpretation

Gen 0 collections The rate at which the
generation 0 objects
(youngest; most recently
allocated) are garbage
collected (Gen 0GC)
since the start of the
application.

Collections/Sec

Gen 1 collections The rate at which the
generation 1 objects have
been garbage collected
since the start of the
application. Objects that
survive are promoted to
generation 2.

Collections/Sec

Gen 2 collections The number of seconds
taken to execute the last
request.

Number The number of times generation 2
objects have been garbage collected
since the start of the application.
Generation 2 is the highest, thus
objects that survive collection remain
in generation 2. Gen 2 collections can
be very expensive, especially if the
size of the Gen 2 heap is huge.

Time in gc % Time in GC is the
percentage of elapsed
time that was spent in
performing a garbage
collection (GC) since the
last GC cycle.

Percent This measure is usually an indicator of
the work done by the Garbage
Collector on behalf of the application
to collect and conservememory. This
measure is updated only at the end of
every GC and themeasure reflects the
last observed value; its not an
average.

3.2.4 ASPCLR Load Test

This test monitors the classes and assemblies loaded on to an ASP .Net application. A class is
essentially the blueprint for an object. It contains the definition for how a particular object will be
instantiated at runtime, such as the properties and methods that will be exposed publicly by the
object and any internal storage structures.



Chapter 3: Moni toring the Voyager Front End (FE)

13

Also known as Managed DLLs, assemblies are the fundamental unit of deployment for the .NET
platform. The .NET Framework itself is made up of a number of assemblies, including mscorlib.dll,
among others. The assembly boundary is also where versioning and security are applied. An
assembly contains Intermediate Language generated by a specific language compiler, an assembly
manifest (containing information about the assembly), typemetadata, and resources.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for every worker process on the ASP .NET objects in the
Voyager user interface beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Classes loaded The number of classes
currently loaded in all
assemblies.

Number An unusually high valuemay indicate
a sudden increase in classes which
loaded on to this .NET application.

Current assemblies The rate at which
Assemblies were loaded
across all AppDomains.

Assembles/Sec If the Assembly is loaded as domain-
neutral frommultiple AppDomains
then this counter is incremented once
only. Assemblies can be loaded as
domain-neutral when their code can be
shared by all AppDomains or they can
be loaded as domain-specific when
their code is private to the
AppDomain. This counter is not an
average over time; it displays the
difference between the values
observed in the last two samples
divided by the duration of the sample

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

14

Measurement Description Measurement
Unit Interpretation

interval.

Rate of classes
loaded

This rate at which the
classes loaded in all
Assemblies.

Classes/Sec This counter is not an average over
time; it displays the difference
between the values observed in the
last two samples divided by the
duration of the sample interval.

Rate of load failures The rate of load failures on
the application.

Failures/Sec This counter is not an average over
time; it displays the difference
between the values observed in the
last two samples divided by the
duration of the sample interval. These
load failures could be due tomany
reasons like inadequate security or
illegal format.

Current appdomains The number of
AppDomains currently
loaded in this application.

Number AppDomains (application domains)
provide a secure and versatile unit of
processing that the CLR can use to
provide isolation between applications
running in the same process.

Current assemblies The number of assemblies
currently loaded across all
AppDomains in this
application.

Number If the Assembly is loaded as domain-
neutral frommultiple AppDomains
then this counter is incremented once
only. Assemblies can be loaded as
domain-neutral when their code can be
shared by all AppDomains or they can
be loaded as domain-specific when
their code is private to the
AppDomain.

Loader heap size The size of thememory
committed by the class
loader across all
AppDomains.

MB Committedmemory is the physical
memory for which space has been
reserved on the disk paging file.

Load failures The number of classes
that have failed to load
during the last
measurement period,

Number These load failures could be due to
many reasons like inadequate security
or illegal format.

Appdomains loaded The number of Number



Chapter 3: Moni toring the Voyager Front End (FE)

15

Measurement Description Measurement
Unit Interpretation

AppDomains loaded during
the last measurement
period.

Number of
assemblies

The number of assemblies
loaded during the last
measurement period.

Number

3.2.5 Clr Lock ThreadsTest

This test monitors the thread locking activity on the ASP .NET objects in the Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Queue length rate Indicates the rate at
which threads are waiting
to acquire some lock in
the application.

Threads/Sec

Recognized threads
rate

Indicates the number of
threads per second that
have been recognized by
the CLR.

Threads/Sec The recognized threads have a
corresponding .NET thread object
associated with them. These threads are

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

16

Measurement Description Measurement
Unit Interpretation

not created by the CLR; they are created
outside the CLR but have since run inside
the CLR at least once. Only unique
threads are tracked; threads with the
same thread ID re-entering the CLR or
recreated after thread exit are not counted
twice.

Queue length peak Indicates the total
number of threads that
waited to acquire some
managed lock during the
last measurement period.

Number A high turnover rate indicates that items
are being quickly added and removed,
which can be expensive.

Recognized threads Indicates the total
number of threads that
have been recognized by
the CLR during the last
measurement period.

Number The recognized threads have a
corresponding .NET thread object
associated with them. These threads are
not created by the CLR; they are created
outside the CLR but have since run inside
the CLR at least once. Only unique
threads are tracked; threads with the
same thread ID re-entering the CLR or
recreated after thread exit are not counted
twice.

Contention threads Indicates the total
number of times threads
in the CLR have
attempted to acquire a
managed lock
unsuccessfully.

Number Managed locks can be acquired in many
ways; by the lock statement in C# or by
calling System.Monitor.Enter or by using
MethodImplOptions.Synchronized
custom attribute.

3.2.6 Clr Security Test

This test monitors the security system activity of the ASP .NET objects in the Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent



Chapter 3: Moni toring the Voyager Front End (FE)

17

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Time in runtime
checks

Indicates the percentage of
elapsed time spent in
performing runtime Code
Access Security (CAS)
checks during the last
measurement period.

Percent If this counter is high, revisit what is
being checked and how often. The
applicationmay be executing
unnecessary stack walk depths.
Another cause for a high percentage of
time spent in runtime checks could be
numerous linktime checks.

Stack walk depth Indicates the depth of the
stack during that last
measurement period.

Number

Link time checks Indicates the total number
of linktime Code Access
Security (CAS) checks
during the last
measurement period.

Number The value displayed is not indicative of
serious performance issues, but it is
indicative of the health of the security
system activity.

Runtime checks Indicates the total number
of runtime CAS checks
performed during the last
measurement period.

Number A high number for the total runtime
checks along with a high stack walk
depth indicates performance
overhead.

Measurements made by the test

3.2.7 ASP .Net CLR JIT Test

The CLR (Common Language Runtime) is the execution environment for code written for the .NET
Framework. The CLR manages the execution of .NET code, including memory allocation and



Chapter 3: Moni toring the Voyager Front End (FE)

18

garbage collection (which helps avoid memory leaks), security (including applying differing trust
levels to code from different sources), thread management, enforcing type-safety, and many other
tasks.

The CLR works with every language available for the .NET Framework, so there is no need to have
a separate runtime for each language. Code developed in a .NET language is compiled by the
individual language compiler (such as the Visual Basic .NET compiler) into an intermediate format
called Intermediate Language (IL). At runtime, this IL code generated by the compiler is just-in-time
(JIT) compiled by the CLR into native code for the processor type the CLR is running on.

This test monitors the JIT compilation performed by the CLR. This compilation provides the flexibility
of being able to develop with multiple languages and target multiple processor types while still
retaining the performance of native code at execution time.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

ASP .Net – Time in
JIT

Indicates the percentage of
elapsed time spent in JIT
compilation; a JIT
compilation phase is the
phase when amethod and
its dependencies are being
compiled..

Percent

ASP .Net – Data JIT Indicates the rate at which KB/Sec

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

19

Measurement Description Measurement
Unit Interpretation

rate IL bytes are jitted.

ASP .Net – JIT
failures

Indicates the number of
methods the JIT compiler
has failed to JIT during the
last measurement period.

Number An unusually high valuemay indicate
a sudden increase in jit failures
occured in the application.

ASP .Net – Data
jitted

Indicates the total IL bytes
jitted during the last
measurement period.

KB/Sec

ASP .Net –Methods
jitted

Indicates themethods
compiled Just-In-Time
(JIT) by the CLR JIT
compiler during the last
measurement period.

Number AppDomains (application domains)
provide a secure and versatile unit of
processing that the CLR can use to
provide isolation between applications
running in the same process.

3.3 The ASP .Net Apps Layer
The tests associated with this layer (see Figure 3.4) monitor the following:

l The application cache

l How well the appdomains perform during compilation

l How well the appdomains handle requests

l Performance of the applications deployed on the ASP .Net objects of the Voyager FrontEnd

l Client connections to the ASP.Net objects of the Voyager FrontEnd

l Sessions to the ASP .Net objects of the Voyager FrontEnd



Chapter 3: Moni toring the Voyager Front End (FE)

20

Figure 3.4: The tests associated with the ASP .Net Apps layer

3.3.1 ASP .Net App Cache Test

This test monitors the performance of the ASP.NET Application (or Application Domain) Cache.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for every ASP .NET application/application domain cache
on amonitored Voyager user interface.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Cache total entries The current number of
entries in the cache (both
User and Internal).

Number

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

21

Measurement Description Measurement
Unit Interpretation

Cache hit ratio The current hit-to-miss
ratio of all cache requests
(both user and internal).

Percent Physical I/O takes a significant
amount of time, and also increases the
CPU resources required. The server
configuration should therefore ensure
that the required information is
available on thememory. A low value
of this measure indicates that physical
I/O is greater.

Cache turnover rate The number of additions
and removals to the cache
per second (both user and
internal).

Cached/Sec A high turnover rate indicates that
items are being quickly added and
removed, which can be expensive.

Cache api entries The number of entries
currently in the user cache.

Number

Cache user hit ratio Total hit-to-miss ratio of
user cache requests.

Percent A high value of this measure is
indicative of the good health of the
server.

Cache user turnover
rate

The number of additions
and removals to the user
cache per second.

Cached/Sec A high turnover rate indicates that
items are being quickly added and
removed, which can be expensive.

Output cache entries The number of entries
currently in the Output
Cache.

Number

Output cache hit ratio The total hit-to-miss ratio
of Output Cache requests

Percent A high value of this measure is a sign
of good health.

Output cache
turnover rate

The number of additions
and removals to the output
cache per second

Cached/Sec Sudden increases in the value of this
measure are indicative of backend
latency.

3.3.2 ASP .Net App Compile Test

This test reports how well the AppDomains perform during the compilation of the aspx, asmx, ascx
or ashx files, loading of assemblies, and execution of assemblies to generate the page.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent



Chapter 3: Moni toring the Voyager Front End (FE)

22

Outputs of the test : One set of results for every ASP .NET application domain on a monitored
Voyager user interface.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Compilation total The total number of
compilations that have
taken place during the
lifetime of the current Web
server process. This
occurs when a file with a
.aspx, .asmx, asax,.ascx,
or .ashx extension or
code-behind source files
are dynamically compiled
on the server.

Number

Preprocessing errors The rate at which
configuration and parsing
errors occur.

Errors/Sec A consistent increase in the value of
this measure could prove to be fatal for
the application domain.

Compilation errors The rate at which
compilation errors occur.
The response is cached,
and this counter
increments only once until
recompilation is forced by
a file change.

Errors/Sec

Runtime errors The rate at which run-time
errors occur.

Errors/Sec

Unhandled runtime
errors

The rate of unhandled
runtime exceptions.

Errors/Sec A consistent increase in the value of

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

23

Measurement Description Measurement
Unit Interpretation

this measure could prove to be fatal for
the application domain. This measure
however, does not include the
following:

l Errors cleared by an event

handler (for example, by Page_

Error or Application_Error)

l Errors handled by a redirect

page

l Errors that occur within a

try/catch block

3.3.3 ASP .Net App Requests Test

This test monitors how well the application domain handles requests.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for every ASP .NET application domain on a monitored
Voyager user interface.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test



Chapter 3: Moni toring the Voyager Front End (FE)

24

Measurement Description Measurement
Unit Interpretation

Requests executing The number of requests
currently executing.

Number This measure is incremented when the
HttpRuntime begins to process the
request and is decremented after the
HttpRuntime finishes the request.

Requests app queue The number of requests
currently in the application
request queue.

Number

Requests not found The number of requests
that did not find the
required resource.

Number

Requests not
authorized

The number of request
failed due to unauthorized
access.

Number Values greater than 0 indicate that
proper authorization has not been
provided, or invalid authors are trying
to access a particular resource.

Requests timed out The number of requests
timed out.

Number

Requests succeeded The rate at which requests
succeeded

Requests/Sec

Measurements made by the test

3.3.4 ASP .Net App Test

This test reports key statistics pertaining to applications deployed on the ASP .NET objects in the
Voyager user interface.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Configurable parameters for the test



Chapter 3: Moni toring the Voyager Front End (FE)

25

Parameter Description

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Measurement Description Measurement
Unit Interpretation

Request rate Indicates the number of
requests executed per
second.

Number This represents the current throughput
of the application.

Pipeline instances Indicates the number of
active pipeline instances
for the ASP.NET
application.

Number Since only one execution thread can
run within a pipeline instance, this
number gives themaximum number of
concurrent requests that are being
processed for a given application.
Ideally, the value of this measure
should be low.

Number of errors Indicates the total sum of
all errors that occur during
the execution of HTTP
requests.

Number This measure should be kept at 0 or a
very low value.

Measurements made by the test

3.3.5 ASPSql Clients Test

This test reports metrics pertaining to client connections to the ASP .NET objects in the Voyager
user interface.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Configurable parameters for the test



Chapter 3: Moni toring the Voyager Front End (FE)

26

Parameter Description

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Measurement Description Measurement
Unit Interpretation

Number of
connection pools

Indicates the number of
connection pools that have
been created.

Number If the connection pool maxes out while
new connection requests are still
coming in, you willl see connection
requests refused, apparently at
random. The cure in this case is
simply to specify a higher value for the
Max Pool Size property.

Number of
connections

Indicates the number of
connections currently in
the pool.

Number

Pooled connections Indicates the number of
connections that have
been pooled.

Number

Pooled connections
peak

Indicates the highest
number of connections
that have been used.

Number If the value of this measure is at the
Max Pool Size value, and the value of
the Failed connectsmeasure
increases while the application is
running, youmight have to consider
increasing the size of the connection
pool.

Failed connects Indicates the number of
connection attempts that
have failed.

Number If the connection pool maxes out while
new connection requests are still
coming in, you will see connection
requests refused, apparently at
random. The cure in this case is
simply to specify a higher value for the
Max Pool Size property.

Measurements made by the test

3.3.6 ASP .Net Sessions Test

This test monitors the sessions on the ASP .NET server.



Chapter 3: Moni toring the Voyager Front End (FE)

27

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of results for the ASP .NET objects in the Voyager user interface
beingmonitored.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

SQL connections Indicates the number of
connections to the SQL
Server used by session
state.

Number An unusually high valuemay indicate
a sudden increase in sessions to the
SQL Server.

State server
connections

Indicates the number of
connections to the
StateServer used by
session state.

Number An unusually high valuemay indicate
a sudden increase in sessions to the
StateServer.

Abandoned ASPNet
application sessions

Indicates the number of
sessions that have been
explicitly abandoned during
the last measurement
period.

Number

Active ASPNet
application sessions

Indicates the currently
active sessions.

Number

Timedout ASPNet
application sessions

Indicates the number of
sessions that timed out
during the last
measurement period.

Number

Total ASPNet
application sessions

Indicates the total number
of sessions during the last
measurement period.

Number

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

28

3.4 The Voyager Service Layer
This layer reports the presentation server statistics of the Voyager FrontEnd.

Figure 3.5: The test associated with the Voyager Service layer

Since the VlbTest, VlbDatabaseTest, and ClnTraceTest in Figure 3.5 have been dealt with in the
Monitoring Transaction Processor document, this section will discuss only the VoyagerUI test.

3.4.1 Voyager UI Test

The test reports statistics pertaining to the Voyager UI.

Target of the test : The ASP .NET objects in the Voyager user interface

Agent deploying the test : An internal agent

Outputs of the test : One set of outputs for themonitored Voyager user interface.

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Refers to the port at which the specified host listens to.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Number of
executions

Indicates the number of
executions.

Number

Measurements made by the test



Chapter 3: Moni toring the Voyager Front End (FE)

29

Measurement Description Measurement
Unit Interpretation

Transaction
processing time

Indicates the average time
taken to process
transactions.

Secs

Avg operation time Indicates the average time
for performing operations.

Secs

Input data rate Indicates the rate of
incoming data.

KB/Sec

Output data rate Indicates the rate of
outgoing data.

KB/Sec

Operation rate Indicates the rate of
operations performed
using the Voyager UI.

Operations/Sec



About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2018 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.


	Chapter 1: Introduction
	Chapter 2: How to Monitor Voyager FrontEnd using eG Enterprise?
	2.1 Managing the Voyager FrontEnd

	Chapter 3: Monitoring the Voyager Front End (FE)
	3.1 The ASP .Net CORE Layer
	3.1.1 ASP .Net Workers Test

	3.2 The ASP .Net CLR Layer
	3.2.1 ASP Lock Thread Test
	3.2.2 ASP .Net CLR Exceptions Test
	3.2.3 ASP .Net CLR GC Test
	3.2.4 ASP CLR Load Test
	3.2.5 Clr Lock ThreadsTest
	3.2.6 Clr Security Test
	3.2.7 ASP .Net CLR JIT Test

	3.3 The ASP .Net Apps Layer
	3.3.1 ASP .Net App Cache Test
	3.3.2 ASP .Net App Compile Test
	3.3.3 ASP .Net App Requests Test
	3.3.4 ASP .Net App Test
	3.3.5 ASP Sql Clients Test
	3.3.6 ASP .Net Sessions Test

	3.4 The Voyager Service Layer
	3.4.1 Voyager UI Test


	About eG Innovations

