
Monitoring PostgreSQL Database
Server

eG Innovations Product Documentation

www.eginnovations.com



Table of Contents
CHAPTER 1: INTRODUCTION 1

CHAPTER 2: HOW DOES EGENTERPRISE MONITOR POSTGRESQLSERVER? 2

2.1Managing the PostgreSQL Server 2

CHAPTER 3: MONITORING THE POSTGRESQLSERVER 4

3.1 The PostGreSQL I/O Layer 5

3.1.1 PostgreSQL Table I/O Test 5

3.1.2 PostgreSQL Index I/O Test 9

3.2 The PostGreSQL Tablespaces Layer 12

3.2.1 PostgreSQL Tablespaces Test 13

3.3 The PostGreSQL Server Layer 14

3.3.1 PostgreSQL Background I/O Test 15

3.3.2 PostgreSQL Databases Test 20

3.3.3 PostgreSQL Indexes Test 23

3.3.4 PostgreSQL Unused Indexes Test 25

3.3.5 PostgreSQL Tables Test 27

3.4 The PostGreSQL Service Layer 32

3.4.1 PostgreSQL User Connections Test 33

3.4.2 PostgreSQL Locks Test 35

3.4.3 PostgreSQL Access Test 39

3.4.4 PostgreSQL Long Queries Test 40

ABOUT EG INNOVATIONS 43



Table of Figures
Figure 2.1: Adding the PostgreSQL 2

Figure 2.2: List of tests to be configured for the PostgreSQL 3

Figure 3.1: Layermodel of the PostgresSQL database server 4

Figure 3.2: The tests mapped to the PostGreSQL I/O 5

Figure 3.3: The test mapped to the PostGreSQL Tablespaces layer 12

Figure 3.4: The tests mapped to the PostGreSQL Server layer 15

Figure 3.5: The tests mapped to the PostgreSQL Service layer 33



Chapter 1: Introduction

1

Chapter 1: Introduction

PostgreSQL , often simply Postgres , is an object- relational database management system
(ORDBMS) available for many platforms including Linux, FreeBSD, Solaris, Microsoft Windows and
Mac OS X. It implements the majority of the SQL:2008 standard, is ACID- compliant, is fully
transactional (including all DDL statements), has extensible data types, operators, and indexes, and
has a large number of extensionswritten by third parties.

Owing to its ability to operate on heterogeneous platforms, the PostgreSQL has of late become the
preferred backend for many mission-critical service offerings. A second’s non-availability of the
server, a sudden or steady erosion of free space in one/more of its tablespaces, ineffective caching
by the server, and intense locking can cause serious harm to not only the performance of the
PostgreSQL server in question, but also the services that rely on it. Continuous monitoring of the
database server and prompt detection and resolution of anomalies is hence imperative. For
continuously monitoring the PostgreSQL database server, the eG Enterprise provides a specialized
monitoringmodel, which is explained in the upcoming topics.



Chapter 2: How does eG Enterpri se Moni tor PostgreSQL Server?

2

Chapter 2: How does eG EnterpriseMonitor PostgreSQL
Server?

eG Enterprise employs agent-based or agentless techniques to monitor the PostgreSQL server. A
eG agent periodically checks the status of critical database operations and proactively report
problems.

2.1 Managing the PostgreSQL Server

The eGEnterprise cannot automatically discover the PostgreSQL server. This implies that you need
to manually add the component for monitoring. Remember that the eG Enterprise automatically
manages the components that are added manually. To manage a PostgreSQL Server component,
do the following:

1. Log into the eG administrative interface.

2. eG Enterprise cannot automatically discover the PostgreSQL component. You need to manually
add the server using the COMPONENTS page (see Figure 2.1 ) that appears when the
Infrastructure - > Components - > Add/Modify menu sequence is followed. Remember that
componentsmanually added aremanaged automatically.

Figure 2.1: Adding the PostgreSQL

3. Specify the Host IP and the Nick name of the Oracle Cluster in Figure 2.1. The Port number
will be set as 5432 by default. If the server is listening on a different port, then override this
settings.



Chapter 2: How does eG Enterpri se Moni tor PostgreSQL Server?

3

4. Then, click theAdd button to register the changes.

5. When you attempt to sign out, a list of unconfigured tests appears (see Figure 2.2).

Figure 2.2: List of tests to be configured for the PostgreSQL

6. Click on the PostgreSQL Access test to configure it. To know how to configure the test, refer to
the Section 3.4.3.

7. Once all the tests are configured, signout of the eGadministrative interface.



Chapter 3: Moni toring the PostgreSQL Server

4

Chapter 3: Monitoring the PostgreSQL Server

eG Enterprise offers a 100%, web-based PostgreSQL monitoring model (see Figure 3.1) that
provides indepth insights into the performance and problems related to the PostgreSQL database
server. This model can be used for monitoring PostgreSQL version 9.0 onwards.

Figure 3.1: Layermodel of the PostgresSQL database server

This model can be configured to employ agent-based or agentless techniques to periodically check
the status of critical database operations and proactively report problems. These metrics enable
database administrators to find quick and accurate answers to the following performance queries:

Ø Is the database server available? If so, how quickly does it repond to client queries?

Ø Is the buffer cache utilized optimally, or are requests for heap blocks and index blocks being
increasingly serviced by direct disk accesses?

Ø Is any tablespace running low on free space? If so, which one?

Ø How well does the background writer perform checkpointing? Is too much I/O load being
imposed by the writer in the process of checkpointing?

Ø Are toomany rollbacks occurring on any database? If so, which one?

Ø Are indexes used effectively?

Ø Are there any useless/unused indexes on the server?Which ones are these?

Ø Have toomany sequential scans occurred on any table?

Ø Are inserts, updates, and deletes happening too slowly on any table?



Chapter 3: Moni toring the PostgreSQL Server

5

Ø Is any table experiencing extreme or major issueswhile querying data from the server?

Ø Does any user have toomany idle connections on the server?

Ø Is any user’s connection waiting for a locked resource to be released?

Ø Are toomany locks being currently held on the server?Which lockmode is themaximum?

Ø Are any queries running for too long a time on the server? If so, which ones are these?

The sections that follow will deal with the top four layers of Figure 3.1 as the other layers have
already been dealt with in theMonitoring Unix andWindows servers document.

3.1 The PostGreSQL I/O Layer

Use the tests mapped to this layer to figure out how the server performs caching and how well the
buffer cache is utilized. Inadequacies in the cache size are thus revealed.

Figure 3.2: The tests mapped to the PostGreSQL I/O

3.1.1 PostgreSQL Table I/O Test

In PostgreSQL, data is stored in tables, and tables are grouped into databases. Each table is stored
in its own disk file. The contents of a table are stored in pages. A table can span many pages,
depending upon the length of the row data in the table. A page that contains row data is called a
heap block. As indexes are also stored in page files, a page that contains index data is called an
index block.

Typically, in PostgreSQL, most disk I/O is performed on a page-by-page basis. To minimize disk I/O,

PostgreSQL creates an in-memory data structure known as the buffer cache to which the frequently
accessed data is stored. The buffer cache is organized as a collection of 8K pages—each page in the



Chapter 3: Moni toring the PostgreSQL Server

6

buffer cache corresponds to a page in some page file. The buffer cache is shared between all
processes servicing a given database.

When you select a row from a table, PostgreSQL will read the heap block that contains the row into
the buffer cache. If there is not enough free space in the cache, PostgreSQL will move some other
block out of the cache. If a block being removed from the cache has been modified, it will be written
back out to disk; otherwise, it will simply be discarded. Index blocks are also buffered in a similar
manner.

If the buffer cache is not sized right, it may not be able to hold enough heap or index blocks to serve
subsequent requests. If queries do not find the heap/index blocks they need in the buffer cache, they
will be forced to access the disk directly to retrieve data. As direct disk accesses are I/O-intensive
operations, theymay cause serious performance degradations if not nipped in the bud! 

Using the PostgreSQL Table I/O test, you can continuously monitor the heap blocks read from the
tables in configured databases and index blocks read from the indexes that correspond to those
tables. In the process, you can understand how the buffer cache serviced these read requests and
learn of ineffective cache usage early, so that you can investigate the reasons for the same
(whether/not it is owing to an under-sized cache) and initiate appropriate remedial action. 

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for every table (and corresponding index) in every
database that is configured for monitoring in the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

7

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

10. SSL - The name of this user has to be specified in the USERNAME text box.

Measurement Description Measurement
Unit Interpretation

Heap blocks read: Indicates the rate at
which the heap blocks
are read from this
table.

Reads/Sec

Heap blocks hit: Indicates the number
of heap block requests
to this table that were
serviced by the buffer
cache during the last
measurement period.

Number Ideally, the value of this measure
should be high.

Heap hit ratio: Indicates the ratio of
the heap block read
requests to this table to
the heap block
requests found in the

Percent Ideally, the value of this measure
should be high. A low value is
indicative ineffective cache usage,
which in turn can increase disk I/O
and degrade server performance.

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

8

Measurement Description Measurement
Unit Interpretation

buffer cache. One of the most common reasons for
a low cache hit ratio is small cache
size. In such a case, you can consider
increasing the cache size. There are
two ways that you can adjust the size
of the cache. You could edit
PostgreSQL’s configuration file
( $PGDATA/postgresql.conf ) and
change the shared_buffers variable
therein. Alternatively, you can
override the shared_ buffers
configuration variable when you start
the postmaster. A sample command
for implementing a shared_buffers
override while starting the postmaster
is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does
not help, then, you can include a limit
clause in your queries to select a sub-
set of the queried tables and add
them to the cache.

Index block reads: Indicates the rate at
which the index blocks
were read from the
indexes of this table.

Reads/Sec

Blocks hit: Indicates the number
of read requests to the
indexes of this table
that were found in the
buffer cache during the
last measurement
period.

Number Ideally, the value of this measure
should be high.



Chapter 3: Moni toring the PostgreSQL Server

9

Measurement Description Measurement
Unit Interpretation

Block hit ratio: Indicates the
percentage of index
block requests to the
indexes of this table
that were served by the
buffer cache.

Percent Ideally, the value of this measure
should be high. A low value is
indicative of ineffective cache usage,
which in turn can increase disk I/O
and degrade server performance.

One of the most common reasons for
a low cache hit ratio is small cache
size. In such a case, you can consider
increasing the cache size. There are
two ways that you can adjust the size
of the cache. You could edit
PostgreSQL’s configuration file
( $PGDATA/postgresql.conf ) and
change the shared_buffers variable
therein. Alternatively, you can
override the shared_ buffers
configuration variable when you start
the postmaster. A sample command
for implementing a shared_buffers
override while starting the postmaster
is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does
not help, then, you can include a limit
clause in your queries to select a sub-
set of the queried tables and add
them to the cache.

3.1.2 PostgreSQL Index I/O Test

Indexes are buffered in the same way as tables are. Therefore, if too many index blocks are not
found in the buffer cache, disk I/O increases, causing the overall performance of the PostgreSQL



Chapter 3: Moni toring the PostgreSQL Server

10

server to suffer. It is hence imperative tomonitor how the cache services index block read requests.

The PostgreSQL Index I/O test helps monitor each index in a database for read requests. In the
process, the test reveals how the buffer cache serviced these read requests and provides early
pointers to ineffective cache usage, so that you can investigate the reasons for the same
(whether/not it is owing to an under-sized cache) and initiate appropriate remedial action. 

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test : One set of results for every in index in every database that is configured for
monitoring in the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed

2. HOST – The IP address of the server

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

11

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

10. SSL - The name of this user has to be specified in the USERNAME text box.

Measurement Description Measurement
Unit Interpretation

Index block reads: Indicates the rate at
which the index blocks
were read from this
index during the last
measurement period.

Reads/Sec

Blocks hit: Indicates the number
of read requests to this
index that were found
in the buffer cache
during the last
measurement period.

Number Ideally, the value of this measure
should be high.

Hit ratio: Indicates the
percentage of index
block requests to this
index that were served
by the buffer cache.

Percent Ideally, the value of this measure
should be high. A low value is
indicative ineffective cache usage,
which in turn can increase disk I/O
and degrade server performance.

One of the most common reasons for
a low cache hit ratio is small cache
size. In such a case, you can consider
increasing the cache size. There are
two ways that you can adjust the size
of the cache. You could edit
PostgreSQL’s configuration file
( $PGDATA/postgresql.conf ) and
change the shared_buffers variable
therein. Alternatively, you can
override the shared_ buffers

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

12

Measurement Description Measurement
Unit Interpretation

configuration variable when you start
the postmaster. A sample command
for implementing a shared_buffers
override while starting the postmaster
is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does
not help, then, you can include a limit
clause in your queries to select a sub-
set of the queried tables and add
them to the cache.

3.2 The PostGreSQL Tablespaces Layer

To know whether any tablespace has been excessively utilized, use the test mapped to this layer.

Figure 3.3: The test mapped to the PostGreSQL Tablespaces layer



Chapter 3: Moni toring the PostgreSQL Server

13

3.2.1 PostgreSQL Tablespaces Test

Tablespaces in PostgreSQL allow database administrators to define locations in the file system
where the files representing database objects can be stored. Once created, a tablespace can be
referred to by namewhen creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This
is useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs
out of space and cannot be extended, a tablespace can be created on a different partition and used
until the system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database
objects to optimize performance. For example, an index which is very heavily used can be placed on
a very fast, highly available disk, such as an expensive solid state device. At the same time a table
storing archived data which is rarely used or not performance critical could be stored on a less
expensive, slower disk system.

Tablespaces should be adequately sized. If not, the tablespaces may not be able to accomodate
many critical database objects, thereby causing the performance of the database to suffer.
Continuous monitoring of tablespace size and usage is hence important. The PostgreSQL
Tablespaces test does just that. This test auto-discovers tablespacesmanaged by this PostgreSQL
server and reports how well the tablespace has been utilized.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test : One set of results for every tablespace in every database that is configured for
monitoring in the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

14

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded from
monitoring.

10. SSL - The name of this user has to be specified in the USERNAME text box.

Measurement Description Measurement
Unit Interpretation

Tablespace
size:

Indicates the
amount of space
currently used in this
tablespace.

MB A high value of this measure indicates that
the table consumes a large chunk of space
in the tablespace which may cause serious
performance issues ranging from
slowdown to shutdowns of this database.

Measurements made by the test

3.3 The PostGreSQL Server Layer

Using the testsmapped to this layer, you can determine:

l Whether/not the background writer minimizes the I/O load on the server;

l How well the server handles the transaction load to it, and whether any processing pain-points
can be noticed;

l Whether/ not the indexes are properly used;

l The number and names of unused indexes (if any);

l The count of sequential scans and index scans that occurred per table and the rows that were
returned in the process.



Chapter 3: Moni toring the PostgreSQL Server

15

Figure 3.4: The tests mapped to the PostGreSQL Server layer

3.3.1 PostgreSQL Background I/O Test

Checkpoints are points in the sequence of transactions at which it is guaranteed that the heap and
index data files have been updated with all information written before the checkpoint. At checkpoint
time, all dirty data pages are flushed to disk and a special checkpoint record is written to the log file.
In the event of a crash, the crash recovery procedure looks at the latest checkpoint record to
determine the point in the log (known as the redo record) from which it should start the REDO
operation. Any changesmade to data files before that point are guaranteed to be already on disk.

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load.
Tominimize this I/O, there is a separate server process called the background writer in PostgreSQL,
whose sole function is to issue writes of “dirty” shared buffers. The background writer will
continuously trickle out dirty pages to disk, so that only a few pages will need to be forced out when
checkpoint time arrives, instead of the storm of dirty-buffer writes that formerly occurred at each



Chapter 3: Moni toring the PostgreSQL Server

16

checkpoint. However, there is a net overall increase in I/O load, because where a repeatedly-dirtied
page might before have been written only once per checkpoint interval, the background writer might
write it several times in the same interval.

You hence need to continuously track how often the background writer performs checkpointing and
how much I/O load it imposes on the server, so that you can proactively detect potential overload
conditions, appropriately fine-tune the checkpointing activity performed by the background writer to
minimize the I/O, and thus prevent the performance degradation that may otherwise occur on the
server. The PostgreSQL Background I/O test helps achieve all of the above. In the process, the
test also reports useful statistics related to shared buffers.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test : One set of results for the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in the USERNAME text box.

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

17

Measurement Description Measurement
Unit Interpretation

Checkpoint
requests:

Indicates the number of
checkpoint requests
received by the server
during the last
measurement period.

Number A checkpoint request is generated
every checkpoint_ segments log
segments, or every checkpoint_
timeout seconds, whichever comes
first. While checkpoint_ segments
denotes the maximum number of
log file segments between
automatic WAL checkpoints, the
checkpoint_ timeout indicates the
maximum time between WAL
checkpoints. The default settings
are 3 segments and 300 seconds
(5minutes), respectively. Reducing
checkpoint_ segments and/or
checkpoint_ timeout causes
checkpoints to occur more often.
This allows faster after- crash
recovery (since less work will need
to be redone). However, one must
balance this against the increased
cost of flushing dirty data pages
more often. If full_page_writes is
set (as is the default), there is
another factor to consider.

To ensure data page consistency,
the first modification of a data page
after each checkpoint results in
logging the entire page content. In
that case, a smaller checkpoint
interval increases the volume of
output to the WAL log, partially
negating the goal of using a smaller
interval, and in any case causing

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

18

Measurement Description Measurement
Unit Interpretation

more disk I/O. Checkpoints are
fairly expensive, first because they
require writing out all currently dirty
buffers, and second because they
result in extra subsequent WAL
traffic as discussed above. It is
therefore wise to set the
checkpointing parameters high
enough that checkpoints don’t
happen too often.

Check point time
outs:

Indicates the number of
scheduled checkpoints
that did not occur even
after the checkpoint_
timeout setting was
violated during the last
measurement period.

Number Ideally, the value of this measure
should be low. A consistent
increase in this value is a cause of
concern, as it indicates that
checkpoints are not occurring in the
desired frequency. This in turn will
significantly slowdown after-crash
recovery, as more work will have to
be redone.

Buffers freed: Indicates the total
number of buffers that
were released for re-use
from the buffer cache
during the last
measurement period,
when the checkpoint_
segments setting was
violated; this  typically
causes the background
writer to automatically
write dirty buffers to the
disk.

Number A high value is desired for this
measure. A low value could
indicate a checkpointing
bottleneck, owing to which the
background writer is unable to
write updated index and heap files
to the disk at an optimal rate. In
such cases, the buffer cache may
not have adequate free buffers to
service subsequent write requests.
This is a cause for concern in write-
intensive database environments. 

Buffers cleaned: Indicates the number of
buffer that were written
to the disk during the last

Number The background writer typically
stalls some other process for a



Chapter 3: Moni toring the PostgreSQL Server

19

Measurement Description Measurement
Unit Interpretation

measurement period in
anticipation of being
allocated in the future.

moment while it writes out dirty
data. To keep that from happening
as often, the background writer
process scans forward looking for
blocks that might be allocated in the
near future that are dirty and that
have a low usage count
(alternatively called the Least
Recently Used or LRUblocks).
When it finds them, it writes some
of them out pre-emptively, based
on historical allocation rates.

Maxwritten: Indicates the maximum
number of dirty buffers
that can be written into
the buffer cache during
the last measurement
period.

Number If this measure indicates a high
value it indicates that adequate
buffers are not free in the cache. To
optimize the value of this measure,
you can increase the value of the
bgwriter_ lru_ maxpages
parameter.

Buffers freed by
connections:

Indicates the number of
buffers that were
released from the cache
for re-use during the last
measurement period,
when users wrote data
directly to the disk.

Number A high value is desired for this
measure, as it reduces the need for
an I/O-intensive operation such as
‘checkpointing’. 

Buffers allocated: Indicates the total
number of calls to
allocate a new buffer for
a page (whether or not it
was already cached)
during the last
measurement period.

Number



Chapter 3: Moni toring the PostgreSQL Server

20

3.3.2 PostgreSQLDatabases Test

For each database on the PostgreSQL server, this test reports the transaction load on the database
and reveals how well the database processes the transaction requests to it and how well it utilizes its
cache. Overload conditions and processing bottlenecks are thus revealed.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for every database on the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

21

9. SSL - The name of this user has to be specified in the USERNAME text box.

10. Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose theOn option. To disable the capability, click on theOff
option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Measurement Description Measurement
Unit Interpretation

Database size: Indicates the current
size of this database.

KB

Cache hit ratio: Indicates the
percentage of requests
to this  database that
were serviced by the
cache, without having to
read from disk.

Percent Because reading from the cache is
less expensive than reading from
disk, you want the ratio to be high.
The higher this value is, the better.
Generally, you can increase the
cache hit ratio by increasing the
amount of memory available to the
database server.

The detailed diagnosis of this
measure provides you with the
complete details of the database
such as the number of server
processes running on it, the
number of transactions committed
and rolled back, and the number of
rows inserted, updated, and
deleted.

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

22

Measurement Description Measurement
Unit Interpretation

Commit ratio: Indicates the rate at
which live rows are
fetched while this index
is scanned.

Percent

Server process: Indicates the number of
processes that are
currently running on this
database.

Number

Inserts: Indicates the rate at
which the records are
inserted into this
database.

Inserts/Sec

Deletes: Indicates the rate at
which the records are
deleted from this
database.

Deletes/Sec

Updates: Indicates the rate at
which records are
updated into this
database.

Updates/Sec

Commits: Indicates the transaction
throughput.

Commits/Sec A decrease in this measure during
the monitoring period may indicate
that the applications are not doing
frequent commits. This may lead to
problems with logging and data
concurrency.

The cause has to be probed in the
application.

Rollbacks: Indicates the rate at
which rollbacks
occurred on this
database.

Rollbacks/Sec A high rollback rate is an indicator
of bad performance, since work
performed up to the rollback point
is wasted. The cause of the
rollbacks has to be probed in the



Chapter 3: Moni toring the PostgreSQL Server

23

Measurement Description Measurement
Unit Interpretation

application.

Rows fetched: Indicates the rate at
which the rows that
were read from this
database based on a
user query are stored in
the buffer.

Fetches/Sec

Rows returned: Indicates the rate at
which the rows are
fetched from the buffer
and sent to the client
application.

Returns/Sec If the size of the rows that are
fetched from the buffer is too large,
then the rows are fragmented and
transferred to the client which is
time consuming. This may in turn
affect the performance of the
database to some extent.

Blocks read: Indicates the rate at
which the blocks are
read from this database.

Fetches/Sec

Block hits: Indicates the rate at
which the blocks are
fetched after a read is
performed in this
database.

Hits/Sec

3.3.3 PostgreSQL Indexes Test

An index is a data structure that a database uses to reduce the amount of time it takes to perform
certain operations. An index can also be used to ensure that duplicate values don’t appear where
they are not needed.

This test monitors the indexes on the PostgreSQL server and helps administrators quickly and
accurately assess the effectiveness of these indexes.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent



Chapter 3: Moni toring the PostgreSQL Server

24

Outputs of the test :One set of results for every index for every table in each database that is
configured for monitoring on the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

10. SSL - The name of this user has to be specified in the USERNAME text box.

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

25

Measurement Description Measurement
Unit Interpretation

Index scans: Indicates the rate at
which the index scans
are initiated on this index
in this database .

Scans/Sec

Rows read: Indicates the rate at
which the index entries
(rows) are read during
the index scans on this
index.

Reads/Sec

Rows fetched: Indicates the rate at
which the rows are
fetched from this index
upon execution of a
query.

Fetches/Sec If the value of this measure is
greater than the value of the Rows
read measure, it indicates a
possibility of index fragmentation or
that the executed query is
inefficient.

Measurements made by the test

3.3.4 PostgreSQLUnused Indexes Test

While at one end indexes greatly enhance database performance, at the other they also add
significant overhead to table change operations. Useless/unused indices can therefore be
unnecessary resource hogs. Such indexes are typically not used by any regular query and may not
enforce a constraint. However, these unneeded indexes cost you in several ways: they slow
updates, inserts and deletes; they may keep HOT from updating the row in-place, requiring more
VACUUMs; they take time to VACUUM; they add to query planning time; they take time to backup
and restore. Administrators hence need to identify such indexes and eliminate them. The
PostgreSQL Unused Indexes test helps administrators achieve the same. This test reports the
number and names of unused/useless indexes, and thus prompts administrators to remove them so
as to save the server from unnecessary performance degradations.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for the target PostgreSQL server



Chapter 3: Moni toring the PostgreSQL Server

26

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

10. SSL - The name of this user has to be specified in the USERNAME text box.

11. Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose theOn option. To disable the capability, click on theOff
option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

27

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Measurement Description Measurement
Unit Interpretation

Number of
indexes:

Indicates the number of
indexes that are currently
unused/useless on the
server.

Number A high value of this measure is a
cause for concern. Use the
detailed diagnosis of this measure
to identify the unused indexes and
takemeasures to get rid of them.

Measurements made by the test

3.3.5 PostgreSQL Tables Test

The real test of the performance of a database server lies in how quickly the database responds to
queries. Whenever users complaint of slow execution of their queries, administrators need to know
the reason for the delay - is it because the queries themselves are badly designed? or is it due to how
the database server performs table scans and returns the requested result set to the queries?  The
PostgreSQL Tables test helps with this root-cause analysis.

This test auto-discovers the tables in the configured databases and reports the number of times
every table was scanned, the type of scanning (sequential or index) that was performed, and the
rate at which the server reads data (via index and sequential scans) from each table. On the basis of
this data, the test also indicates if any table is experiencing any query processing bottlenecks, and if
so, how severe is the problem. In addition, the test also reveals how quickly critical database
operations such as inserts, deletes, and updates, are performed on every table. Using this
information, administrator can figure out whether/not the number and nature of scans performed on
the tables are causing queries to the corresponding database to slowdown.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for each table on every database configured for monitoring
on the target PostgreSQL server



Chapter 3: Moni toring the PostgreSQL Server

28

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

10. SSL - The name of this user has to be specified in the USERNAME text box.

Configurable parameters for the test

Measurement Descrption Measurement
Unit Interpretation

Sequence scans
count:

Indicates the number of
sequential scans
initiated on this table

Number Sequential or Full table scan is a scan
made on the database where each

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

29

Measurement Descrption Measurement
Unit Interpretation

during the last
measurement period.

row of the table under scan is read in
a sequential (serial) order and the
columns encountered are checked
for the validity of a condition. Full
table scans are usually the slowest
method of scanning a table due to the
heavy amount of I/O reads and writes
required from the disk which consists
of multiple seeks as well as costly disk
to memory transfers. Typically
therefore, a low value is desired for
thismeasure.

However, if a query returns more
than approximately 5-10% of all rows
in the table, then PostgreSQL prefers
the sequential scan over the index
scan. This is because an index scan
requires several I/O operations for
each row (look up the row in the
index, then retrieve the row from the
heap). Whereas a sequential scan
only requires a single I/O for each row
- or even less because a block (page)
on the disk contains more than one
row, so more than one row can be
fetched with a single I/O operation.

Sequence reads
row count:

Indicates the number of
rows that are
processed through
sequential scan from
this table during the last
measurement period.

Number

Average reads per
scan:

Indicates the rate at
which rows from this

Fetches/Sec A high value is desired for this
measure. If the value is low or falls



Chapter 3: Moni toring the PostgreSQL Server

30

Measurement Descrption Measurement
Unit Interpretation

table were processed
through a sequential
scan.

consistently, it indicates bottlenecks
while performing sequential scans on
the table.

Index scans: Indicates the number of
index scans initiated
over all the indexes
belonging to this table
during the last
measurement period.

Number An index scan occurs when the
database manager accesses an
index for any of the following reasons:

l To narrow the set of qualifying
rows (by scanning the rows in a
certain range of the index) before
accessing the base table.

l To order the output.

l To retrieve the requested column
data directly. If all of the requested
data is in the index, the indexed
table does not need to be
accessed. This is known as an
index-only access.

Typically, a high value of this
measure is desired, as index scans
are I/O-friendly operations.

However, if a query returns more
than approximately 5-10% of all rows
in the table, then PostgreSQL prefers
the sequential scan over the index
scan. This is because an index scan
requires several I/O operations for
each row (look up the row in the
index, then retrieve the row from the
heap). Whereas a sequential scan
only requires a single I/O for each row
- or even less because a block (page)
on the disk contains more than one
row, so more than one row can be



Chapter 3: Moni toring the PostgreSQL Server

31

Measurement Descrption Measurement
Unit Interpretation

fetched with a single I/O operation.

Average fetch per
index:

Indicates the rate at
which the rows are
processed through an
index scan on this
table.

Fetches/Sec A high value is desired for this
measure. If the value is low or falls
consistently, it indicates bottlenecks
while performing index scans on the
table.

Table scans: Indicates the number of
times this table was
scanned during the last
measurement period.

Number A high value indicates that there are
no proper indexes for this table. This
may cause delays in query execution.

Inserts: Indicates the rate at
which the rows are
inserted into this table.

Inserts/Sec

Deletes: Indicates the rate at
which the rows are
deleted from this table.

Deletes/Sec

Updates: Indicates the rate at
which the rows are
updated in this table.

Updates/Sec

Priority: Indicates the type of
problem that is
currently experienced
by this table while
processing a query.

The difference between the
Sequence scan count and the Index
scan count measures determines the
Priority of the problem experienced
by a table. The various Priorities this
measure reports and their numeric
equivalents as shown in the table:

Numeric Value State

1 Minor
Problem

2 Major



Chapter 3: Moni toring the PostgreSQL Server

32

Measurement Descrption Measurement
Unit Interpretation

Numeric Value State

Problem

3 Extreme
Problem

Note:

By default, this measure reports the
above- mentioned States while
indicating the type of problem that is
experienced while querying this
database. However, the graph of this
measure will be represented using
the corresponding numeric
equivalents of the states as
mentioned in the table above.

If the severity of this measure is high,
it indicates that the query used may
be inefficient or there may be a
problem with the indexing of the
column or there may be a possibility
of fragmentation of the table or index
of this database.

3.4 The PostGreSQL Service Layer

Besides revealing the availability and responsiveness of the database server, the tests mapped to
this layer also sheds light on the idle and waiting user connections on the server, the level of locking
activity on the server, and the number and details of queries to the server that have been running for
an unreasonably long time.



Chapter 3: Moni toring the PostgreSQL Server

33

Figure 3.5: The tests mapped to the PostgreSQL Service layer

3.4.1 PostgreSQLUser Connections Test

This test monitors the users who are currently connected to the server and reports the number and
state of each user connection. Using the metrics reported by this test, administrators can promptly
isolate idle and waiting connections, which are a drain on a server’s resources.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for each user currently connected to the target PostgreSQL
server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

34

we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in the USERNAME text box.

9. Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose theOn option. To disable the capability, click on theOff
option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Measurement Description Measurement
Unit Interpretation

Total connections: Indicates the total number
of connections that are
currently established by
this user on the server.

Number

Idle connections: Indicates the number of
connections of this user
that are currently idle on
the server.

Number Ideally, the value of this measure
should be low. A high value is
indicative of a large number of idle
connections, which in turn causes

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

35

Measurement Description Measurement
Unit Interpretation

unnecessary consumption of
critical server resources. Idle
connections also unnecessarily
lock new connections from the
connection pool, thereby denying
other users access to the server
for performing important tasks.
Use the detailed diagnosis of this
measure to view the details of the
idle connections.

Active
connections:

Indicates the number of
connections of this user
that are currently active.

Number Use the detailed diagnosis of this
measure to view the details of the
active connections.

Waiting
connections:

Indicates the number of
connections of this user
that are currently waiting
for a resource/database
object/ lock to be
released.

Number The value of this measure should
be kept at a minimum, as waiting
connections also cause a
resource drain.

Use the detailed diagnosis of this
measure to view the details of the
waiting connections.

3.4.2 PostgreSQL Locks Test

PostgreSQL provides various lock modes to control concurrent access to data in tables. These
modes can be used for application-controlled locking in situations where MVCC does not give the
desired behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate
modes to ensure that referenced tables are not dropped or modified in incompatible ways while the
command executes. The common lockmodes are as follows:

Ø ACCESS SHARE

Conflicts with the ACCESS EXCLUSIVE lockmode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query
that only reads a table and does not modify it will acquire this lockmode.



Chapter 3: Moni toring the PostgreSQL Server

36

Ø ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lockmodes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this
mode on the target table(s) (in addition to ACCESS SHARE locks on any other tables that are
referenced but not selected FOR UPDATE/FOR SHARE).

Ø ROW EXCLUSIVE

Conflicts with the SHARE , SHARE ROW EXCLUSIVE , EXCLUSIVE , and ACCESS
EXCLUSIVE lockmodes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in
addition to ACCESS SHARE locks on any other referenced tables). In general, this lock mode
will be acquired by any command that modifies the data in a table.

Ø SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE , SHARE, SHARE ROW EXCLUSIVE ,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against
concurrent schema changes and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, and CREATE INDEX CONCURRENTLY.

Ø SHARE

Conflicts with the ROW EXCLUSIVE , SHARE UPDATE EXCLUSIVE , SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a
table against concurrent data changes.

Acquired byCREATE INDEX (without CONCURRENTLY).

Ø SHARE ROW EXCLUSIVE

Conflicts with the ROWEXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lockmodes.

This lockmode is not automatically acquired by any PostgreSQL command.

Ø EXCLUSIVE

Conflicts with the ROW SHARE , ROW EXCLUSIVE , SHARE UPDATE EXCLUSIVE ,
SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.



Chapter 3: Moni toring the PostgreSQL Server

37

This mode allows only concurrent ACCESS SHARE locks, i.e., only reads from the table can
proceed in parallel with a transaction holding this lockmode.

This lock mode is not automatically acquired on user tables by any PostgreSQL command.
However it is acquired on certain system catalogs in some operations.

Ø ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE ,
SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE). Thismode guarantees that the holder is the only transaction accessing
the table in anyway.

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and
VACUUM FULL commands. This is also the default lock mode for LOCK TABLE statements
that do not specify amode explicitly.

The locking activity of a database server must be monitored carefully because an application holding
a specific lock for a long time could cause a number of other transactions relying on the same lock to
fail. The PostgreSQL Locks test does just that. For every lock mode that is currently active on the
database server, this test reports the total number of locks that are in that mode.

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for each lockmode currently held on the target PostgreSQL
server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

38

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in the USERNAME text box.

9. Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose theOn option. To disable the capability, click on theOff
option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Measurement Description Measurement
Unit Interpretation

Number of locks: Indicates the total
number of locks that are
currently held on the
database server.

Number A high valuemay indicate one of the
following:

l Too many transactions
happening

l Locked resources not being
released properly

l Locks are being held
unnecessarily.

With the help of the detailed
diagnosis of this measure, you can
determine the query that is waiting

Measurements made by the test



Chapter 3: Moni toring the PostgreSQL Server

39

Measurement Description Measurement
Unit Interpretation

for the lock, the user who executed
that query, the query that is
blocking, and the user who is
executing the blocking query. Once
the blocked and blocking queries
are isolated, you can then proceed
to do what’s required to release
unnecessary locks.

3.4.3 PostgreSQL Access Test

This test emulates a client executing a configured query on the database server, and in the process
reports whether the server is available, and if so, how quickly it responds to the client queries. The
unavailability of a network connection to the server and bottlenecks to responsiveness can thus be
promptly isolated.

Target of the test : PostgreSQL server

Agent deploying the test: An external agent; if you are running this test using the external agent
on the eGmanager box, thenmake sure that this external agent is able to communicate with the port
on which the target PostgreSQL server is listening. Alternatively, you can deploy the external agent
that will be running this test on a host that can access the port on which the target PostgreSQL
server is listening.

Outputs of the test :One set of results for the target PostgreSQL server.

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

40

ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. QUERY - Specify the select query to execute. The default is “select * from pg_tables”. Every
DATABASE beingmonitored, should have a corresponding QUERY specification

10. SSL - The name of this user has to be specified in the USERNAME text box.

Measurement Description Measurement
Unit Interpretation

Availability: Indicates whether the
database server is
currently available or
not.

Percent The availability is 100% when the
server is responding to a request and
0% when it is not. Availability
problems may be caused by a
misconfiguration/malfunctioning of the
database server, or because the
server has not been started.

Response time: Indicates the time
taken by this database
to respond to a user
query during the last
measurement period.

Secs A sudden increase in response time is
indicative of a performance bottleneck
at the database server.

Measurements made by the test

3.4.4 PostgreSQL LongQueries Test

This test reports the number of queries that are executing for each database. Using this test, you can
identify the query that takes too long to execute and thus the resource- intensive queries to a
database can be isolated quickly.



Chapter 3: Moni toring the PostgreSQL Server

41

Target of the test : PostgreSQL server

Agent deploying the test: An internal/remote agent

Outputs of the test :One set of results for the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special
database user account in every PostgreSQL database instance that requires monitoring.
When doing so, ensure that this user is vested with the superuser privileges. The sample script
we recommend for user creation for eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in the USERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here,
‘NULL’ means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.
By default, this is set to rdsadmin.

Note:

If you are monitoring a PostgreSQL server on the AWS EC2 cloud, thenmake sure that you do not
remove 'rdsadmin' from the EXCLUDE DB list.

9. ELAPSED TIME - Specify the duration (in seconds) for which a query should have executed for it
to be regarded as a long running query. The default value is 10.

10. SSL - The name of this user has to be specified in the USERNAME text box.

11. Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability

Configurable parameters for the test



Chapter 3: Moni toring the PostgreSQL Server

42

of this test for a particular server, choose theOn option. To disable the capability, click on theOff
option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Measurement Description Measurement
Unit Interpretation

Number of queries: Indicates the number of
queries currently
executing on the
database server that
have been running for
more time than the
configured ELAPSED

TIME.

Number The detailed diagnosis for this
measure indicates the exact
queries and which user is
executing the queries. This
information can be very useful in
identifying queries that may be
candidates for optimization.

Measurements made by the test



About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2018 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.


	Chapter 1: Introduction
	Chapter 2: How does eG Enterprise Monitor PostgreSQL Server?
	2.1 Managing the PostgreSQL Server

	Chapter 3: Monitoring the PostgreSQL Server
	3.1 The PostGreSQL I/O Layer
	3.1.1 PostgreSQL Table I/O Test
	3.1.2 PostgreSQL Index I/O Test

	3.2 The PostGreSQL Tablespaces Layer
	3.2.1 PostgreSQL Tablespaces Test

	3.3 The PostGreSQL Server Layer
	3.3.1 PostgreSQL Background I/O Test
	3.3.2 PostgreSQL Databases Test
	3.3.3 PostgreSQL Indexes Test
	3.3.4 PostgreSQL Unused Indexes Test
	3.3.5 PostgreSQL Tables Test

	3.4 The PostGreSQL Service Layer
	3.4.1 PostgreSQL User Connections Test
	3.4.2 PostgreSQL Locks Test
	3.4.3 PostgreSQL Access Test
	3.4.4 PostgreSQL Long Queries Test


	About eG Innovations

