P
%
)”.ff
&
\)///’]
.)00

Jul Aug Sep QOct

Monitoring Kubernetes/OpenShift Cluster

eG Innovations Product Documentation

e

Total Performance Visibility

www.eginnovations.com

Table of Contents

CHAPTER 1: INTRODU CTION i 1
1.1 How Does eG Enterprise Monitor a Kubernetes/OpenShift Cluster? 5
1.1.1 Configuring the eG Agentto Connectto the MasterNode 5
1.1.2 Configuring the eG Agent with an Authentication Bearer Token 5
CHAPTER 2: HOW TO MONITOR THE KUBERNETES/OPENSHIFT CLUSTER USING EG
ENTERP RISE ? ... 7
CHAPTER 3: MONITORING THE KUBERNETES/OPENSHIFT CLUSTER 10
3.1 The Kube Control Plane Layer ... i 12
3.1 Kube Events Test ... 12
3.1.2 API Server Connectivity Test 52
3.1.3 Kube Garbage Collection Test 56
3.1.4 Kube Master Services Test e 62
3.1.5 The Kube Cluster Layer _ ... i 66
3.1.6 Kube Cluster Nodes Test e e e 67
3.1.7 Kube Cluster Overview Test e 88
3.1.8 Kube Namespaces Test ... e 101
3.1.9 Kube Persistent Volumes Test 117
3.1.10 The Kube Workloads Layer e 123
3.1.11 Pods by Namespace Test ... e 124
3.1.12 Deployments by Namespace Test 143
3.1.13 Daemonset by Namespace 156
3.1.14 Horizontal Pod Autoscaler by Namespaces Test 163
3.1.15 Jobs by Namespaces Test e 171
3.1.16 The Kube Application Services Layer e 177
3.1.17 Services by Namespace Test 178
ABOUT EGINNOV ATIONS i 185

Table of Figures

Figure 1.1: Basic architecture of a Kubernetes Cluster _ 2
Figure 1.2: How the Kubernetes Cluster Works e 3
Figure 2.1: Choosing to monitor Kubernetes / OpenShift, 7
Figure 2.2: Selecting the remote agent that should monitor the Kubernetes cluster _..._..._.. _......... 8
Figure 2.3: Adding a Kubernetes/OpenShift Cluster 8
Figure 3.1: Layer model of the Kubernetes/OpenShift Cluster 10
Figure 3.2: The tests mapped to the Kube Control Plane layer 12
Figure 3.3: The detailed diagnosis of the Back-off restarting failed containers measure 50
Figure 3.4: The detailed diagnosis of the Killing containers measure i ... 51
Figure 3.5: The detailed diagnosis of the Containers exceeded grace period measure _......._ 51
Figure 3.6: The detailed diagnosis of the Evicted podsmeasure i, 51
Figure 3.7: The detailed diagnosis of the Failed to stop pods measure 51
Figure 3.8: The detailed diagnosis of the Pulling images measure e 51
Figure 3.9: The detailed diagnosis of the Failed resource metricmeasure 52
Figure 3.10: The detailed diagnosis of the Failed to compute desired number of replicas measure 52
Figure 3.11: The detailed diagnosis of the Found failed daemon pods on node measure_..................... 52
Figure 3.12: The tests mapped to the Kube Cluster layer 67
Figure 3.13: The detailed diagnosis of the Running pods measure 87
Figure 3.14: The detailed diagnosis of the Total containers measure oiiiiiiiiiiiiiiiain. 87
Figure 3.15: The detailed diagnosis of the CPU limits allocation measure 87
Figure 3.16: The detailed diagnosis of the CPU requests allocation measure 88
Figure 3.17: The detailed diagnosis of the Memory limits allocation measure 88
Figure 3.18: The detailed diagnosis of the Memory requests allocation measure 88
Figure 3.19: The detailed diagnosis of the Master nodes measure i, 98
Figure 3.20: The detailed diagnosis of the Worker nodes measure iiiii...... 98
Figure 3.21: The detailed diagnosis of the Nodes added to clustermeasure 99
Figure 3.22: The detailed diagnosis of the Nodes removed from clustermeasure 99
Figure 3.23: The detailed diagnosis of the Nodes notrunning measure 99
Figure 3.24: The detailed diagnosis of the Unknown nodes measure 99

Figure 3.25: The detailed diagnosis of the Running pods measure reported by the Kube Cluster Overview test . 100
Figure 3.26: The detailed diagnosis of the Pending pods measure reported by the Kube Cluster Overview test ..100

Figure 3.27: The detailed diagnosis of the CPU requests allocation measure reported by the Kube Cluster Over-

VW S . 101
Figure 3.28: The detailed diagnosis of the Memory request allocation measure reported by the Kube Cluster

OVeIVIBW St e 101
Figure 3.29: The detailed diagnosis of the Total Pods measure 116
Figure 3.30: The detailed diagnosis of the Total services measure 117

Figure 3.31: The detailed diagnosis of the Status measure reported by the Kube Persistent Volumestest 123

Figure 3.32:
Figure 3.33:
Figure 3.34:
Figure 3.35:
Figure 3.36:
Figure 3.37:
Figure 3.38:

Figure 3.39:
test

Figure 3.40:
Figure 3.41:
Figure 3.42:
Figure 3.43:
Figure 3.44:
Figure 3.45:
Figure 3.46:

The tests mapped to the Kube Workloads layer e, 124
The detailed diagnosis of the Status measure reported by the Pods by Namespace test _.._........ 142
The detailed diagnosis of the Age measure reported by the Pods by Namespacetest ..._........... 142
The detailed diagnosis of the Are all init containers initialized? measure 142
The detailed diagnosis of the Terminated containers measure 142
The detailed diagnosis of the Waiting containers measure 143
The detailed diagnosis of the Age measure of the Deployments by Namespacetest .._............. 155
The detailed diagnosis of the Is available? measure reported by the Deployments by Namespace

__ 156
The detailed diagnosis of the Total unavailable pods with deploymentmeasure _...._............... 156
The detailed diagnosis of the Age measure of the DaemonSet by Namespacetest 162
The detailed diagnosis of the DaemonSet currently scheduled on nodes measure ._..._.........._. 163
The detailed diagnosis of the Is scaling active? measure 171
The detailed diagnosis of the Longest running jobs measure 177
The tests mapped to the Kube Application Services layer 178
The detailed diagnosis of the Age measure of the Services by Namespacetest ..._.............._.. 184

Chapter 1: Introduction

Chapter 1: Introduction

Kubernetes is an open-source system for managing - i.e., running and co-ordinating - containerized
applications across a cluster of machines. It allows users to define how their applications should run
and how they should interact with other applications or the outside world. Using Kubernetes, users
can ensure high-availability of their containerized applications, scale their services up or down,
perform graceful rolling updates, and switch traffic between different versions of applications to test
features or rollback problematic deployments.

At its base, Kubernetes brings together multiple physical or virtual servers into a cluster using a
shared network to communicate between them. Though the cluster can contain any host that runs
containerized applications, the most common or popular deployment of Kubernetes has it managing
a cluster of Docker hosts. This cluster is the physical platform where all Kubernetes components,
capabilities, and workloads are configured.

The machines in the cluster are each given a role within the Kubernetes ecosystem. One server (or a
small group in highly available deployments) functions as the master server. This server acts as a
gateway and brain for the cluster. It is the primary point of contact with the cluster and is responsible
for most of the centralized logic Kubernetes provides.

The other servers in the cluster are designated as worker (or slave) nodes: servers responsible for
accepting and running workloads using local and external resources. Worker nodes run applications
and services in containers, and therefore require a container runtime (like Docker). The node
receives work instructions from the master server and creates or destroys containers accordingly.

Together, the Kubernetes master and worker nodes form the Kubernetes control plane. To ensure
the high availability of the containerized applications and services, the control plane responds to
changes in the cluster and works to restore the cluster to its desired state.

Chapter 1: Introduction

Worker Node 1
Pod 1 Pod 2 Pod 3

Container 1
Container 1 [N [N
Container 2
Kubernetes Master
° API Server DOCKER
Scheduler \)
Worker Node 2

Controller-Manager Pod 1 Pod 2 Pod 3
Container 1
eted Container 1 [—
I N Container 2
Container 2

kubectl Container 3

\ kubelet)

User Interface

Hity

Figure 1.1: Basic architecture of a Kubernetes Cluster

The cluster's desired state is typically defined by the user (a developer/admin) who connects to the
Kubernetes master server. To represent the state of a cluster, Kubernetes uses persistent entities
called Objects. A Kubernetes object is a “record of intent’—once you create the object, the
Kubernetes system will constantly work to ensure that object exists. By creating an object, you are
effectively telling the Kubernetes system what you want your cluster’s workload to look like; this is
your cluster’s desired state. Some of the most commonly used Kubernetes objects include:

« Pod: A Pod represents a unit of deployment: a single instance of an application in Kubernetes,
which might consist of either a single Docker container or a small number of containers that are
tightly coupled and that share resources. Other than container(s), a Pod encapsulates a unique
network IP and options that govern how the container(s) should run.

» Service: A Service is an abstraction which defines a logical set of Pods and a policy by which to
access them (sometimes this pattern is called a micro-service).

« Volume: At its core, a volume is just a directory, possibly with some data in it, which is accessible
to the containersin a Pod.

o Namespace: Kubernetes supports multiple virtual clusters called Namespaces, which are backed
by the same physical cluster. Namespaces are a way to divide cluster resources between multiple
users (via resource quota).

« ReplicaSet: A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any
given time. As such, it is often used to guarantee the availability of a specified number of identical
Pods.

Chapter 1: Introduction

o Deployment: A Deployment provides declarative updates for Pods and ReplicaSets. You
describe a desired state in a Deployment. You can define Deployments to create new
ReplicaSets, or to remove existing Deployments and adopt all their resources with new
Deployments.

« DaemonSet: A DaemonSet ensures that all (or some) Nodes run a copy of a Pod - eg., running a
cluster storage daemon, such as glusterd, ceph, on each node.

Every Kubernetes object includes two nested object fields that govern the object’s configuration: the
object spec and the object status. When a user connects to the master server, he/she must provide a
spec describing the desired state for the object—the characteristics that the user wants the object to
have. For instance, a Kubernetes Deployment is an object that can represent an application running
on the cluster. When the user creates the Deployment, he/she might set the Deployment spec to
specify that they want three replicas of the application to be running.

Mastor etcd (key-value DB, SSOT)
Controller Manager Scheduler
User (Controller Loops) API Server (REST API) (Bind Pod to Node)
! t—*1 e
Nodes
Legend: Networking VNetworking Networking
CNI
CRI Kubelet Kubelet Kubelet
Qcl Container Container Container
PrLO‘bm ’ Runtime Runtime Runtime
aRPC
JSON 4— 0s 0s 0s

Figure 1.2: How the Kubemetes Cluster works

The master server exposes a Kubernetes API (the kube-apiserver process), which receives the
object spec from the user. The APIlthen runs the spec by the scheduler (the kube-scheduler
process). The scheduler selects the worker (or slave) node to which the new objects should be
assigned. Factors taken into account for scheduling decisions include individual and collective
resource requirements, hardware/software/policy constraints, affinity and anti-affinity specifications,
data locality, inter-workload interference and deadlines. Alongside, the master sever also stores the
configuration and status data of objects created, in a consistent, highly-available key-value store
called etcd.

Chapter 1: Introduction

Once the scheduler assigns a worker (or slave) node, the controller manager (the kube-controller-
manager process) on the master node then sends the object spec to that node (via the Kubernetes
API), so it can create the desired object.

Upon receipt of the object spec, the kubelet on that node ensures objects are created accordingly.
The kubelet is the node-agent that resides on each worker node. The kubelet is also responsible for
registering a node with a Kubernetes cluster, and sending events, pod status, and resource
utilization reports to the master server.

At frequent intervals, the kubelet, via the API, updates the etcd on the master with the Object status
of objects. This is the actual state of the objects. The watch functionality of etcd monitors changes to
the Object spec (i.e., desired state) and the Object status (i.e., actual state). If the Object spec and
Object status do not match, then the control loops run by the controller manager respond to these
discrepancies and work to make the actual state of all the objects in the system match the desired
state that the user provided. For example, if the kubelet reports that a Pod in a ReplicaSet is down,
then the etcd's watch functionality figures out that the object spec is not in sync with the object status.
To manage the state of objects, the controller manager, through control loops, sends instructions
(via API) to the kubelet to create another Pod or restart the Pod that is down, and thus restores the
ReplicaSet object to its desired state.

Now, if the kubelet on the worker node fails to create a desired object - say, a Pod - then the desired
state of the cluster will not be restored. Likewise, if a Pod running a critical application/service
suddenly goes down, and the kubelet fails to restart that Pod or create another one in its stead, then
again the actual state will not be in sync with the desired state. Under such circumstances,
containerized applications and services may be rendered unavailable to end- users. Since
Kubernetes is widely used in mission-critical environments - eg.,microservices, DevOps, serverless
computing, and multi-cloud environments - for processing business-critical workloads, the non-
availability of applications can adversely impact productivity and business continuity. To avoid this,
administrators must closely monitor the status of the objects managed and operations performed by
Kubernetes, proactively capture abnormalities, and resolve them well before end-users notice. This
is where eG Enterprise helps!

eG Enterprise provides a dedicated monitoring model for those Kubernetes clusters that manage
Docker hosts and containers.

Note:

eG Enterprise provides monitoring support to Kubernetes on Linux platforms only, and not on
Windows.

Chapter 1: Introduction

This model continuously monitors the status of the cluster nodes, the Kubernetes control plane
services running on the master node, and the workloads and application services on the worker
nodes. In the process, eG promptly detects and alerts administrators to real/potential operational
failures that may cause a mismatch between the actual state of objects and the desired cluster state.
Rapid problem detection enables swift problem resolution, which in turn ensures the high availability
of business-critical applications/services running within the containers in the cluster.

1.1 How Does eG Enterprise Monitor a Kubernetes/OpenShift
Cluster?

eG Enterprise monitors Kubernetes/OpenShift Cluster in an agentless manner.
Note:

eG Enterprise provides monitoring support to Kubernetes/OpenShift on Linux platforms only, and
not on Windows.

A single remote agent deployed on a Windows host in the environment uses the Kubernetes APl on
the master node of the Kubernetes/OpenShift cluster to pull useful metrics on cluster performance.

To enable the eG agent to use the Kubernetes API, you need to:

1. Configure the eG agent to connect to the master node of the Kubernetes/OpenShift cluster
2. Configure the eG agent with an authentication bearer token

Each of these requirements have been discussed in detail below.

1.1.1 Configuring the eG Agent to Connect to the Master Node

To connect to the Kubernetes API, you first need to configure the eG agent with the IP address of
the master node of the cluster. If the target cluster consists of more than one master node, then the
eG agent should be configured to connect to the load balancer that is managing the cluster. In this
case, the load balancer will route the eG agent's connection request to any available master node in
the cluster, thus enabling the agent to connect with the API server on that node, run APl commands
on it, and pull metrics.

You can provide the |IP address of the master node/load balancer when adding a
Kubernetes/OpenShift cluster for monitoring using the eG administrative interface. Refer to Section
Chapter 2 to know how.

1.1.2 Configuring the eG Agent with an Authentication Bearer Token

Chapter 1: Introduction

To access the Kubernetes API, run APl commands on it, and pull metrics, the eG agent has to be
configured with a valid authentication bearer token. To generate this token, follow the steps below:

1.
2.

Go to the master node shell in the Kubernetes/OpenShift cluster.

Type the below command to create the "eginnovations" service account

kubectl create - f
https://raw.githubusercontent.com/e GInnovationsinc/kubernetes/master/eginnovations.yam|

Type the below command to get the secret name associated with "eginnovations" service
account. Usually, the secret name is in the format "eginnovations-token-xxxxx".

kubectl get serviceaccount eginnovations | grep -i tokens

Type the below command and replace the <xxxxx> with the secret name token from step 3 to
get the authentication bearer token.

kubectl describe secrets <xxxxx> | grep -1 "token."

Copy the token from step 4 and paste to the AUTHENTICATION TOKEN field in the monitoring
information section of the Kubernetes Cluster Preferences page that appears when
managing a Kubernetes/OpenShift cluster using the eG admin interface. To know how to
manage a cluster using the eG admin interface, refer to Section Chapter 2

Chapter 2: How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

Chapter 2: How to Monitor the Kubernetes/OpenShift
Cluster Using eG Enterprise?

To monitor the Kubernetes/OpenShift cluster using eG Enterprise, you need to first manage it.

eG Enterprise does not automatically discover the Kubernetes/OpenShift cluster. To manage the
cluster therefore, you need to manually add it to the eG Enterprise system using the eG admin
interface. For this, follow the steps below:

1. Login to the eG admin interface.

2. Figure 2.1 then appears prompting you to pick what you want to monitor. Select Kubernetes /
OpenShift from Figure 2.1.

What would you like to Discover/Monitor?

@ G Citrix m VMware Horizon j%iJ Hypervisors

m)m| (S

oo ‘ Cloud Infrastructures :?; Saa$ Applications @ Logon Simulators
ch Docker @ﬁ% Kubernetes / OpenShift

Figure 2.1: Choosing to monitor Kubemetes / OpenShift

3. Since eG Enterprise monitors Kubernetes/OpenShift clusters in an agentless manner,
eG Enterprise automatically displays the remote agents that may pre-exist in the target
environment (see Figure 2.2). From the listin Figure 2.2, select the remote agent you want to use
for monitoring the Kubernetes/OpenShift cluster, by clicking on it.

Chapter 2: How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

< Monitor Kubernetes/OpenShift Cluster

Q eG Enterprise monitors Kubernetes/OpenShift Cluster in an agentless manner. You will need a dedicated VM to perform agentless monitoring.

oad o & Install a remote agent

You have installed 7 remote agent. Get started now

oQ
e 192.168.8.192
9

Figure 2.2: Selecting the remote agent that should monitor the Kubernetes cluster

4. This will invoke Figure 2.3, using which you can configure the details of the Kubernetes cluster
you want to monitor.

< Monitor Kubernetes/OpenShift Cluster using 192.168.8.192

@ To menitor the Kubernetes/OpenShift Cluster component, specify the following

How to Configure?

Kubernetes/OpenShift Cluster pref

D O Component information
kubectl create -f
hitps://raw.githubusercontent com/eGinnovationsinc/kubemetes/mas
NICK NAME LB_IP ter/eginnovations.yaml
. and to get the secr
f 7 PORT 6443 account Usually,
RoSe 50000¢"
Monitoring information
]
5 AUTHENTICATION TOKEN 3avesrmMaXX0t7uYIzG|ds8UIo8DFeAGITIVEWA
Ll kubect! describe secrets <xoou> | g
LOAD BALANCER/MASTER NODE IR 192 168.11.198 5. Copy the token from step 4 and paste to the AUTHETNICATION TOKEN
field in the monitoring information section in the left panel of this page.

Figure 2.3: Adding a Kubernetes/OpenShift Cluster
5. InFigure 2.3, specify the following:
« Provide a unique NICK NAME for the Kubernetes/OpenShift Cluster you want to monitor.
Note:

eG Enterprise provides monitoring support to Kubernetes on Linux platforms only, and not on
Windows.

Chapter 2: How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

« Specify the PORT at which the cluster listens. The default port is 6443.

« The eG agent requires an authentication bearer token to access the Kubernetes API, run
APl commands on the cluster, and pull metrics of interest. The steps for generating this token
have been detailed in Section 1.1 You will also find these steps displayed in the right panel of
Figure 2.3. Once you generate a token by following the displayed (or documented) steps, copy
the token and paste it against AUTHENTICATION TOKEN in Figure 2.3.

o The Kubernetes API server exists on the master node of a Kubernetes/OpenShift cluster. This
means that the eG agent should connect to the master node to use the API. To enable this
connection, specify the IP address of the master node in the LOAD BALANCER / MASTER
NODE IP text box in Figure 2.3. Some Kubernetes/OpenShift clusters may support multiple
master nodes. When monitoring such a cluster, you will have to configure the eG agent with
the IP address of the load balancer that is managing the cluster. In other words, you will have
to specify the IP address of the load balancer in the LOAD BALANCER / MASTER NODE IP
text box of Figure 2.3. In this case, the load balancer will route the eG agent's connection
request to any available master node in the cluster, thus enabling the agent to connect with the
API server on that node.

« Finally, click the Update button in Figure 2.3 to add the component to eG Enterprise.

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Figure 1 depicts the layer model of the Kubernetes/OpenShift Cluster.

@ Kube Application Services

@ Kube Cluster

& Kube Control Plane

Figure 3.1: Layer model of the Kubernetes/OpenShift Cluster

Each layer of Figure 1 is mapped to tests that report a wide variety of status metrics - e.g., node
status, Pod status, Daemonset status, etc. - thus bringing abnormalities to the attention of
administrators. Using these metrics, administrators can find quick and accurate answers to the
following performance queries:

« Isthe Kubernetes API server available?
« Are any nodes running Daemonsets they should not?
« Are any nodes not running the Daemonsets they should?

« Are all Deployments healthy? If not, whih are the Deployments that failed to create the desired
number of Pod replicas?

« Isany Deployment unavailable?

« Has any Deployment failed to update all desired Pod replicas with changes to the Pod
template?

« Are backoff conditions not allowing any Horizonal Pod autoscaler to perform scaling?
« Is any autoscaler unable to compute scales? If so, why?

« Has the scaling ability of any autoscaler been inhibited by the replica limits set?

» Has the target utilization level for scaling been set correctly for all autoscalers?

« Did any autoscaler fail to scale the current replica count to the desired levels?

10

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

« Have any Jobs failed in a namespace? Which one is it?

« Are all Pods in a namespace, which were created by Jobs, running?
« Did any Job take too long to run? If so, which one is it?

« Are all nodes running? Which nodes are not running?

« Has any node been marked as 'unschedulable'? If so, which one?

« Is any node in a bad condition? If so, why? Is it because of a network misconfiguration?
insufficient disk space? low memory? process pressure?

« Are all nodes ready to accept Pods? Which are the ones that are not ready?
« Is any node running to full Pod capacity?

« Are any node's resources been overcommitted? If so, which resource (CPU or memory) has
been overcommitted, and which Pods on the nodes are over-subscribing to that resource?

« Is any node running out of CPU or memory resources?

« How many master and worker nodes does the cluster have?

« Are there any Pending Pods in the cluster? Which are they?

« Have any Pods in the cluster failed?

« Is the write-through cache of the etcd used optimally?

« Are Golang collectors spending too much time in garbage collection?

« Are all key master services up and running?

« Are any namespaces terminating?

« Has any namespace exhausted or is about to exhaust its quota of Pods and/or services?
« Isthe (CPU and/or memory) resource quota of any namespace nearing exhaustion?
« Are there any free Persistent Volumes, or are all of them bound to a claim?

« Has any Persistent Volume failed automatic reclamation?

« How many Pods in a namespace are ready to serve requests? Which ones are they?
« Which Pod is in what phase of its lifecycle?

« Are there any Pods with containers that are not ready to service requests?

« Which Pods are not yet scheduled to nodes, and why?

11

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

« Does any Pod have containers that terminated abnormally? If so, which containers and which
Pod terminated so, and why?

« Are any Services in a namespace in a Pending state currently? If so, why?

« Have any failure/problem events been detected recently in the Kubernetes cluster? What
events are those - did Pod creation fail? did any containers get killed? did Pods get evicted?
did any nodes run out of resources? did auto-scaling fail for any HPA? When did such events
occur, why, and which nodes and Pods were impacted?

3.1 The Kube Control Plane Layer
Using the test mapped to this layer, you can:

« Track and capture failure events that occur in the Kubernetes/OpenShift cluster;

Detect the unavailability of the Kube API server;

« ldentify master services that are not running;

Capture issues in garbage collection by Golang collectors

Kube Events
@ APl Server Connectivity
@ Kube Garbage Collection

e 0 Kube Master Services
' controller-manager
o eted-0
" scheduler

Figure 3.2: The tests mapped to the Kube Control Plane layer
3.1.1 Kube Events Test

Kubernetes events are a resource type in Kubernetes that are automatically created when other
resources have state changes, errors, or other messages that should be broadcast to the system.
These events are an invaluable resource when debugging issues in a Kubernetes cluster.

Hence, to be able to rapidly detect and troubleshoot issues impacting cluster performance,
administrators should keep an eye out for Kubernetes events, and capture these events whenever
they are created. The Kube Events test helps administrators achieve this!

12

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

This test intercepts Kubernetes events as and when they are created by the Kubernetes system,
and brings every such event to the notice of administrators. Such events can point to normal cluster

operations - eg., Pod creation, container creation etc. - and also abnormalities such as image pulling
failures, scheduling failures etc. Whenever the test alerts administrators to an error or a failure event,
administrators can use the detailed diagnostics provided by the test to determine why the
error/failure occurred. This can greatly help in troubleshooting problem events.

Target of the test : A Kubernetes/OpenShift Cluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on the master node and run APlI commands. To enable this connection, the eG
agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
in How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change

13

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes clusteris SSL-enabled. This is why, the eG agent, by

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, when manually adding that cluster for monitoring using the

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

14

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

DD Frequency

Detailed Diagnosis

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:1. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against

DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an

optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

» The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement Description m:?tsurement Interpretation
Terminated all | Indicates the number of times all Number Use the detailed diagnosis of this
pods the Pods in the cluster were measure to know which Pods on
terminated during the last which nodes were terminated in
measurement period. which namespace, and why.
Nodes Indicates the number of nodes that | Number
registered were registered during the last
measurement period.
Removing Indicates the number of nodes that | Number Draining a node does the following:
nodes were gracefully removed/drained

during the last measurement period.

« It cordons the node: Cordoning a
node means that it will be marked
unschedulable, so new pods can
no longer be scheduled to the

node.

15

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

« It evicts or deletes the Pods on
that node: After the node is made
unschedulable, the drain
command will try to evict the pods
that are already running on that
node. If eviction is supported on
the cluster (from Kubernetes
version 1.7) the drain command
will use the Eviction API that
takes disruption budgets into
account, if it's not supported it will
simply delete the pods on the

node.

Use the detailed diagnosis of this
measure to know which which nodes
wereremoved/drained from which
namespace, and why.

evicted pods

the last measurement period, Pods
were evicted.

Deleting nodes | Indicates the number of nodes that | Number Deleting the node object from
were deleted during the last Kubernetes causes all the Pod
measurement period. objects running on the node to be
deleted from the apiserver, and frees
up their names.
Use the detailed diagnosis of this
measure to know which nodes were
deleted from which namespace.
Deleting all Indicates the number of times all Number Use the detailed diagnosis of this
pods Pods on a node were deleted since measure to know which Pods were
the last measurement period. deleted from which nodes in which
namespace, and why.
Terminating Indicates the number of times since | Number One of the most useful events to

monitor is when a node begins
evicting pods. This event happens
when a node determines that pods

16

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement

Unit

Interpretation

need to be evicted to free up some
resource such as CPU, memory, or
disk. An eviction can have
devastating consequences if the
kubelet is unable to determine the
best resources to evict. For
instance, the kubelet detecting disk
pressure may sometimes evict Pods
that have no effect on disk usage.
The evicted Pods may also get
scheduled on other nodes,
overloading their other resources and
also causing evictions. Knowing
when evictions happened, and being
able to correlate it with other events
in that time frame, can help avoid the
issue.

You can use the detailed diagnosis
of this measure to know which Pods
were evicted and when eviction
occurred.

during the last measurement period.

Ready nodes | Indicates the number of times the | Number
NodeReady event occurred since
the last measurement period.
Nodes not Indicates the number of times the | Number Use the detailed diagnosis of this
ready NodeNotReady event occurred measure to know which nodes were
during the last measurement period. not ready , and when the event
occurred.
Nodes are Indicates the number of times the | Number Use the detailed diagnosis of this
schedulable NodeSchedulable event occurred measure to know when this event
during the last measurement period. started, when it ended, and which
nodes were found schedulable in the
process, and which Pods were
scheduled to those nodes.
CIDR not Indicates the number of times the | Number Kubernetes assigns each node a
available CIDRNotAvailable event occurred range of IP addresses, a CIDR

block, so that each Pod can have a

17

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

unique IP address.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

CIDR Indicates the number of times the | Number Use the detailed diagnosis of this
assignments | CIDRAssignmentFailed event measure to know when this event
failed occurred during the last occurred, why, on which nodes, and
measurement period. which Pods were impacted.
Starting Indicates the number of times the | Number
kubelets Starting event occurred during the
last measurement period.
Kubelet setup | Indicates the number of times the | Number Use the detailed diagnosis of this
failed KubeletSetupFailed event occurred measure to know when this event
during the last measurement period. occurred, why, on which nodes, and
which Pods were impacted.
Volume Indicates the number of times the | Number The FailedMount and
mounts failed | FailedMount event occurred during FailedAttachVolume events can help
the last measurement period. you debug issues with storage.
These events will prevent Pods from
starting correctly. You may think that
your Pods are just slow to start, but if
there are permissions or networking
issues when creating network
volumes, you will need to rectify
them to get your Pods working again.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
Nodes selector | Indicates the number of times in the | Number You can constrain a Pod to only be

mismatch

last measurement period, the
NodeSelectorMismatching event
occurred.

able to run on particular Node(s), or
to prefer to run on particular nodes.

nodeSelector is the simplest
recommended form of node selection
constraint. nodeSelector is a field of

18

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

PodSpec. It specifies a map of key-
value pairs. For the pod to be eligible
to run on a node, the node must have
each of the indicated key-value pairs
as labels (it can have additional
labels as well). The most common
usage is one key-value pair.

If, when attempting to schedule a
Pod, scheduler finds that that Pod's
nodeSelector does not have any
matching node, the
NodeSelectorMismatching event is
triggered. In this case, the Pod in
question will remain in the Pending
state until a matching node is found.

Insufficient
free CPU

Indicates the number of times
during the last measurement period
the InsufficientFreeCpu event was
triggered.

Number

If aPod is stuck in the Pending
state, it means that it can not be
scheduled onto a node. Generally
this is because there are insufficient
resources of one type or another that
prevent scheduling. The scheduler
triggers an InsufficientFreeCpu or an
InsufficientFreeMemory event at
around such times.

In this case you can try several
things:

« Add more nodes to the cluster.

« Terminate unneeded pods to

make room for pending pods.

« Check that the pod is not larger
than your nodes. For example, if
all nodes have a capacity of
cpu:1, then a pod with a request of

cpu: 1.1 will never be scheduled.

19

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Insufficient
free memory

Indicates the number of times
during the last measurement period
the InsufficientFreeMemory event
was triggered.

Number

You can use the detailed diagnosis
of these measures to identify the
nodes on which the events occurred,
when it occurred, which Pods were
impacted, and why.

Out of disk
nodes

Indicates the number of OutofDisk
events that occurred during the last
measurement period.

Number

OutOfDisk indicates that the file
system on the worker node is full.
Kubernetes begins migrating pods
off the node until the situation is fixed
and the status of the node moves
back to Ready.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Host network
not supported

Indicates the number of
HostNetworkNotSupported events
that occurred during the last
measurement period.

Number

If you use the host network mode for
a container, that container’s network
stack is not isolated from the node's
(the container shares the host’s
networking namespace), and the
container does not get its own IP-
address allocated. For instance, if
you run a container which binds to
port 80 and you use host networking,
the container’s application is
available on port 80 on the node’s IP
address. Host mode networking can
be useful to optimize performance,
and in situations where a container
needs to handle a large range of
ports, as it does not require network
address translation (NAT), and no
“userland-proxy” is created for each
port.

Undefined
shaper

Indicates the number of times the
NilShaper event occurred during the
last measurement period.

Number

If Pod requests bandwidth shaping,
but the shaper is undefined, then this
event occurs.

20

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Pulling event occurred during the
last measurement period.

Nodes Indicates the number of times the | Number Use the detailed diagnosis of this
rebooted Rebooted event occurred during the measure to know which nodes were
last measurement period. rebooted, when, why, and which
Pods were impacted.
Node has Indicates the number of times the | Number
sufficient disk | NodeHasSufficientDisk event was
triggered during the last
measurement period.
Nodes out of | Indicates the number of times the | Number OutOfDisk indicates that the file
disk space NodeOutofDisk event occurred system on the worker node is full.
since the last measurement period. Kubernetes begins migrating pods
off the node until the situation is fixed
and the status of the node moves
back to Ready.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
Invalid disk Indicates the number of times the | Number Use the detailed diagnosis of this
capacity InvalidDiskCapacity event measure to know when this event
occurred since the last occurred, why, on which nodes, and
measurement period. which Pods were impacted.
Free disk Indicates the number of times the | Number This event occurs if the host file
space failed FreeDiskSpaceFailed event system is full. One of the common
occurred during the last reasons for this is the garbage
measurement period. collector's failure to delete any
image.
Pulling images | Indicates the number of times the | Number During the deployment of an

application to a Kubernetes cluster,
you will typically want one or more
images to be pulled from a Docker
registry. In the application's manifest
file you specify the images to pull,
the registry to pull them from, and the
credentials to use when pulling the
images.

21

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mﬁiatsurement Interpretation
Use the detailed diagnosis of this
measure to know when this event
occurred, which image was being
pulled, and which nodes and Pods
were impacted by the event.
Images pulled | Indicates the number of times the | Number Images are pulled based on the
Pulled event occurred during the ImagePullPolicy.
last measurement period. The default pull policy is
IfNotPresent which causes the
Kubelet to skip pulling an image if it
already exists. If you would like to
always force a pull, you can do one
of the following:
« set theimagePullPolicy of the
container to Always.
« omit the imagePullPolicy and use
:latest as the tag for the image to
use.
« omit the imagePullPolicy and the
tag for the image to use.
« enable the AlwaysPulllmages
admission controller.
Images Indicates the number of times the | Number
created Created event occurred during the
last measurement period.
Images started | Indicates the number of times the | Number
Started event occurred during the
last measurement period.
Failed to pull Indicates the number of times the | Number Common causes for failure to pull
images Failed event occurred during the images are:
last measurement period.
« Network connectivity issues
« Incorrect image tag

22

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement

Unit

Interpretation

« Theimage does not exist

o Kubernetes does not have

permission to pull the image

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Images
neverpull
policy violated

Indicates the number of times
during the last measurement period
the ErrlmageNeverPull event
occurred.

Number

The never pull policy disables
images pulling completely. If this
policy is set, then the image is
assumed to exist locally. No attempt
is made to pull the image.

This pull policy should be used if you
want or need to have a full control on
which images are used. It is a good
choice for containers that are
dedicated to a project where only
specific images can be used.

If, when attempting to pull an image,
the kubelet finds that the image is
not present locally, then this policy is
violated.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Back off
pulling images

Indicates the number of times the
BackOff event occurred in the last
measurement period.

Number

This event is triggered, if:

« Thereis an invalid container

image tag;

« Kubernetes does not have

permissions to access the image;

« Theimage does not exist;

23

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Containers
created

Indicates the number of times the
Created event occurred in the last
measurement period.

Number

This event is triggered every time a
container is created.

Killing
containers

Indicates the number of times the
Killing event occurred in the last
measurement period.

Number

This event is triggered every time a
container is killed.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Containers
unhealthy

Indicates the number of times the
Unhealthy event occurred in the
last measurement period.

Number

There is a single main process that is
running in a container. Such a
process can start other child
processes within a container, if
necessary. Every such process,
including the main process, can have
its own lifecycle — but if the main
process stops, the container stops
as well.

A container is healthy, by the most
general definition, if its main process
is running. If the container's main
process is terminated unexpectedly,
then the container is considered
unhealthy.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Pods sync
failed

Indicates the number of times the
FailedSync event occurred in the
last measurement period.

Number

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

last measurement period.

Failed pods Indicates the number of times the | Number Use the detailed diagnosis of this
config FailedValidation event occurred in measure to know when this event
validation the last measurement period. occurred, why, on which nodes, and
which Pods were impacted.
Out of disk in | Indicates the number of times the | Number Sometimes, the container(s) running
pods OutOfDisk event occurred in the in a Pod can fill up disk space,
last measurement period. triggering an OutOfDisk event.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
Host/Port Indicates the number of times the | Number
conflict HostPortConflict event occurred in
the last measurment period.
Pods created | Indicates the number of times the | Number
SuccessfulCreate event occurred
in the last measurement period.
Failed Indicates the number of times the | Number This event is triggered if a
replicaset FailedCreate event occurred in the ReplicationController fails to create

Pods. In such a case, use the
detailed diagnosis of this measure to
know when this event occurred,
why, on which nodes, and which
Pods were impacted.

Typically, if a ReplicationController
cannot create Pods, you may have
to debug the Pods. The first stepin
debugging a Pod is taking a look at it.
Check the current state of the Pod
and recent events: Look at the state
of the containers in the Pod. Are they
all running? Have there been recent
restarts? Then, continue debugging
depending on the state of the Pods.
Are Pods stuck in a Pending

state? Then, check for resource
inadequacies. Are the Pods in

25

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description ﬁ::?tsurement Interpretation
Waiting state? Then, check if there
are any issues in image pulling. Are
the Pods crashing? Then, study the
container logs for troubleshooting the
same.
Pods deleted | Indicates the number of times the Number
SuccessfulDelete event occurred in
the last measurement period.
Pods delete Indicates the number of times the | Number Use the detailed diagnosis of this
failed FailedDelete event occurred in the measure to know when this event
last measurement period. occurred, why, on which nodes, and
which Pods were impacted.
Preempting Indicates the number of times the | Number
containers PreemptContainer event occurred
in the last measurement period.
Containers Indicates the number of times the | Number As part of the graceful termination
exceeded ExceededGracePeriod event lifecycle, Kubernetes first sends a
grace period occurred in the last measurement SIGTERM signal to the containers in
period. aPod to let the containers know that
they are going to be shut down soon.
At this point, Kubernetes waits for a
specified time called the termination
grace period. This is 30 seconds by
default. If the containers in the Pod
are still running after the grace
period, Kubernetes triggers the
ExceededGracePeriod event, and
sends the SIGKILL signal to forcibly
remove the containers.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
Failed to Indicates the number of times the Number The FailedAttachVolume is an error
attach volume | FailedAttachVolume event that occurs when Persistent Volume
occurred in the last measurement (PV)is unable to be detached from a
period. node. This means it can no longer be

26

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

Failed mount

Indicates the number of times the
FailedMount event occurred in the
last measurement period.

Number

attached to another node and
happens because Kubernetes will
not force detatch PVs from nodes. In
other words, the
FailedAttachVolume event is an
outcome of a fundamental failure to
unmount and detach the volume from
the failed node.

The FailedMount event typically
follows the FailedAttachVolume
event because the mount operation
happens after the attach operation
and because the attach has already
failed, it means that the mount
operation is not possible.

The FailedMount and
FailedAttachVolume events can help
you debug issues with storage.
These events will prevent Pods from
starting correctly. You may think that
your Pods are just slow to start, but if
there are permissions or networking
issues when creating network
volumes, you will need to rectify
them to get your Pods working again.

Use the detailed diagnosis of these
measures to know when these
events occurred, why, on which
nodes, and which Pods were
impacted.

Volume resize
failed

Indicates the number of times the
VolumeResizeFailed event
occurred in the last measurement
period.

Number

Typically, if a PVC is already
attached to a Pod, then resizing that
PVC would fail with the
VolumeResizeFailed event. In such
cases, update the size of the PV,
then edit the PVC accordingly, and
delete the Pod to get it to the
detached state. Then, recreate that

27

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description ﬁ::?tsurement Interpretation
Pod.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
File system Indicates the number of times the Number This event is triggered if errors are
resize failed FileSystemResizeFailed event encountered when expanding the file
occurred in the last measurement system.
period. Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.
Failed map Indicates the number of times the | Number Use the detailed diagnosis of this
volume FailedMapVolume event occurred measure to know when this event
in the last measurement period. occurred, why, on which nodes, and
which Pods were impacted.
Container Indicates the number of times the Number Typically, whenever Pod eviction
GC failed ContainerGCFailed event occurred thresholds are too close to the
in the last measurement period. node's physical memory limits, one
of these events will be triggered.
. . Use the detailed diagnosis of these
Image GC Indicates the number of times the
. . . measures to know when these
failed ImageGCFailed event occurred in .
) events occurred, why, on which
the last measurement period. i
nodes, and which Pods were
impacted.
Failed node Indicates the number of times the | Number The kubelet exposes a feature
allocatable FailedNodeAllocatableEnforcement named Node Allocatable that helps
enforcement event occurred in the last to reserve compute resources for
measurement period. system daemons.
Allocatable on a Kubernetes node is
defined as the amount of compute
resources that are available for
Pods.
To properly enforce node allocatable
constraints on the node, you must

28

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement

Unit

Interpretation

enable the new cgroup hierarchy via
the --cgroups-per-qos flag. This
flag is enabled by default. When
enabled, the kubelet will parent all
end-user pods under a cgroup
hierarchy managed by the kubelet.

Following is the recommended
cgroup configuration for Kubernetes
nodes. All OS system daemons are
expected to be placed under a top
level SystemReserved cgroup.
Kubelet and Container Runtime are
expected to be placed under
KubeReserved cgroup.

kube-reserved is meant to capture
resource reservation for kubernetes
system daemons like the kubelet,
container runtime, node problem
detector, etc.

system-reserved is meant to
capture resource reservation for OS
system daemons like sshd, udev,
etc

To optionally enforce system-
reservedon system daemons,
specify the parent control group for
OS system daemons as the value for
--system-reserved-cgroup kubelet
flag. If this specification includes an
invalid cgroup, then Kubelet will fail
to enforce system-reserved, and will
trigger the
FailedNodeAllocatableEnforcement
event.

Sandbox
changed

Indicates the number of times the
SandboxChanged event occurred in
the last measurement period.

Number

Whenever the config map or any
other part of a Pod setup changes,
the SandboxChanged event is

29

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

triggered.

Failed to
create pod
sandbox

Indicates the number of times the
FailedCreatePodSandBox event
occurred in the last measurement
period.

Number

At the lowest layers of a Kubernetes
node is the software that, among
other things, starts and stops
containers. We call this the
“Container Runtime”. The plugin API
for container runtimes in Kubernetes
is called Container Runtime
Interface (CRI).

A Pod is composed of a group of
application containers in an isolated
environment with resource
constraints. In CRI, this environment
is called PodSandbox.

Before starting a Pod, kubelet calls
RuntimeService.RunPodSandbox to
create the environment. This
includes setting up networking for a
pod (e.g., allocating an IP). If kubelet
is unable to create the environment
for running a Pod, the
FailedCreatePodSandBox event is
triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed pod
sandbox
status

Indicates the number of times the
FailedPodSandBoxStatus event
occurred in the last measurement
period.

Number

If kubelet is unable to get the Pod
sandbox status, then the
FailedPodSandBoxStatus event is
triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Container

Indicates the number of times the

Number

A Probe is a diagnostic performed

30

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

probe warnings

ContainerProbeWarning event
occurred in the last measurement
period.

Measurement
Unit

Interpretation

periodically by the kubelet on a
Container.

The kubelet can optionally perform
and react to three kinds of probes on
running Containers:

« livenessProbe: Indicates whether
the Container is running. If the
liveness probe fails, the kubelet
kills the Container, and the
Container is subjected to its

restart policy.

« readinessProbe: Indicates
whether the Container is ready to
service requests. If the readiness
probe fails, the endpoints
controller removes the Pod’s IP
address from the endpoints of all

Services that match the Pod.

« startupProbe: Indicates whether
the application within the
Container is started. All other
probes are disabled if a startup
probe is provided, until it
succeeds. If the startup probe
fails, the kubelet kills the
Container, and the Container is

subjected to its restart policy.

A ContainerProbeWarning event is
triggered when any of these probes
fail.

Use the detailed diagnosis of this

31

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed post
start hook

Indicates the number of times the
FailedPostStartHook event
occurred during the last
measurement period.

Number

Hooks enable Containers to be
aware of events in their management
lifecycle and run code implemented
in a handler when the corresponding
lifecycle hook is executed.

There are two hooks that are
exposed to Containers:

» PostStart: This hook executes
immediately after a container is
created. However, there is no
guarantee that the hook will
execute before the container
ENTRYPOINT. No parameters

are passed to the handler.

« PreStop: This hook is called
immediately before a container is
terminated due to an API request
or management event such as
liveness probe failure,
preemption, resource contention
and others. A call to the preStop
hook fails if the container is
already in terminated or
completed state. It is blocking,
meaning it is synchronous, so it
must complete before the call to
delete the container can be sent.
No parameters are passed to the

handler.

32

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

If a hook handler fails, it broadcasts
an event. While failure of the
PostStart hook handler triggers the
FailedPostStartHook event, the
failure of the PreStop hook handler

period.

Failed pre stop | Indicates the number of times the | Number triggers the FailedPreStopHook
hook FailedPreStopHook event occurred event.
during the last measurement period. i) i

Use the detailed diagnosis of these
measures to know when these
events occurred, why, on which
nodes, and which Pods were
impacted.

Node has Indicates the number of times the | Number If the MemoryPressure condition of a

sufficient NodeHasSufficientMemory event node is False, it implies that that

memory occurred in the last measurement node has sufficient memory. In such

period. cases, the

NodeHasSufficientMemory event is
generated.
Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which
Pods were impacted.

Failed Indicates the number of times the | Number The Horizontal Pod Autoscaler

resource FailedGetResourceMetric event automatically scales the number of

metric occurred in the last measurement Pods in a replication controller,

deployment or replica set based on
observed CPU utilization (or, with
custom metrics support, on some
other application-provided metrics).

At configured intervals, the controller
manager queries the resource
utilization against the metrics
specified in each
HorizontalPodAutoscaler definition.
The controller manager obtains the
metrics from either the resource
metrics API (for per-pod resource

33

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

metrics), or the custom metrics API
(for all other metrics). Typically,
metrics are fetched from a series of
aggregated APIs - metrics.k8s.io,
custom.metrics.k8s.io, and
external.metrics.k8s.io. The
controller then calculates the actual
utilization value of the resource,
considers the target/desired
utilization value that is set, and
computes the ratio between the
desired and actual metric value. The
autoscaler then scales the desired
number of replicas up or down based
on this ratio.

One of the common reasons for the
failure of auto-scaling is the inability
of the controller to fetch the resource
metrics from the API. Without the
metrics, scales cannot be computed,
and consequently, the count of
replicas cannot be scaled up/down.
The FailedGetResourceMetric is
broadcast everytime the controller
fails to get resource metrics.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Node has no Indicates the number of times the | Number If the DiskPressure condition of a
disk pressure | NodeHasNoDiskPressure event node is False, it implies that that
occurred in the last measurement node has sufficient disk space. In
period. such cases, the
NodeHasNoDiskPressure event is
generated.

Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Pods were impacted.

in the last measurement period.

Node has Indicates the number of times the | Number If the PIDPressure condition of a
sufficient PID | NodeHasSufficientPID event node is False, it implies that that
occurred in the last measurement node has sufficient processes. In
period. such cases, the
NodeHasSufficientPID event is
generated.
Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which
Pods were impacted.
Provisioning Indicates the number of times the | Number This event is triggered if Kubernetes
failed ProvisioningFailed event occurred fails to provision a volume for a PVC.

If a PV belonging to a StorageClass
needs to be dynamically provisioned
fora PVC, then a key field that your
StorageClass definition should
contain is the Provisioner.

A Provisioner determines what
volume plugin is to be used for
provisioning PVs dynamically.
Likewise, the definition should also
include mountOptions. In this case,
if the Provisioner - i.e., volume plugin
- in use does not support mount
options, then volume provisioning
will fail. Where multiple
mountOptions are provided,
provisioning failures will also occur if
even one of the mount options is
found to be invalid.

Provisioning failures may also occur

if:

o The volume plugin does not match

any of the supported plugins;

35

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

« The application is requesting more
storage space than is available in
the underlying volumes that have

been provisioned.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Back-off
restarting
failed
containers

Indicates the number of times the
BackOff event occurred in the last
measurement period.

Number

If this event is triggered, it means
that Kubernetes started your
container, then the container
subsequently exited. This forced
Kubernetes to restart the container.
After restarting it a few times,
Kubernetes declares that the
container is in the BackOff state.
However, Kubernetes will keep on
trying to restart it. Common causes
for this are:

. Theapplication inside the
container keeps crashing

. Some type of parameters of the
pod or container have been
configured incorrectly

. An error has been made when
deploying Kubernetes

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Completed
jobs

Indicates the number of times the
SawCompletedJob event occurred
in the last measurement period.

Number

A Job creates one or more Pods and
ensures that a specified number of
them successfully terminate. As
pods successfully complete, the Job
tracks the successful completions.

36

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

When a specified number of
successful completions is reached,
the task (ie, Job) is complete.

This event is triggered every time a
Job completes.

Error creating
pods

Indicates the number of times the
FailedCreate event occurred, with
the message "Error creating: pods”,
in the last measurement period

Number

If a Job fails to create Pods, then this
event is triggered. An entire Pod can
fail for a number of reasons, such as
when the Pod is kicked off the node
(node is upgraded, rebooted, deleted,
etc.), orif a container of the Pod fails
and the
.spec.template.spec.restartPolicy =
"Never". When a Pod fails, then the
Job controller starts a new Pod.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Successfully
schedule pods

Indicates the number of times the
Scheduled event occurred, in the
last measurement period.

Number

This event is generated if a Pod is
successfully scheduled to a node.

Failed to
schedule pods

Indicates the number of times the
FailedScheduling event occurred in
the last measurement period.

Number

This event is generated if a Pod
could not be scheduled to any node
in a cluster. One of the common
causes for scheduling failures is the
lack of adequate memory and/or
CPU resources in the nodes to
accommodate the Pods.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed to stop
pods

Indicates the number of times the
FailedKillPod event occurred in the
last measurement period.

Number

This event occurs if a Pod is stuck in
the Terminating state. This is
detected by finding Pods where

37

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

every container has been terminated,
but the Pod is still running. Usually,
this is caused when a node in the
cluster gets taken out of service
abruptly, and the cluster scheduler
and controller-manager do not clean
up all of the pods on that node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed to
create a pod
container

Indicates the number of times the
FailedCreatePodContainer event
occurred in the last measurement
period.

Number

This event is generated if
Kubernetes fails to create a
containerin a Pod.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Network is not
ready

Indicates the number of times the
NetworkNotReady event occurred
in the last measurement period.

Number

This event is triggered if the Pod's
runtime network is not ready.

Failed to place
pods on node

Indicates the number of times the
FailedPlacement event occurred in
the last measurement period.

Number

This event is triggered if the
Daemonset Controller fails to place a
Pod on a node. Common reasons for
this are:

« Insufficient resources on the

node;

« The node has been marked as

Unschedulable

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes.

Found failed
daemon pods

Indicates the number of times the
FailedDaemonPod event occurred

Number

This event is often associated with
the cluster health rather than issues

38

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

on node

in the last measurement period.

with the daemon set.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes.

Failed to
cancel
deployments

Indicates the number of times the
DeploymentCancellationFailed
event occurred in the last
measurement period.

Number

Cancelled
deployments

Indicates the number of times the
DeploymentCancelled event
occurred in the last measurement
period.

Number

While a running Deployment can be
canceled, most often, it is the stuck
Deployments that are canceled. The
cancellation is a best-effort
operation, and may take some time
to complete. The replication
controller may partially or totally
complete its deployment before the
cancellation is effective.

If a Deployment is successfully
canceled, then the
DeploymentCancelled event is
triggered. When canceled, the
deployment configuration will be
automatically rolled back by scaling
up the previous running replication
controller.

On the other hand, if cancellation of a
Deployment fails, then the
DeploymentCancellationFailed
event is triggered.

You can use the detailed diagnosis
of these measures to know when
each of these events occurred, why,
and on which nodes.

Created new
replication
controllers

Indicates the number of times the
DeploymentCreated event occurred
in the last measurement period.

Number

This event is triggered every time a
new Deployment is created.

You can use the detailed diagnosis
of this measure to know when this
event occurred, on which nodes, and
which Pods were created in the
process.

39

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

No available
ingress IP to
allocate to
service

Indicates the number of times the
IngressIPRangeFull event occurred
in the last measurement period.

Number

Ingress exposes HTTP and HTTPS
routes from outside the cluster to
services within the cluster. Traffic
routing is controlled by rules defined
on the Ingress resource.

An Ingress can be configured to give
Services externally-reachable URLs,
load balance traffic, terminate SSL/
TLS, and offer name based virtual
hosting. An Ingress controller is
responsible for fulfilling the Ingress,
usually with a load balancer, though
it may also configure your edge
router or additional frontends to help
handle the traffic.

When an Ingress is created,
typically, an IP address is allocated
by the Ingress Controller to satisfy
the Ingress. Ingress controllers and
load balancers may take a minute or
two to allocate an IP address. Until
that time, you often see the address
listed as <pending>.

Sometimes, the Ingress Controller
may not find any IP address to
allocate to the service for which the
Ingress was created. In this case,
the Ingress will fail with the event
IngressIPRangeFull.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
detach
volumes

Indicates the number of times the
FailedDetachVolume event
occurred in the last measurement
period.

Number

This event is triggered if a volume
fails to be detached from a node.

A Persistent Volume that cannot be
detached poses a problem if you try

40

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

to create another Pod using the
same PVC.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
unmount
volumes

Indicates the number of times the
FailedUnMount event occurred in
the last measurement period.

Number

This event is triggered if Kubermnetes
failed to unmount a volume from a
node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed
unmapped
devices

Indicates the number of times the
FailedUnmapDevice event
occurred in the last measurement
period.

Number

If a Pod mounted with a storage
device -i.e., avolume - is deleted,
then the tear down process should
be able to unmap the device. If it fails
todo so, then the
FailedUnmapDevice event is
triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Unsupported
mount option

Indicates the number of times the
UnsupportedMountOptionevent
occurred in the last measurement
period.

Number

If a PV belonging to a StorageClass
needs to be dynamically provisioned
fora PVC, then a key field that your
StorageClass definition should
contain is the Provisioner.

A Provisioner determines what
volume pluginis to be used for
provisioning PVs dynamically.
Additionally, the definition may also
include mountOptions. In this case,
if the Provisioner - i.e., volume plugin
- in use does not support mount
options, then the

a1

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

UnsupportedMountOption event will
be triggered, resulting in the failure of
volume provisioning. Where multiple
mountOptions are provided,
provisioning failures will also occur if
even one of the mount options is
found to be invalid.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

was unable to
get the targets

FailedGetScale event occurred in
the last measurement period.

Invalid selector | Indicates the number of times the Number If this event occurs, it implies that
InvalidSelector event occurred in the target scalable's selector could
the last measurement period. not be parsed.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Unknown Indicates the number of times the Number This event occurs if the

metric source | InvalidMetricSourceType event HPA controller encounters an

type occurred in the last measurement unknown metric source type.
period. Use the detailed diagnosis of this

measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.
Failed to Indicates the number of times the | Number This event is fired if the the HPA
convert the FailedConvertHPA event occurred controller was unable to convert the
given HPA in the last measurement period. given HPA to the v2alpha1 version.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.
HPA controller | Indicates the number of times the Number This event is triggered if the

Horizontal Pod Autoscaler (HPA)
was not able to get the scale for the
given scalable resource. If this event

42

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement
Unit

Interpretation

occurs, then the HPA will be unable
to perform up/down scaling.
Therefore, the AbleToScale status
condition of the HPA will become
False.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
compute
desired
number of
replicas

Indicates the number of times the
FailedComputeMetricsReplicas
event occurred in the last
measurement period.

Number

This event is triggered if the
Horizontal Pod Autoscaler is unable
to compute the replica count. This
can happen if the controller is unable
to connect to the custom/resource
metrics API, for any reason.
Because of this, the controller will
not be able to compute the resource
utilization value. Without the
resource utilization, the controller will
not be able to compute the replica
count.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed rescale

Indicates the number of times the
FailedRescale event occurred in
the last measurement period.

Number

A scale update was needed and the
HPA controller was unable to
actually update the scale
subresource of the target scalable,
then this event is fired.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
update status

Indicates the number of times the
FailedUpdateStatus event occurred
in the last measurement period.

Number

The event is triggered if the HPA
controller fails to update the status of
the HPA object.

43

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

No persistent
volumes
available

Indicates the number of times the
FailedBinding event occurred in the
last measurement period.

Number

To associate a Pod with storage, a
cluster administrator should first
create a PersistentVolume (PV) that
is backed by physical storage. A
cluster user should then create a
PersistentVolumeClaim (PVC),
which gets automatically bound to a
PV. Finally, the user creates a Pod
that uses the PVC as storage.

If a PVC is created, but no
PersistentVolumes are available for
the PVC to be bound to, then the
FailedBinding event gets fired. In
such cases, Pods that use unbound
PVCs will stay in the Pending state,
until the problem is resolved.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume size or
class is
different

Indicates the number of times the
VolumeMismatch event occurred in
the last measurement period.

Number

This event is triggered if the volume
size or class is different from what is
requested in the claim.

Typically, a user creates a
PersistentVolumeClaim (PVC) with
a specific amount of storage
requested and with certain access
modes. A control loop in the master
watches for new PVCs, checks if
any static PV (a PV manually
created by the administrator) exactly
matches the new PVC, and binds
them together. Claims will remain

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

unbound indefinitely if a matching
volume does not exist. Claims will
be bound as matching volumes
become available. For example, a
cluster provisioned with many 50Gi
PVs would not match a PVC
requesting 100Gi. The PVC can be
bound when a 100Gi PV is added to
the cluster. Until a 100Gi

PV becomes available, the cluster
will not bind the PVC with any of the
existing PVs; instead, it will fail
binding with the event
VolumeMismatch.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error creating | Indicates the number of times the | Number An administrator can configure a

recycler pods | VolumeFailedRecycle event custom recycler Pod template using
occurred in the last measurement the Kubernetes controller manager
period. command line arguments. The

custom recycler Pod template must
contain a volumes specification.
You need to configure the path of the
volume to be recycled in the path
specification of the volumes
section.

Typically, when a Pod is deleted and
the PV has to be freed up, the
recycler Pod comes in and tries to
make the PV available. But,
sometimes, due to certain errors, the
recycler POD may switch to the
'failed' state. For instance, if the
recycler Pod fails to remove the
.snapshot folder, the Pod will fail to
be created. As aresult, the PV too

45

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Measurement

Unit

Interpretation

fails to become available - i.e.,
volume recycling fails. nsuch a
situation, the VolumeFailedRecycle
event is fired.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume is
recycled

Indicates the number of times the
VolumeRecycled event occurred in
the last measurement period.

Number

This event is triggered every time a
volume is successfully recycled.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Podis
recylced

Indicates the number of times the
RecyclerPod event occurred in the
last measurement period.

Number

This event is triggered every time a
recycler pod is successfully
recycled.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume is
deleted

Indicates the number of times the
VolumeDelete event occurred in the
last measurement period.

Number

Every time a volume is deleted, the
VolumeDelete event is triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error when
deleting the
volume

Indicates the number of times the
VolumeFailedDelete event
occurred in the last measurement
period.

Number

This event is triggered if volume
deletion fails.

This can happen if the path
specification in your PV does not
match with the actual path of the
volume being deleted.

Use the detailed diagnosis of this
measure to know when this event

46

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

occurred, why, and which nodes and
Pods were impacted by the event.

load balancer

CreatingLoadBalancerFailed event
occurred in the last measurement
period.

Error cleaning | Indicates the number of times the | Number This event is triggered if a

provisioned ProvisioningCleanupFailed event provisioned volume is not

volume occurred in the last measurement automatically cleaned up, when the

period. Pod mounting that volume is

removed. In this case, you will have
to manually delete the volume.
Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error creating | Indicates the number of times the | Number If the static IP address defined in the

loadBalancerlP property of the
Kubernetes service manifest does
not exist, or has not been created in
the node resource group and no
additional delegations are
configured, the load balancer service
creation fails with the event
CreatingLoadBalancerFailed.

Many load balancer issues around
creating, updating, and deleting the
load balancer can also be traced to a
permissions issue with your cloud
provider. Ensure that your
Kubernetes nodes have the ability to
create and modify load balancers in
your cloud provider to avoid these
issues. If your cloud provider
provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and

47

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Pods were impacted by the event.

Deleting load
balancer

Indicates the number of times the
DeletingLoadBalancer event
occurred in the last measurement
period.

Number

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Not available
nodes for Load
Balancer
service

Indicates the number of times the
UnAvailableLoadBalancer event
occurred in the last measurement
period.

Number

Load balancers require at least one
server to send traffic to for the load
balancing. This can be an issue if the
service is not able to target any
pods, or if the load balancer is unable
to health check any servers in your
cluster. In such a situation, the
UnAvailableLoadBalancer event
gets fired. To troubleshoot this issue,
check the endpoints registered with
the service using kubectl describe
service <service>, figure out which
nodes those pods run on, and
compare it to the servers registered
to the load balancer in your cloud
provider.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error updating
load balancer
with new hosts

Indicates the number of times the
LoadBalancerUpdateFailed event
occurred in the last measurement
period.

Number

Many load balancer issues around
creating, updating, and deleting the
load balancer can be traced to a
permissions issue with your cloud
provider. Ensure that your
Kubernetes nodes have the ability to
create and modify load balancers in
your cloud provider to avoid these
issues. If your cloud provider
provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

48

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error deleting
load balancer

Indicates the number of times the
DeletingLoadBalancerFailed event
occurred in the last measurement
period.

Number

Many load balancer issues around
creating, updating, and deleting the
load balancer can be traced to a
permissions issue with your cloud
provider. Ensure that your
Kubernetes nodes have the ability to
create and modify load balancers in
your cloud provider to avoid these
issues. If your cloud provider
provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Deleted load
balancer

Indicates the number of times the
DeletedLoadBalancer event
occurred in the last measurement
period.

Number

This event occurs if a load balancer
is deleted.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

System out of
memory

Indicates the number of times the
SystemOOM event occurred in the
last measurement period.

Number

This event is triggered if a node runs
out of memory. Such an event can
happen if the kubelet is unable to
reclaim memory by proactively
failing one or more Pods on the node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

49

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description

Evicted pods | Indicates the number of times the
Evicted event occurred in the last
measurement period.

Measurement

Unit

Number

Interpretation

This event happens when a node
determines that Pods need to be
evicted, or terminated, to free up
some resource such as CPU,
memory, or disk. This can have
devastating consequences if the
kubelet is unable to determine the
best resources to evict. For
instance, if a kubelet detecting disk
pressure on a node evicted Pods that
have no effect on disk usage, then
such an eviction will not ease the
disk space crunch on that node.
Moreover, since the evicted Pods
would get scheduled on other nodes,
they will also overload the other
nodes, thus causing more evictions.
Knowing when evictions happened,
and being able to correlate it with
other events in that time frame, can
help avoid the issue.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

You can use the detailed diagnosis of the Back-off restarting failed containers measure to know

when the BackOff event occurred, the message that was displayed when the event occurred, and

the nodes and Pods impacted by the event.

Details of failed container
KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME
Oct 17,2019 12:52:36

Pod Warning kube-system kube-proxy-z5jsx master3

uiD

b2c34381-120f-4878-bBcc-855932b0d659 Back-off restarting failed container 17/10/201

MESSAGE START TIi

Figure 3.3: The detailed diagnosis of the Back-off restarting failed containers measure

You can use the detailed diagnosis of the Killing containers measure to know when the Killing event
occurred, the message that was displayed when the event occurred, and the nodes and Pods

impacted by the event.

50

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Killing containers Details
KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE START TIME
Oct 17,2019 17:43:57

Pod Normal kube-system kube-proxy-1915d master3 d659h9a1-che2-40ch-b5db-1def17832231 Stopping container kube-proxy 17/10/2019 05

Figure 3.4: The detailed diagnosis of the Killing containers measure

Using the detailed diagnosis of the Containers exceeded grace period measure, you can quickly
determine when the ExceededGracePeriod event occurred, why the event was triggered, and which
nodes and Pods were impacted by the event.

Containers Exceeded Grace Period Details
KIND EVENT TYPE MNAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE
Oct 17,2019 14:19:47

Pod Warning kube-system kube-proxy-jpkmr master3 fde22133-4432-4b76-b8b9-08330cf5c0ff Container runtime did not kill the pod within specified

Figure 3.5: The detailed diagnosis of the Containers exceeded grace period measure

Using the detailed diagnosis of the Evicted pods measure, you can quickly determine when the
Evicted event occurred, why the event was triggered, and which nodes and Pods were impacted by
the event.

Evicted Pods Details
KIND EVENT TYPE MAMESPACE POD/HODE NAME MODE NAME uiD MESSAGE
Oct 17,2019 13:55:37

Pod Warning kube-system kube-proxy-z2sgz master3 7396058f-1dec-4fd3-87c0-cad43c3beded The node was low on resource: ephemeral-storage.

Figure 3.6: The detailed diagnosis of the Evicted pods measure

With the help of the detailed diagnosis of the Failed to stop pods measure, you can at-a-glance figure
out when the FailedKillPod event occurred, and which nodes and Pods were impacted by that event.
You can also view the error message that Kubernetes throws when firing this event, so you can
troubleshoot easily.

Details of Failed to stop a pod
KIND EVENT TYPE MNAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE
Oct 16, 2019 18:58:15

Pod Warning kube-system kube-proxy-fpftm master2 c0124a82-0ece-4e04-84bb-e5d2f5c2ba64 error killing pod: failed to \KillPodSandbox\ for \c012

Figure 3.7: The detailed diagnosis of the Failed to stop pods measure

Use the detailed diagnosis of the Pulling images measures to know when the Pulling event occurred,
which image was being pulled, and which nodes and Pods were impacted by the event.

Pulling Containers Details
KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE
Oct 17, 2019 13:55:37

Ped Mormal kube-system kube-proxy-z2sgz master3 7396c58f-1dec-4fd3-87c0-ca443c3bedes Pulling image \k8s.gcr.io/kube-proxy:v1.15.1%

Figure 3.8: The detailed diagnosis of the Pulling images measure

51

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Use the detailed diagnosis of the Failed resource measure to determine when the
FailedGetResourceMetric event occurred, what could have caused the event to be triggered, and
which Pods were impacted by the event.

Failed resource metrics Details

KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME uip MESSAGE
Oct 17,2019 17:12:59

HorizontalPedAutoscaler Warning default php-apache - 8abaf654-2ela-46c4-bTee-828c24a0d56b unable to get metrics for resourc

Figure 3.9: The detailed diagnosis of the Failed resource metric measure

Using the detailed diagnosis of the Failed to compute desired number of replicas measure to know
when the FailedComputeMetricsReplicas event occurred, why, and which Pods were impacted.

Details of Failed to compute desired number of replicas
KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE
Oct 16,2019 17:57:11

HerizontalPodAutoscaler Warning default php-apache - 8abaf654-2e1a-46c4-h7ee-828c24a0d56h Invalid metrics (1 invalid out of 1

Figure 3.10: The detailed diagnosis of the Failed to compute desired number of replicas measure

By viewing the detailed diagnosis of the Found failed daemon pods on node measure, you will be
able to ascertain when the FailedDaemonPod event occurred and which Pod was impacted by the
event. The detailed diagnosis also reveals the error message that the event throws, so you can
troubleshoot easily.

Details of failed daemon ped on node

KIND EVENT TYPE NAMESPACE POD/NODE NAME NODE NAME uiD MESSAGE
Oct 17, 2019 12:52:36

DaemonSet Warning kube-system kube-proxy - cdfe6i02-61e8-4f43-9454-1341 2a6d4711 Found failed daemon pod kube-system/kube-p

Figure 3.11: The detailed diagnosis of the Found failed daemon pods on node measure
3.1.2 API Server Connectivity Test

The API server is the component on the master that exposes the Kubernetes API. It is the front-end
for the Kubernetes control plane. All communication paths from the cluster to the master terminate at
the APl server. The cluster receives Object specs from users via the AP server on the master node.
While the master uses the APl server to forward the Object specs to the scheduler and to the
kubelets, the kubelets also update the master with the Object status via the API server. Instructions
for creating, starting, destroying objects on a worker node are also sent to worker nodes via the API
server only.

This implies that the non- availability of the API server can bring the entire cluster to a
standstilll Administrators may no longer be able to stop, update, or start new pods, services, or the
replication controller. Moreover, users will be denied access to the cluster, and consequently, to the
business-critical applications/services running within! To avoid this, administrators must periodically

52

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

check if the API server is available and promptly detect its unavailability. This is exactly what the
API Server Connectivity test does!

At configured intervals, this test checks whether/not the API server is available, and instantly alerts
administrators if it is not. This way, the test urges administrators to investigate the reason for the

non-availability and fix it, so that cluster operations resume quickly.

Target of the test : A Kubernetes/OpenShift Cluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 644.3.

Load Balancer/
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on the master node and run APl commands. To enable this connection, the eG
agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APl commands on it, and pull metrics.

By default, this parameter will display theLoad Balancer / Master Node IP that you
configured when manually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
in How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter

53

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
with it, by overriding its default setting.
SSL By default, the Kubernetes clusteris SSL-enabled. This is why, the eG agent, by

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, when manually adding that cluster for monitoring using the

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when
manually adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy
server to connect to the Kubernetes/OpenShift cluster, and that proxy
server requires authentication. In this case, provide a valid user name and
password against the Proxy Username and Proxy Password parameters,
respectively. Then, confirm the password by retyping it in the Confirm Password text
box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for

54

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Detailed Diagnosis

this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Availability

Description Me_asurement Interpretation

Unit
Indicates whether/not the | Percent If the value of this measure is 0, it
APl serveris available. indicates that the APl serveris

unavailable. The value 100 on the other
hand indicates that the API serveris
available.

In the event of the non-availability of
the API server, you can use the
detailed diagnosis of this measure to
figure out the reason for the non-
available. You can also use the
/var/log/kube-apiserver.log file on the
master node to figure out what could
have caused the failure of the server.

The common causes for the
unavailability of the API server are as
follows:

55

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

« API server VM shutting down or

crashing;

« APl serverlosing access toits

backing storage

To ensure the high availability of the
API server, you may want to consider
the following courses of action:

« Use laaS provider's automatic VM
restarting feature for laaS VMs;
. UselaaS providers reliable storage

(e.g. GCE PD or AWS EBS volume)
for VMs with apiserver+etcd

3.1.3 Kube Garbage Collection Test

The Kubernetes project is written in the Go programming language (also known as Golang). Go is a
statically typed, compiled programming language designed at Google. Go is syntactically similar to
C, but with memory safety, garbage collection, structural typing, and communicating sequential
processes (CSP)-style concurrency.

Garbage collectors have the responsibility of tracking heap memory allocations, freeing up
allocations that are no longer needed, and keeping allocations that are still in-use. The Go
programming language uses a non-generational concurrent tri-color mark and sweep collector.

When a collection starts, the collector runs through four phases of work:

Mark Setup

Marking

Mark Termination

Sweeping

The Mark Setup phase is where the Write Barrier is turned on. The purpose of the Write Barrier is to
allow the collector to maintain data integrity on the heap during a collection since both the collector
and application goroutines will be running concurrently. In order to turn the Write Barrier on, every
application goroutine running must be stopped. The only way to do that is for the collector to watch

56

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

and wait for each goroutine to make a function call. Function calls guarantee the goroutines are at a
safe point to be stopped.

Once the Write Barrier is turned on, the collector commences with the Marking phase. The Marking
phase consists of marking values in heap memory that are still in-use. This work starts by inspecting
the stacks for all existing goroutines to find root pointers to heap memory. Then the collector must
traverse the heap memory graph from those root pointers. The first thing the collector does in this
phase is take 25% of the available CPU capacity for itself. For example, if an application uses 4
CPUs, then the collector will hog an entire CPU while at this phase. In this case typically, the
collector will use the 25% CPU capacity that it has set aside for this phase, to do the marking work,
allowing normal application work to continue on the remaining 75%.

Once the Marking work is done, the next phase is Mark Termination. This is when the Write Barrier
is turned off, various clean up tasks are performed, and the next collection goal is calculated.

Once the collection is finished, the full CPU capacity is released for the use of the application
Goroutines again, thus bringing the application back to full throttle.

Sweeping typically happens after the collection is finished. Sweeping is when the memory
associated with values in heap memory that were not marked as in-use are reclaimed. This activity
occurs when application Goroutines attempt to allocate new values in heap memory.

In summary, by performing garbage collection, Golang ensures that applications make optimal use
of available heap memory. While this improves application performance at one end, at the other,
every collection also inflicts certain latencies on the running application that may slow down
application work. For instance, at the Mark Setup phase, the garbage collector stops all application
Goroutines, so it can turn on the Write Barrier. This imposes a Stop the World (STW) latency on the
running application. Likewise, the application Goroutines are stopped at the Mark Termination phase
as well, once again inflicting an STW latency on the applications. Also, sometimes, garbage
collection steals CPU capacity to stay alive, and degrades application performance in the bargain.
For instance, in the Marking phase, if the Goroutine dedicated to the collector is unable to finish the
marking work before the heap memory in-use reaches its limit, the collector will recruit the
application Goroutines to assist with the Marking work. This is called a Mark Assist. When this
happens, the application will be forced to compete with the collector for the available CPU
resources. This contention can occasionally choke application performance!

To optimize garbage collection and eliminate its ill effects, administrators must ensure that the
collector does more work, while consuming minimum time and resources. For this purpose,
administrators must first study the garbage collection activity closely, and figure out how much time

57

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

and resources the collector typically invests in this process. This is where, the Kube Garbage
Collection test helps!

This test monitors the garbage collection activity of Golang, and reports the time the Golang collector
spends collecting garbage. Administrators will be alerted if too much time is being spent in garbage
collection. The test also reveals the number of threads and Goroutines presently engaged in
garbage collection, thus revealing how resource-intensive the garbage collection is. This way, the
test enables administrators to periodically review the garbage collection activity, assess its impact on
application performance, and figure out if it needs to be fine-tuned to reduce application latencies.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP AP on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APl commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG

58

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
Enterprise?
Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes clusteris SSL-enabled. This is why, the eG agent, by

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, when manually adding that cluster for monitoring using the

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter only accessing the API and pulling metrics. If for any reason,
you generate a new authentication token for the target cluster at a later point in time,
then make sure you update this parameter with the change. For that, copy the new
token and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

59

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Measurements made by the test

o Measurement .
Measurement Description Unit Interpretation
Avg GC invocation Indicates the average time | Seconds A low value is desired for this
duration spent in garbage measure. A very high value or a
collection. consistent increase in the value of this

measure is a cause for concern, as it
indicates that the garbage collector is
probably taking too long to complete
collections.

Since garbage collection often triggers
stop-the-world latencies in
applications, prolonged garbage
collection activities can adversely
impact application availability and
performance. In short, the longer GC
runs, poorer will be application
performance.

One way to reduce GC time, is to fine-
tune the configuration option called
GC Percentage at runtime. This is set
to 100 by default. This value
represents a ratio of how much new
heap memory can be allocated before
the next collection has to start. Setting
the GC Percentage to 100 means,
based on the amount of heap memory
marked as live after a collection
finishes, the next collection has to
start at or before 100% more new
allocations are added to heap memory.
You could decide to change the GC
Percentage value to something larger
than 100. This will increase the amount
of heap memory that has to be

60

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Measurement Description Unit Interpretation

allocated before the next collection can
start, thus delaying the start of the next
collection.

On the flip side though, increasing the
GC percentage will slow down the
pace of the collector. The collector has
a pacing algorithm which is used to
determine when a collection is to start.
The algorithm depends on a feedback
loop that the collector uses to gather
information about the running
application and the stress the
application is putting on the heap.
Stress can be defined as how fast the
application is allocating heap memory
within a given amount of time. It’s that
stress that determines the pace at
which the collector needs to run.

One misconception is thinking that
slowing down the pace of the collector
is a way to improve performance. In
reality though, application performance
truly improves only when more work is
getting done between collections or
during a collection. This can be
achieved only by reducing the amount
or the number of allocations any piece
of work is adding to heap memory.

Increasing the GC percentage in fact,
increases the workload of collections
by adding more to the heap memory
after every collection. In the long run,
this may degrade application
performance than improve it.

OS threads created | Indicates the number of Number A large value for this measure is
threads spawned by the indicative of resource-intensive

61

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

o Measurement .
Measurement Description Unit Interpretation
garbage collection garbage collections.
process.
Goroutines Indicates the number of Number An unusually high value for this
Goroutines used for measure could indicate that the
garbage collection. garbage collector is probably recruiting

application Goroutines as well to do
the Marking work on the collections.
This in tumn could be because of of
Marking workloads that the collector is
unable to complete using just its
dedicated Goroutines. Such workloads
are usually imposed by applications
that consume heap memory
significantly.

3.1.4 Kube Master Services Test

Master components/services make global decisions about the cluster (for example, scheduling), and
detect and respond to cluster events. These services are as follows:

« kube-apiserver: This exposes the Kubernetes API and front-ends the control pane.

« kube-scheduler: This watches newly created pods that have no node assigned, and selects a
node for them to run on.

« kube-controller-manager: This runs processes called controllers. These controllers include:
o Node controller: Responsible for noticing and responding when nodes go down.

o Replication controller: Responsible for maintaining the correct number of pods for every
replication controller object in the system.

o Endpoints controller: Populates the Endpoints object (that is, joins Services & Pods).

o Service Account and Token controllers: Creates default accounts and APl access tokens for
new namespaces

« etcd: Consistent and highly-available key value store used as Kubernetes’ backing store for all
cluster data.

The failure of any of these services can be business-impacting! For instance, if the kube-scheduler is
not running, then pods will have no nodes to run on. Without the kube-controller-manager, cluster

62

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

state cannot be managed. Such anomalies can threaten the availability of the cluster and deny users
access to critical applications/services running on the cluster. To avoid this, administrators must
keep track of the state of each of the master services. This is where, eG Enterprise helps!

Using the API Server Connectivity test, administrators can periodically check if the kube-api-
server service is running or not. With the help of the Kube Master Services test, administrators can
keep tabs on the running state of the other master services, namely - the scheduler, the etcd, and the
controller-manager. If any of these services is down, then the Kube Master Services test promptly
alerts administrators to the failure of the corresponding service. This way, the test enables
administrators to rapidly troubleshoot the abnormal state of a critical master service, restore the
service to normalcy, and assure users of uninterrupted access to containerized business
applications.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« Ifonly a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you

63

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,

configured when manually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
in How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, when manually adding that cluster for monitoring using the

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires

64

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Confirm Password

DD Frequency

Detailed Diagnosis

authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Measurement

Description Unit

Interpretation

State

Indicates the current state
of this service.

The values that this measure can report
and their corresponding numeric values
are listed in the table below:

Measure Numeric
Value Value
Running 1
Not Running 0
Unknown 2

65

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

If this measure reports the value Not
Running or Unknown, then use the
detailed diagnosis of this measure to
determine why. You can also use the
/var/log/kube-scheduler.log file on the
master to troubleshoot issues with the
scheduler. Likewise, use the
/var/log/kube-controller-manager.log
file on the master to troubleshoot
issues with the controller-manager.

Note:

By default, this measure reports the
Measure Values discussed above to
indicate the state of a master service.
In the graph of this measure however,
the same is represented using the
numeric equivalents only.

3.1.5 The Kube Cluster Layer
Using the test mapped to this layer, you can:

« Understand the composition and receive an overview of the health of the Kubernetes cluster;

« Track the status of each of the nodes in a Kubernetes cluster, monitor resource allocations to
Pods and containers on each node, and identify overcommitted nodes;

« Determine whether/not the resource allocations to Pods/containers in each namespace align
with resource quota or LimitRange settings;

« lIdentify Persistent Volumes that are unbound, and those that have failed automatic
reclamation;

66

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

& Kube Cluster Q

b
<

~ @ Kube Cluster Nodes

' master]

&

' master?
' master3
' workerl
' worker2
@ Kube Cluster Overview

v @ Kube Namespaces
' default

kube-node-lease

kube-public

kube-system

kubernetes-dashhoard

LN NS L

Summary

Figure 3.12: The tests mapped to the Kube Cluster layer
3.1.6 Kube Cluster Nodes Test

A node is a worker machine in Kubernetes. A node may be a VM or physical machine, depending on
the cluster. Each node contains the services necessary to run pods and is managed by the master
components. The services on a node include the container runtime, kubelet and kube-proxy.

A node's status contains information such as the addresses (hostname, external IP address, internal
IP address of the node), conditions describing the status of running nodes, the total resource
capacity of the node and the usable (allocatable) capacity, and general information pertaining to the
node (eg., kernel version, Kubernetes version etc.).

Nodes are automatically managed by the Node controller. If a node is unreachable beyond a
configured duration, then the node controller automatically deletes all the Pods on that node.
However, sometimes, manual administration/management of nodes may become necessary. For
instance, administrators may have to manually delete unreachable node objects, if the node
controller is unable to do so. Likewise, if a node is to be rebooted, then the administrator will have to
manually mark that node as "unschedulable”, so that new Pods do not get scheduled to that node.

While the Node controller manages the node 'condition’, the Kubernetes scheduler manages Pod
placements by automatically comparing the resource requirement of the containers in the Pods with
the total and allocatable resource capacity of the nodes, and scheduling Pods on those nodes that fit
their resource profile. Sometimes, a node may run Pods that oversubscribe to the node's resources -
i.e., the sum of limits of the containers on the node may exceed the total resource capacity of the
node. In an overcommitted environment, it is possible that the Pods on the node will attempt to use

67

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

more compute resource than is available at any given point in time. If this happens, it can degrade
the performance of containerized applications, as you may have a single Pod hogging the node's
resources! Administrators may hence want to be promptly alerted to a resource overcommitment, so
they can quickly identify which Pod is guilty of overcommitment and determine how resource
allocations and usage priorities can be tweaked to ensure performance does not suffer! Additionally,
administrators may also want to track resource usage across containers on a node, so they can
proactively isolate a potential resource contention and instantly initiate pre-emptive action. The
Kube Cluster Nodes test does all this and more!

The test auto-discovers the nodes in a Kubernetes/OpenShift cluster and clearly distinguishes
between the master nodes and the workers. The test then monitors the condition of each node and
points administrators to those nodes whose condition is 'unhealthy’ or have been marked as
'unschedulable'. Additionally, the test reports the total CPU and memory capacity of every node,
tracks the sum of resource requests/limits of the containers on each node, and accurately pinpoints
those nodes where containers have oversubscribed to the node's capacity. Detailed diagnostics of
the test lead administrators to the exact Pods that have oversubscribed to the node's resources.
With the help of this information, administrators may decide to resize containers or reset resource
usage priorities of containers, so that cluster performance is not compromised. Furthermore, the test
reveals the percentage of a node's resources that are being utilized by the containers, thereby
warning administrators of a probable contention for resources on a node.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each node in the Kubernetes/OpenShift cluster being
monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP AP on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

68

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

Proxy Host

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes clusteris SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in

the Kubernetes Cluster Preferences page of the eG admin interface, when
manually adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,

69

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on the master node via a proxy server,

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy
server to connect to the Kubernetes/OpenShift cluster, and that proxy
server requires authentication. In this case, provide a valid user name and
password against the Proxy Username and Proxy Password parameters,
respectively. Then, confirm the password by retyping it in the CONFIRM PASSWORD
text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:1. This indicates that, by default, detailed measures will be
generated every third time this test runs, and also every time the test detects a
problem. You can modify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Measurement
Unit

Description

Interpretation

Status

Indicates whether/not The values that this measure reports and

70

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

this node is running. their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Running 1
Not running 0
Unknown 2

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a node. In the graph of this
measure however, the state is indicated
using the numeric equivalents only.

In the event that this measure reports the
value Not running or Unknown for a node,
then you can use the detailed diagnosis of
this measure to know the reason for the
abnormal status.

Is node Indicates whether/not By default, healthy nodes with a Ready
unschedulable? this node is status are marked as schedulable, meaning
unschedulable. that new pods are allowed for placement on

the node. Manually marking a node as
unschedulable blocks any new pods from
being scheduled on the node. Typically,
nodes from which Pods need to be
migrated/evacuated are candidates for
being marked as 'unschedulable’ status.
Sometimes, nodes that have been
unhealthy for along time are also set as
'unschedulable’.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

71

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

. . Measurement .
Measurement Description Unit Interpretation
Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node has been manually set
as unschedulable. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Maintenance mode | Indicates whether/not
this node is in the
maintenance mode.

By putting a node into maintenance mode,
all existing workloads will be restarted on
other nodes to ensure availability, and no
new workloads will be started on the node.
Maintenance mode allows you to perform
operations such as security updates or
rebooting machines without the loss of
availability.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value

Numeric Value

Enabled

1

Disabled

0

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node is in the maintenance
mode. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

72

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement

Unit

Interpretation

Age

Indicates how old this
node is.

The value of this measure is expressed in
number of days, hours, and minutes.

Use the detailed diagnosis of this measure
to know more about a particular node.

Is node network
available?

Indicates whether/not
the network of this node
is correctly configured.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the availability of a node's network. In the
graph of this measure however, the same is
indicated using the numeric equivalents
only.

If this measure reports the value Yes for a
node - i.e., if the network of a node is
indeed unavailable - then you can use the
detailed diagnosis of this measure to figure
out the reason for the unavailability.

Is node out of disk?

Indicates whether/not
there is insufficient free
disk space on this node
for adding new Pods.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

73

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node has run out of disk
space. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the value Yes fora
node - i.e., if a node has indeed run out of
free disk space - then you can use the
detailed diagnosis of this measure to figure
out the reason for the anomaly.

Does node have Indicates whether/not The values that this measure reports and
memory pressure? | this node is running low their corresponding numeric values are
on memory. detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node has sufficient memory.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the value Yes for a
node -i.e., if a node is running out of
memory - then you can use the detailed
diagnosis of this measure to figure out the

reason for the anomaly.
Does node have Indicates whether/not The values that this measure reports and
disk pressure? this node's disk their corresponding numeric values are
capacity is low. detailed in the table below:

74

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

. . Measurement .
Measurement Description Unit Interpretation
Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node is low on disk capacity.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the value Yes for a

node - i.e., if a node is low on disk capacity
- then you can use the detailed diagnosis of
this measure to figure out the reason for the

anomaly.
Is node under Indicates whether/not The values that this measure reports and
PID pressure? too many processes their corresponding numeric values are
are running on the node. detailed in the table below:
Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node is under PID pressure.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the value Yes for a
node - i.e., if too many processes are

75

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

running on a node - then you can use the
detailed diagnosis of this measure to figure
out the reason for the anomaly.

Is node ready?

Indicates whether/not a
node is healthy and
ready to accept Pods.

This measure reports the value Yes, if a
node is healthy and is ready to accept
Pods. The value No is reported if a node is
not healthy and is not accepting Pods. The
value Unknown is reported if the node
controller has not heard from the node in the
last node-monitor-grace-period (default
is 40 seconds).

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node is ready. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.

If this measure reports the value No or
Unknown for a node, then you can use the
detailed diagnosis of this measure to figure
out the reason for the anomaly.

Total CPUs Indicates the total CPU | Number
capacity of this node, in
terms of the number of
CPU cores it supports.

Memory capacity | Indicates the total GB

76

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

memory capacity of
this node.

amount of CPU
resources that
containers on this node
are allowed to use.

Pods capacity Indicates the maximum | Number
number of Pods that
can be scheduled on
this node.

Running pods Indicates the number of | Number If the value of this measure for a node is
Pods currently running equal to or is growing closer to the value of
on this node. the Pods capacity measure, it indicates

that that node has or is about to exhaust its
Pod capacity.

You can use the detailed diagnosis of this
measure to know which Pods are running
on the node and which containers are
running within each Pod.

Pods percent Indicates the Percent The formula used to compute the value of
percentage of the Pod this measure is as follows:

Capa.C'ty of this ”°‘?'e (Running pods/Pods capacity) *100

that is currently being

utilized. A value equal to or close to 100% indicates
that the node has or is about to exhaust its
Pod capacity. In such circumstances, you
may want to consider increasing the Pod
capacity of the node or freeing the node of
unused/inactive Pods.

Total containers Indicates the total Number To know which containers are running on
number of containers the node, use the detailed diagnosis of this
running on this node. measure.

CPU capacity Indicates the CPU Millicpu
capacity of this node.

CPU limits Indicates the total Millicpu The value of this measure is the sum of

CPU limits set for the individual containers
across all the Pods running on this node.

If the value of this measure is greater than
the value of the CPU capacity measure, it
could mean that one/more Pods have

77

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

oversubscribed to the node's CPU
capacity.

allocation

percentage of the
memory capacity of

CPU requests Indicates the minimum | Millicpu The value of this measure is the sum of
amount of CPU CPU requests configured for the individual
resources guaranteed containers across all the Pods running on
to all the containers on this node.
this node.

Memory limits Indicates the total GB The value of this measure is the sum of
amount of memory memory limits set for the individual
resources that containers across all the Pods running on
containers on this node this node.
are allowedto use. If the value of this measure is greater than

the value of the Memory capacity
measure, it could mean that one/more Pods
have oversubscribed to the node's memory
capacity.

Memory requests | Indicates the minimum | GB The value of this measure is the sum of
amount of memory memory requests configured for the
resources guaranteed individual containers across all the Pods
to all the containers on running on this node.
this node.

CPU limits Indicates what Percent The formula used for computing this

allocation percentage of the measure is as follows:
capacity of this node is (CPU limits/CPU capacity) *100
allocated as CPU limits
to containers. In other If the value of this measure exceeds 100%,
words, this is the it means that the node is overcommitted. In
percentage of a node's other words, it means that the Pods on the
CPU capacity that the node have been allowed to use more
containers on that node resources than the node's capacity. In such
are allowed to use. a situation, you may want to look up the

detailed diagnostics of this measure to
identify the Pods that are contributing to the
overcommitment.

Memory limits Indicates what Percent The formula used for computing this

measure is as follows:

(Memory limits/Memory capacity)*100

78

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

this node is allocated
as memory limits to
containers. In other
words, this is the
percentage of a node's
memory capacity that
the containers on that
node are allowed to
use.

If the value of this measure exceeds 100%,
it means that the node is overcommitted. In
other words, it means that the Pods on the
node have been allowed to use more
resources than the node's capacity. In such
a situation, you may want to look up the
detailed diagnostics of this measure to
identify the Pods that are contributing to the
overcommitment.

allocation

percentage of the total
memory capacity of
this node is set as
memory requests for
the containers on that
node. In other words,
this is the percentage of
a node's memory
capacity that the
containers on that node
are guaranteed to
receive.

CPU requests Indicates what Percent The formula used for computing this
allocation percentage of the total measure is as follows:
CPU capacity of this (CPU requests/CPU capacity) *100
node is set as CPU
requests for the Compare the value of this measure across
containers on that nodes to know which node has been
node. In other words, guaranteed the maximum CPU resources.
this is the percentage of You can even use the detailed diagnosis of
anode's CPU capacity this measure to identify the specific Pods in
that the containers on that node with the maximum CPU
that node are requests.
guaranteed to receive.
Memory requests | Indicates what Percent The formula used for computing this

measure is as follows:

(Memory requests/Memory
capacity)*100

Compare the value of this measure across
nodes to know which node has been
guaranteed the maximum memory
resources. You can even use the detailed
diagnosis of this measure to identify the
specific Pods in that node with the
maximum memory requests.

CPU allocation
overcommited

Indicates whether/not
this node is
overcommitted in terms
of CPU resources.

If the CPU limits allocation measure
reports a value greater than 100% for a
node, then this measure will report the
value True for that node. This implies that

79

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

the node's CPU resources are
overcommitted. On the other hand, if the
CPU limits allocation measure of a node
reports a value lesser than 100%, then this
measure will report the value False for that
node. This implies that the node's CPU
resources are not overcommitted.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
True 1
False 0

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node's CPU resources are
overcommitted. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

In an overcommitted environment, it is
possible that the Pods on the node will
attempt to use more compute resource than
is available at any given point in time. To
know which Pods are using more resources
than the node's capacity, use the detailed
diagnosis of this measure.

When an overcommitment occurs, the
node must give priority to one Pod over
another. The facility used to make this
decision is referred to as a Quality of
Service (QoS) Class. By assigning a

QOS class to each container,
administrators can make sure that the
performance of mission-critical applications

80

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

does not suffer owing to insufficient
resources.

For each compute resource, a container is
divided into one of three QoS classes with
decreasing order of priority:

« Priority 1 (highest) - Guaranteed - If
limits and optionally requests are set
(not equal to 0) for all resources and they
are equal, then the container is classified
as Guaranteed. Guaranteed containers
are considered top priority, and are
guaranteed to only be terminated if they
exceed their limits, or if the system is
under resource pressure and there are no
lower priority containers that can be

evicted.

« Priority 2 - Burstable - If requests and
optionally limits are set (not equal to 0)
for all resources, and they are not equal,
then the container is classified as
Burstable. Burstable containers under
resource pressure are more likely to be
terminated once they exceed their
requests and no other BestEffort

containers exist.

« Priority 3 (lowest) - BestEffort - If
requests and limits are not set for any of
the resources, then the container is
classified as BestEffort. BestEffort
containers are treated with the lowest

priority. Processes in these containers

81

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

are first to be terminated if the system

runs out of resources.

Administrators can also control the level of
overcommit and manage container density
on nodes. For this, masters can be
configured to override the ratio between
request and limit set on developer
containers. In conjunction with a per-project
LimitRange specifying limits and defaults,
this adjusts the container limit and request
to achieve the desired level of overcommit.

Memory allocation | Indicates whether/not If the Memory limits allocation measure
overcommitted this node is reports a value greater than 100% for a
overcommitted in terms node, then this measure will report the
of memory resources. value True for that node. This implies that

the node's memory resources are
overcommitted. On the other hand, if the
Memory limits allocation measure of a
node reports a value lesser than 100%,
then this measure will report the value
False for that node. This implies that the
node's memory resources are not
overcommitted.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
True 1
False 0

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a node's memory resources
are overcommitted. In the graph of this

82

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

measure however, the same is indicated
using the numeric equivalents only.

In an overcommitted environment, it is
possible that the Pods on the node will
attempt to use more compute resource than
is available at any given point in time. To
know which Pods may attempt to use more
resources than the node's capacity, use the
detailed diagnosis of this measure.

When an overcommitment occurs, the
node must give priority to one pod over
another. The facility used to make this
decision is referred to as a Quality of
Service (QoS) Class. By assigning a

QOS class to each container,
administrators can make sure that the
performance of mission-critical applications
does not suffer owing to insufficient
resources.

For each compute resource, a container is
divided into one of three QoS classes with
decreasing order of priority:

o Priority 1 (highest) - Guaranteed - If
limits and optionally requests are set
(not equal to 0) for all resources and they
are equal, then the container is classified
as Guaranteed. Guaranteed containers
are considered top priority, and are
guaranteed to only be terminated if they
exceed their limits, or if the system is
under resource pressure and there are no
lower priority containers that can be

evicted.

« Priority 2 - Burstable - If requests and

83

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

optionally limits are set (not equal to 0)
for all resources, and they are not equal,
then the container is classified as
Burstable. Burstable containers under
resource pressure are more likely to be
terminated once they exceed their
requests and no other BestEffort

containers exist.

« Priority 3 (lowest) - BestEffort - If
requests and limits are not set for any of
the resources, then the container is
classified as BestEffort. BestEffort
containers are treated with the lowest
priority. Processes in these containers
are first to be terminated if the system

runs out of resources.

Administrators can also control the level of
overcommit and manage container density
on nodes. For this, masters can be
configured to override the ratio between
request and limit set on developer
containers. In conjunction with a per-project
LimitRange specifying limits and defaults,
this adjusts the container limit and request
to achieve the desired level of overcommit.

Total images Indicates the total Number Use the detailed diagnosis of this measure
number of images on to know which images are on the node.
this node.

Used images Indicates the total Number To view the used images, use the detailed
number of images diagnosis of this measure.

currently used by the
containers on this node.

Not used images | Indicates the number of | Number To view the unused images, use the

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

images still to be used
by the containers on
this node.

detailed diagnosis of this measure.

Images size

Indicates the total size
of images on this node.

GB

Node type

Indicates the node
type.

A node can be a Master node or a Worker
node in a cluster. A cluster has at least one
worker node and at least one master

node. The worker node(s) host the pods that
are the components of the application. The
master node(s) manages the worker nodes
and the pods in the cluster. Multiple master
nodes are used to provide a cluster with
failover and high availability.

If a node is the master node in a cluster,
then this measure will report the value
Master. For a worker node, this measure
will report the value Worker.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value

Master 1

Worker 2

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the node type. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

CPU usage

Indicates the amount of
CPU resources used
by this node.

Millicpu

Ideally, the value of this measure should be
much lesser than the value of the CPU
capacity measure. If the value of this
measure is equal to or is rapidly
approaching the value of the CPU capacity

85

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

measure, it means that the node is running
out of CPU resources.

CPU utilization

Indicates the
percentage of CPU
resources utilized by
this node.

Percent

A value close to 100% is indicative of
excessive CPU usage by a node, and hints
at a potential CPU contention on the node.

A value greater than 100% implies that
one/more Pods have probably over-
subscribed to the node's capacity.

To know which Pod on the node is
contributing to the
contention/overcommitment, use the
detailed diagnosis of this measure.

Memory usage

Indicates the amount of
memory resources
used by this node.

Millicpu

Ideally, the value of this measure should be
much lesser than the value of the Memory
capacity measure. If the value of this
measure is equal to or is rapidly
approaching the value of the Memory
capacity measure, it means that the node
is running out of memory resources.

Memory utilization

Indicates the
percentage of memory
resources utilized by
this node.

Percent

A value close to 100% is indicative of
excessive memory usage by a node, and
signals a potential memory contention on
the node.

A value greater than 100% implies that
one/more Pods have probably over-
subscribed to the node's capacity.

To know which Pod on the node is
contributing to the
contention/overcommitment, use the
detailed diagnosis of this measure.

The detailed diagnosis of the Running pods measure reveals which Pods are running on the node
and which containers are running within each Pod.

86

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Running Pods Details

POD NAME POD IP ADDRESS CONTAINER NAME CONTAINER ID

Aug 20, 2019 16:46:20

newrelic-infra-kqkvs 192.168.11.56 newrelic-infra 1f0c7109e76904375a2fd98a66871446601677220917a587hebed]140f1daba
coredns-5c98db65d4-nrs8s 103204 coredns 01be088728b83a3be] 8643661d6a81f5afa3438a98573ebfe2ef33bbb34435d
etcd-master] 192.168.11 56 etcd b3106147186d4e342a5¢8b4d532d3Tabfedcad7e8d4707aa69a02b692a49901d
kube-apiserver-master] 192.168.11.56 kube-apiserver 1612df80d55f5cd31dbf5b23cca2395f448380e194dabeh8bB8eddTi1aa1657e
kube-controller-manager-master1 192.168.11.56 kube-controller-manager 49400bcc] 28561a2eb03cad21b1b4bab45274fe25f5524558c0a8890f6bT5ace
kube-proxy-gc8rp 192.168.11.56 kube-proxy 1ff60e1d05d7fb04a3fbcaZ2e76895fae0b08052b275084f44533098225%c0fa
kube-scheduler-masterl 192.168.11.56 kube-scheduler €35¢2c22b3ed69f1b64a0ab67fad1bd5h49a03abdb] 8a3c9ff 70408261 3e22a8
weave-net-wiftw 192.168.11.56 Weave weave-npc ctale3baBT2aTe4683bb10f840728b84e459c58edf1 5cc36cbe35392bedbbb3be bBhT4e39a0fad4fa’

Figure 3.13: The detailed diagnosis of the Running pods measure

The detailed diagnosis of the Total containers measure reveals the names of containers running on
a node, the Pod to which each container belongs, and the namespace to which the Pod belongs.

Containers Details

CONTAIMER NAME CONTAINER ID POD NAME POD IP ADDRESS NAME €
Aug 20, 2019 16:46:20

newrelic-infra 1f0c71109e76904375a2fd98a66871446601677a20917a587heted] 140f1daba newrelic-infra-kqkvs 192.168.11.56 default
coredns 01be088728fh83a3be]864366fd6ad15afad438a9857Ie6fe2ef33bbb34435d coredns-5c98dbG5d4-nrsés 10.3204 kube-s
etcd b3106147186d4e34235¢8h4d532d37abfe8cadTe8d4707aa69a02b692a49901d etcd-master] 192.168.11.56 kube-st
kube-apiserver 1612df80d55f5cd31dbf5h23cca2395f448380e194dabeh8b88eddf1aal657e kube-apiserver-master1 192.168.11.56 kube-st
kube-controller-manager 49400bcc128561a2eb03cad21b1b4bab45274fe2515524558c0a8890f6hT5ace kube-controller-manager-master] 192.168.11.56 kube-s1
kube-proxy 1f60e1d05d7fh04a3fbca22e76895fae0b08052b275084f445330982259c0fa kube-proxy-gc8mp 192.168.11.56 kube-st
kube-scheduler £35¢c2¢22b3ed69f1b64a0ab67fad1bd5b49a03ab4b1 8a3caff70408a61 3e22a8 kube-scheduler-masterl 192.168.11.56 kube-st
weave cale3ba872a7e4683bb10f840728b84e459c58edf15cc36che35392begbbb3be weave-net-wiftw 192.168.11.56 kube-st
weave-npc h8b74e99a0fad4fa7fd23991 GecddGd0eed 5] Geedld2039857i86d3cd91383d2 weave-net-wiftw 192.168.11.56 kube-st

Figure 3.14: The detailed diagnosis of the Total containers measure

If the CPU limits allocation measure reports a value over 100%, it indicates an overcommitment of
CPU resources on the node. In such a situation, you can use the detailed diagnostics of this
measure to identify the Pods that are contributing to the overcommitment.

CPU Limits Details

POD NAME CPU LIMITS{MILLICPU) CPU LIMITS{%)
Aug 19,2019 11:39:13

kube-flannel-ds-amd64-sghnl 100 5

Figure 3.15: The detailed diagnosis of the CPU limits allocation measure

Using the detailed diagnosis of the CPU requests allocation measure, you can quickly identify the
specific Pods on the node with the maximum CPU requests. In the event of a CPU contention on the
node, this information will lead you to the exact Pod that is hogging CPU resources.

87

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

CPU Requests Details

POD NAME CPU REQUESTS(MILLICPU) CPU REQUESTS(%)
Aug 20, 2019 16:46:20

newrelic-infra-kqkvs 100 5
coredns-5c98db65d4-nrsgs 100

kube-apiserver-master] 250
kube-controller-manager-master] 200

kube-scheduler-masterl 100

weave-net-wtftw 20

Figure 3.16: The detailed diagnosis of the CPU requests allocation measure

If the Memory limits allocation measure reports a value over 100%, it indicates an overcommitment

of memory resources on the node. In such a situation, you can use the detailed diagnostics of this
measure to identify the Pods that are contributing to the overcommitment.

Memory Limits Details

POD NAME MEMORY LIMITS(GB) MEMORY LIMITS(%)
Aug 20, 2019 16:46:20

newrelic-infra-kgkvs 0.1465 3.7967
coredns-5c98db65d4-nrsés 0166 4.3029

Figure 3.17: The detailed diagnosis of the Memory limits allocation measure

Using the detailed diagnosis of the Memory requests allocation measure, you can quickly identify the
specific Pods on the node with the maximum memory requests. In the event of a memory contention
on the node, this information will lead you to the exact Pod that is hogging memory resources.

Memory Requests Details

POD NAME MEMORY REQUESTS(GB) MEMORY REQUESTS(%)
Aug 20, 2019 16:46:20

newrelic-infra-kgkvs 0.0293 0.7593
coredns-5c98db65d4-nrs8s 0.0684

1778

Figure 3.18: The detailed diagnosis of the Memory requests allocation measure

3.1.7 Kube Cluster Overview Test

A Kubernetes/OpenShift cluster is a set of machines, called nodes, that run containerized

applications managed by Kubernetes/OpenShift. A cluster has at least one worker node and at least
one master node.

The worker node(s) host the pods that are the components of the application. The master node(s)

manages the worker nodes and the pods in the cluster. Multiple master nodes are used to provide a
cluster with failover and high availability.

88

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

The kube-scheduler schedules Pods to a node, based on the resource capacity of the node and the
resource requirements of the containers in the Pods. To ensure that no Pod hogs the node's
resources, resource requests and limits can be set per container.

At any given point in time, an administrator needs to have a macro view of the composition of
their Kubernetes/OpenShift cluster - i.e., the number of nodes and Pods in the cluster - and the
operational state of the nodes and Pods. This will help them quickly spot nodes and Pods that have
failed - i.e., it will help them quickly detect a mismatch between the actual state of the cluster and its
desired state. By taking appropriate action on such mismatches, administrators can prevent any
adverse impact on the availability and performance of containerized applications. Additionally,
administrators also need to track how the Pods are utilizing the cluster's compute resources. This
way, they can proactively detect probable resource contentions / over-subscriptions, and rapidly
initiate measures to right-size the cluster components (i.e., Pods and containers), so that application
performance is not affected by resource crunches. Administrators also require an overview of
Deployments across the cluster, so that they can easily locate problem areas. The Kube Cluster
Overview test provides administrators with all these useful high-level insights!

This test monitors a Kubernetes/OpenShift cluster, reports the total count of nodes in the cluster,
and also precisely pinpoints the master and worker nodes of the cluster. The test also tracks the Pod
capacity of the cluster alongside Pod allocations, and additionally highlights Pods and nodes in an
abnormal state. This enables administrators to rapidly detect any glaring mismatch between the
desired state and actual state of the cluster and initiate appropriate remedial measures.
Furthermore, the test reveals how the Pods in the cluster are utilizing the cluster's compute resource
capacity. In the process, the test brings to light irregularities such as resource over-subscription and
current/potential resource contention. Detailed diagnostics provided by the test lead administrators
to the exact Pods that are hogging cluster resources, or have been poorly sized. This way, the test
points administrators to those Pods for which resource allocations need to be fine-tuned to ensure
optimal cluster performance. In addition, the test helps administrators easily compare the desired
state of Deployments with the actual state, so that they can instantly capture and resolve
discrepancies (if any).

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes/OpenShift cluster being monitored

89

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/
Master Node IP

SSL

Authentication
Token

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on the master node and run APl commands. To enable this connection, the eG
agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API viaan HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target

20

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

Kubernetes cluster, when manually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7.:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be

91

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description

available only if the following conditions are fulfilled:
« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement Description ﬁ:iatsurement Interpretation

Total nodes Indicates the total Number
number of nodes in the
cluster.

Master nodes Indicates the count of Number Use the detailed diagnosis of this
master nodes in the measure to know which are the master
cluster. nodes in the cluster.

Worker nodes Indicates the number of | Number Use the detailed diagnosis of this
worker nodes in the measure to know which are the worker
cluster. nodes in the cluster.

Nodes added to Indicates the number of | Number Use the detailed diagnosis of this

cluster nodes that were added measure to know which nodes were
to the cluster since the recently added to the cluster.
last measurement
period.

Nodes removed Indicates the number of | Number Use the detailed diagnosis of this

from cluster nodes that were measure to know which nodes were
removed from the cluster recently removed from the cluster.
since the last
measurement period.

Running nodes Indicates the number of | Number
nodes in the cluster that
are currently running.

Not running nodes | Indicates the number of | Number Use the detailed diagnosis of this
nodes in the cluster that measure to know which nodes are not
are not running running and why.
presently.

92

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Pods in the cluster that
are in the Pending state
currently.

Unknown nodes Indicates the number of | Number Use the detailed diagnosis of this
nodes in the cluster that measure to know which nodes are in an
are in the Unknown Unknown state and why.
presently.

Pods capacity Indicates the maximum | Number
number of Pods that can
be created on the nodes
in the cluster.

Allocated pods Indicates the number of | Number If the value of this measure is equal to or
Pods that have been close to the value of the Pods capacity
scheduled to nodes in measure, it indicates that the cluster has
the cluster. or is about to exhaust its capacity. In

such a situation, you may want to add
more nodes to your cluster or increase
the Pod capacity of your cluster.

Running pods Indicates the number of | Number If a Pod is in the Running state, it means
Pods in the cluster that that the Pod has been bound to a node,
are in the Running state and all of the Containers have been
currently. created. At least one Container is still

running, or is in the process of starting or
restarting.
Use the detailed diagnosis of this
measure to know which Pods are in the
Running state.

Pending pods Indicates the number of | Number If aPod is in the Pending state, it means

that the Pod has been accepted by the
Kubernetes system, but one or more of
the Container images has not been
created. This includes time before being
scheduled as well as time spent
downloading images over the network,
which could take a while.

If a pod is stuck in Pending it means that
it can not be scheduled onto a node.
Generally this is because there are
insufficient resources of one type or
another that prevent scheduling. If this is

93

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

the case, do the following:
« Add more nodes to the cluster.

« Terminate unneeded pods to make

room for pending pods.

« Check that the pod is not larger than
your nodes. For example, if all nodes
have a capacity of cpu:1, then a pod
with a request of cpu: 1.1 will never

be scheduled.

Use the detailed diagnosis of this
measure to know which Pods are in the
Pending state.

Pods in the cluster that
are in the Unknown state
currently.

Succeeded pods Indicates the number of | Number If aPod is in the Succeeded state, it
Pods in the cluster that means that all Containers in the Pod
are in the Succeeded have terminated in success, and will not
state currently. be restarted.
Failed pods Indicates the number of | Number If aPod is in the Failed state, it means
Pods in the cluster that that all Containers in the Pod have
are in the Failed state terminated, and at least one Container
currently. has terminated in failure. That is, the
Container either exited with non-zero
status or was terminated by the system.
Use the detailed diagnosis of this
measure to know which Pods are in the
Failed state.
Ideally, the value of this measure should
be 0.
Unknown pods Indicates the number of | Number If a Pod is in the Unknown state, it

means that the state of the Pod could
not be obtained, probably due to an error
in communicating with the host of the
Pod.

Ideally, the value of this measure should

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description ﬁﬁ:atsurement Interpretation
be 0.
Running pods Indicates the percentage | Percent The formula used for computing this
utilization of Pods in the cluster measure is as follows:
that are in a Running [Running pods/Pods capacity]*100
state currently.
Ideally, the value of this measure should
be high.
Total CPUs Indicates the total Number
number of CPU cores
supported by the cluster.
CPU capacity Indicates the total CPU | Millicpu
capacity of the cluster.
CPU requests Indicates the minimum | Millicpu This is the sum of CPU requests
CPU resources configured for all containers in all Pods
guaranteed to the Pods across nodes in the cluster.
inthe cluster. A request is the amount of that resource
that the system will guarantee to a Pod.
CPU limits Indicates that maximum | Millicpu This is the sum of CPU limits set for all
amount of CPU containers in all Pods across nodes in
resources that the Pods the cluster.
inthe cluster can use. A limit is the maximum amount that the
system will allow the Pod to use.
CPU limits Indicates what Percent The formula used for computing this
allocation percentage of the CPU measure is as follows:

capacity of the cluster is
allocated as CPU limits
to containers. In other
words, this is the
percentage of a cluster's
CPU capacity that the
containers are allowed to
use.

(CPU limits/CPU capacity)*100

If the value of this measure exceeds
100%, it means that one/more Pods are
probably over-subscribing to the
capacity of one/more nodes.

CPU requests
allocation

Indicates what
percentage of the total
CPU capacity of the
clusteris set as CPU

Percent

The formula used for computing this
measure is as follows:

(CPU requests/CPU capacity)*100

95

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

requests for the
containers in the cluster.
In other words, this is
the percentage of a
cluster's CPU capacity
that the containers on
the cluster are
guaranteed to receive.

If the value of this measure is unusually
high, then you can use the detailed
diagnosis of this measure to review the
CPU requests configured for each Pod
in the cluster. In the process, you can
accurately identify the Pod for which the
maximum amount of CPU resources in
the cluster is guaranteed - i.e., the Pod
that is hogging the CPU capacity of the
cluster.

allocation

percentage of the
memory capacity of the
cluster is allocated as
memory limits to
containers in the cluster.
In other words, this is
the percentage of a
cluster's memory
capacity that the
containers on the cluster
are allowed to use.

Memory capacity Indicates the total GB
memory capacity of the
cluster.

Memory requests Indicates the minimum | GB This is the sum of memory requests
memory resources configured for all containers in all Pods
guaranteed to the Pods across nodes in the cluster.
in the cl i
inthe cluster A request is the amount of that resource

that the system will guarantee to the
Pod.

Memory limits Indicates the maximum | GB This is the sum of memory limits set for
amount of memory all containers in all Pods across nodes in
resources that the Pods the cluster.
in the cluster can use. A limit is the maximum amount that the

system will allow the Pod to use.

Memory limits Indicates what Percent The formula used for computing this

measure is as follows:

(Memory limits/Memory
capacity)*100

If the value of this measure exceeds
100%, it means that one/more Pods are
probably over-subscribing to the
capacity of one/more nodes in the
cluster.

96

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Memory requests Indicates what Percent The formula used for computing this
allocation percentage of the total measure is as follows:
memory./ capacity of the (Memory requests/Memory
clusteris set as memory capacity)*100
requests for the
containers in the cluster. If the value of this measure is unusually
In other words, this is high, then you can use the detailed
the percentage of a diagnosis of this measure to review the
cluster's memory memory requests configured for each
capacity that the Pod in the cluster. In the process, you
containers in the cluster can accurately identify the Pod for which
are guaranteed to the maximum amount of memory
receive. resources in the cluster is guaranteed -
i.e., the Pod that is hogging the memory
capacity of the cluster.
Total pods with Indicates the total Number Typically, whenever changes are made

with deployment

available Pods created
in the cluster across
Deployments.

updated deployment | number of non- to a Deplopyment's Pod template - say,
terminated Pod replicas labels or container images of the
in the cluster that have template are changed - then a
been updated with Deployment rollout is triggered. A new
changes (if any) made to ReplicaSet is created and the
Pod template Deployment manages moving the Pods
specifications. from the old ReplicaSet to the new one
at a controlled rate.
Ideally, the value of this measure should
be the same as the value of the Total
pods with deployment measure. If not,
then it means that the desired number of
Pod replicas are not yet fully updated
with the changes to the Pod template.
Ready pods with Indicates the number of | Number
deployment ready Pods created in
the cluster across
Deployments.
Total available pods | Indicates the number of | Number A Pod is said to be Available, if it is

ready without any containers crashing
for at least the duration configured
against minReadySeconds in the Pod

97

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

specification.

Ideally, the value of this measure should
be the same as the value of the Total
pods with deployment measure. This
means that the desired state of the
Deployments is not the same as their
actual state.

Total unavailable Indicates the total Number Any Pod that is not ready, oris ready but

pods with number of unavailable has containers crashing for a period of

deployment Pods created in the time beyond the minReadySeconds
cluster across duration, is automatically considered
Deployments. Unavailable.

Ideally, the value of this measure should
be 0. If this measure reports a non-zero
value or a value equal to or close to the
value of the Total pods with
deployment measure, it means that the
desired state of the Deployments is not
the same as their actual state.

Use the detailed diagnosis of the Master nodes measure to know which are the master nodes in the
cluster.

Master Nodes Details

NODE NAME LABELS SYSTEM UUID

Aug 20,2019 16:50:54

master1 " beta.kubernetes.io/arch : "amd64” beta kubernetes.io/os : "linux” kubemetes.io/hostname : "master]” node : ™ node-role kubernetes.io/master . " 87020642-C45A-TEES-
master2 " beta.kubernetes.io/arch : "amd64” beta kubernetes.io/os : "linux” kubemetes.io/hostname : "master2” node : ™ node-role kubernetes.io/master . " 3F8A0642-B190-DD28
masterd * beta kubernetes io/arch : "amd64” beta kubernetes.io/os : "linux” kubernetes.io/hostname - "masterd” node : ™ node-role kubernetes io/master - 44AD0642-6CC2-AE26

Figure 3.19: The detailed diagnosis of the Master nodes measure

Use the detailed diagnosis of the Worker nodes measure to know which are the worker nodes in the
cluster.

Worker Nodes Details

NODE NAME LABELS SYSTEM UUID

Aug 20, 2019 16:55:30

worker] " beta.kubernetes.io/arch : "amd&4” beta kubemnetes.io/os : “linux” kubernetes.io/hostname : "workerl AACG0642-97FC-6054-2088-D13TBETTCCCD

worker2 " beta kubernetes io/arch : "amd64” beta kubernetes io/os : "linux” kubernetes.iofhostname - "worker2 F0910642-6C40-6E99-0D81-41EB4F325F39

Figure 3.20: The detailed diagnosis of the Worker nodes measure

98

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Use the detailed diagnosis of the Nodes added to cluster measure to know which nodes were
recently added to the cluster.

Added Node Details

NODE NAME

Aug 20,2019 16:32:26
worker2
workerl
masterd
master2

master]

Figure 3.21: The detailed diagnosis of the Nodes added to cluster measure

Use the detailed diagnosis of the Nodes removed from cluster measure to know which nodes were
recently removed from the cluster.

Removed Node Details

NODE NAME

Aug 19,2019 11:56:06
rdp19

Figure 3.22: The detailed diagnosis of the Nodes removed from cluster measure

Use the detailed diagnosis of the Nodes not running measure to know which nodes are not running
and why.

Running pods Details

NODE NAME REASON

Aug 19,2019 11:41:45

MESSAGE

waorker]

KubeletNotReady

[container runtime is down, PLEG is not healthy: pleg was last seen active T0h37m20.676358032s ago; threshold is 3m0s]

Figure 3.23: The detailed diagnosis of the Nodes not running measure

Use the detailed diagnosis of the Unknown nodes measure to know which nodes are in an Unknown
state and why.

Pending pods Details
NODE NAME

REASON MESSAGE
Aug 19,2019 15:50:21
worker] NodeStatusUnknown Kubelet stopped posting node status
worker2 NodeStatusUnknown Kubelet stopped posting node status.

Figure 3.24: The detailed diagnosis of the Unknown nodes measure

99

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Use the detailed diagnosis of the Running pods measure to know which Pods are in the Running
state and which node each running Pod is scheduled to.

Running pods Details
POD NAME NODE NAME
Aug 20,2019 16:55:30
kube-state-metrics-6c799bd94d-wizcd warkerl
kube-proxy-Irz9s master2
weave-net-pmjf4 master2
weave-net-2Ifh7 worker2
newrelic-infra-cdvhk master2
coredns-5c38db65d4-nrs8s master]
kube-apiserver-master3 master3
kube-controller-manager-master3 master3
kube-apiserver-master2 master2
kube-controller-manager-master2 master2
kube-apiserver-master] master]
kubernetes-dashboard-5c8f9556c4-vppqz master2
kube-proxy-m5ptp workerl
kube-controller-manager-masterl master]

Figure 3.25: The detailed diagnosis of the Running pods measure reported by the Kube Cluster Overview test

Use the detailed diagnosis of the Pending pods measure to know which Pods are in the Pending
state and which node each pending Pod is scheduled to.

Pending pods Details
POD NAME NODE NAME
Aug 20, 2019 16:55:30

init-demo worker2

Figure 3.26: The detailed diagnosis of the Pending pods measure reported by the Kube Cluster Overview test

If the value of the CPU requests allocation measure is unusually high, then you can use the detailed
diagnosis of this measure to review the CPU requests configured for each Pod in the cluster. In the
process, you can accurately identify the Pod that is guaranteed to receive the maximum amount of
CPU resources in the cluster - i.e., the Pod that is hogging the CPU capacity of the cluster.

100

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

CPU Requests Details

POD NAME CPU LIMITS(MILLICPU) CPU REQUESTS(MILLICPU) CPU REQUESTS(%)
Aug 20, 2019 18:28:56

weave-net-pmjf4 0 20 0.2
weave-net-2[fh7 0 20 0.2
newrelic-infra-cdvhk 0 100 1
coredns-5c98db65d4-nrs8s 0 100 1
kube-apiserver-master3 0 250 25
kube-contreller-manager-master3 0 200 2
kube-apiserver-master2 0 250 25
kube-controller-manager-master2 0 200 2
kube-apiserver-master] 0 250 25
kube-controller-manager-master1 0 200 2
newrelic-infra-j99ts 0 100 1
kube-scheduler-master3 0 100 1
kube-scheduler-master2 0 100 1
weave-net-bvzqg 0 20 0.2

Figure 3.27: The detailed diagnosis of the CPU requests allocation measure reported by the Kube Cluster
Overview test

If the value of the Memory requests allocation measure is unusually high, then you can use the
detailed diagnosis of this measure to review the memory requests configured each Pod in the
cluster. In the process, you can accurately identify the Pod that is guaranteed to receive the
maximum amount of memory resources in the cluster - i.e., the Pod that is hogging the memory
capacity of the cluster.

Memory Requests Details

POD NAME MEMORY LIMITS(GB) MEMORY REQUESTS(GB) MEMORY REQUESTS(%)
Aug 20,2019 18:28:56

newrelic-infra-cdvhk 01465 0.0293 0.1519
coredns-5c98db65d4-635tm 0166 0.0684 0.3544
coredns-5c98db65d4-nrsgs 0.166 0.0684 0.3544
newrelic-infra-cgare 0.1465 0.0293 0.1519
newrelic-infra-j99ts 0.1465 0.0293 0.1519
newrelic-infra-kqkvs 0.1465 0.0293 0.1519
newrelic-infra-Snqnr 01465 0.0293 0.1519

Figure 3.28: The detailed diagnosis of the Memory request allocation measure reported by the Kube Cluster
Overview test

3.1.8 Kube Namespaces Test

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual
clusters are called namespaces.

Namespaces are intended for use in environments with many users spread across multiple teams,
or projects. Namespaces are a way to divide cluster resources between multiple users (via resource
quota). A resource quota, defined by a ResourceQuota object, provides constraints that limit
aggregate resource consumption per namespace. It can limit the APl resources - i.e., the quantity of
objects (eg., pods, services, deployments etc.) that can be created in a namespace , as well as the

101

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

total amount of compute resources - i.e., CPU and memory - that may be consumed by the API
resources in that namespace.

If quota is enabled in a namespace for compute resources like CPU and memory, users must specify
requests and/or limits for those values. A request is the amount of that resource that the system will
guarantee to the namespace, and a limit is the maximum amount that the system will allow the
namespace to use. Typically, within a namespace, a Pod or Container can consume as much CPU
and memory as defined by the namespace’s resource quota. You can also define compute resource
usage limits for individual containers, during their creation. However, to ensure that no single
pod/container in a namespace hogs the resources of that namespace, you can define a Limit Range.
Limit Range is a policy to constrain resource by Pod or Container in a namespace. A limit range
provides constraints that can:

o Enforce minimum and maximum compute resources usage per Pod or Container in a
namespace.

« Enforce minimum and maximum storage request per PersistentVolumeClaim in a namespace.
« Enforce aratio between request and limit for a resource in a namespace.

« Set default request/limit for compute resources in a namespace and automatically inject them to
Containers at runtime. The default requests/limits will apply to those containers for which requests
and/or limits have not been specifically defined.

If creating or updating an API resource in a namespace violates a quota constraint / limit range, then
that create/update request will fail. For instance, say a namespace is configured with a resource
quota that restricts the number of Pods that can be created in that namespace to 2. In this case, if the
creation of a third Pod is attempted within that namespace, then the pod creation will fail. Likewise, if
you are attempting to create a container with a memory limit of 2Gi within a namespace that has a
resource quota constraint of 1Gi, then Kubernetes will not allow the container to be created. This can
eventually result in a mismatch between the cluster's desired state and its actual state. To avoid this,
administrators must first be well-aware of the resource request/limit that has been set per
namespace and also for the pods and containers in each namespace. Then, administrators should
track how the containers in each namespace are using the allocated compute resources, and
determine whether any namespace is likely to violate its quota, well before an actual violation
happens. The Kube Namespaces enables administrators to pre-empt any adverse impact to cluster
health by monitoring namespaces, their quota definitions, and their resource usage!

This test auto-discovers the namespaces configured in a Kubernetes/OpenShift cluster, and reports
the current state of each namespace, thus bringing inactive/terminating namespaces to light.
Additionally, the test also reports the request/limit settings for each namespace and the
requests/limits that apply to the pods and the containers in every namespace. Furthermore, the test

102

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

also measures how much of the allowed / guaranteed compute resources each namespace is
currently utilizing, thus enabling administrators to accurately identify the namespaces that are
currently experiencing or may potentially experience a contention for resources. The resource quota
of such namespaces may require rework. This way, the test proactively alerts administrators to
problem conditions that may be caused by poor resource quota definitions, and prompts them to
initiate preventive action.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each namespace configured in the
Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

103

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API viaan HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,

104

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

DD Frequency

Detailed Diagnosis

then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:7. This indicates that, by default, detailed measures will be
generated every third time this test runs, and also every time the test detects a
problem. You can modify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Status

Description Me:asurement Interpretation
Unit
Indicates the current The values that this measure reports and
status of this their corresponding numeric values are
namespace detailed in the table below:
Measure Value Numeric Value
Active 1
Terminating 0
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a namespace. In the graph of
this measure however, the state is
indicated using the numeric equivalents

105

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

only.

Use the detailed diagnosis of this measure
to view the labels that have been configured
for the objects in an namespace. Labels are
key/value pairs that are attached to objects,
such as pods. Labels are intended to be
used to specify identifying attributes of
objects that are meaningful and relevant to
users, but do not directly imply semantics
to the core system. Labels can be used to
organize and to select subsets of objects.
Labels can be attached to objects at
creation time and subsequently added and
modified at any time. Each object can have
a set of key/value labels defined. Example
of labels: "release™ : "stable", "release” :
"canary"

Age Indicates how old the The value of this measure is expressed in
namespace is number of days, hours, and minutes.

Total pods Indicates the number of | Number A Pod is the basic execution unit of a
pods in this Kubernetes application-the smallest and
namespace. simplest unit in the Kubernetes object

model that you create or deploy. A Pod
encapsulates an application’s container (or,
in some cases, multiple containers),
storage resources, a unique network IP,
and options that govern how the container
(s) should run. A Pod represents a unit of
deployment: a single instance of an
application in Kubernetes, which might
consist of either a single container or a
small number of containers that are tightly
coupled and that share resources.

To know which are the pods in a
namespace, use the detailed diagnosis of
this measure.

106

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

If the resource quota enforced on a
namespace restricts the number of pods
you can create in a namespace, then you
can use this measure to ascertain how
much of that quota is being used currently,
and how many more pods you can create
before the quota is fully exhausted. If the
node on which the existing pods are running
has the resource capacity to support more
pods, you may want to change your quota
accordingly.

Total services

Indicates the number of
services in this
namespace.

Number

In Kubernetes, a Service is an abstraction
which defines a logical set of Pods and a
policy by which to access them
(sometimes this pattern is called a micro-
service).

To know which services areina
namespace, use the detailed diagnosis of
this measure.

If the resource quota enforced on a
namespace restricts the number of
services you can create in a namespace,
then you can use this measure to ascertain
how much of that quota is being used
currently, and how many more services you
can create before the quota is fully
exhausted.

Maximum CPU
limits in container

Indicates the

CPU resource limit set
in the Limit Range for
containers in this
namespace.

Millicpu

These measures will be reported
only if a Limit Range has been
configured and enabled for the
containers in a namespace, and
CPU limits/requests have been
configured in that Limit Range.

Typically, to limit consumption by individual
containers in a namespace, a Limit Range
specification is used.

If a Limit Range is enforced on the

107

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Minimum
CPU requests in
container

Indicates the minimum
CPU request limit set in
the Limit Range for
containers in this
namespace.

Millicpu

containers in a namespace, then the
resource consuming capacity of each
container in that namespace will be
determined by the min/max limits defined
within that Limit Range. In this case
therefore, the max and min limit settings in
the Limit Range will be reported as values
of these measures, respectively.

Moreover, in this case, Kubernetes will
automatically foil any attempt to
create/update a container, if that operation
ends up violating the limit set in the Limit
Range. For instance, say that the Limit
Range specification enforced on a
namespace rules that no single container in
that namespace should consume CPU over
800m (max limit) or lesser than 100m (min
limit). In this case, if an attempt is made to
create a single container with a CPU limit of
900m, then Kubernetes will automatically
foil that attempt. This is because, that
container violates the max limit of 800m
that is set per container in the enforced
Limit Range. The container creation fails,
even if that container does not violate the
total CPU consumption limit set in the
resource quota of that namespace.

Default CPU limits
in container

Indicates the default
CPU limit defined in the
Limit Range for
containers in this
namespace.

Millicpu

These measures will be reported
only if a if default CPU
requests/limits are set in the Limit
Range for the containers in a
namespace.

Default CPU requests and limits can be set
for the containers in a pod, using the Limit
Range specification. These default settings
apply only when minimum and/or maximum
CPU limits are not defined at the individual

container-level (during container creation).

108

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Forinstance, if a container being created is
not configured with a CPU limit, but is
configured with a CPU request, then the
default CPU limit configured in the Limit
Range will apply to that container. If a
container being created is not configured
with a CPU request, but is configured with

limits in container

memory resource limit
set in the Limit Range
for containers in this
namespace,

Default CPU Indicates the default Millicpu a CPU limit instead, then Kubemnetes does
requests in CPU request setting not automatically apply the default CPU
container defined in the Limit request configured in the Limit Range to
Range for containers in that container. Instead, the limits set for
this namespace. that container during creation are
automatically set as its requests. On the
other hand, if a container is being created
with neither CPU limits nor CPU requests
defined, then the default CPU limit and
request defined in the Limit Range will
automatically apply.
Maximum memory | Indicates the MB These measures will be reported

only if a Limit Range has been
configured and enabled for the
containers in a namespace, and
memory limits/requests have been
configured in that Limit Range.
Typically, to limit consumption by individual
containers in a namespace, a Limit Range

specification is used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each container in that
namespace will be determined by the
min/max limits defined within that Limit
Range. In this case therefore, the max and
min memory limit settings in the Limit
Range will be reported as values of these
measures, respectively. Moreover, in this
case, Kubernetes will automatically foil any
attempt to create/update a container that

109

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

violates the limit set in the Limit Range. For
instance, say that the Limit Range
specification enforced on a namespace
rules that no single container in that
namespace should consume memory over
500 MB (max limit) or lesser than 100 MB
(min limit). In this case, if an attempt is
made to create a single container with a
memory limit of 800 MB, then Kubernetes
will automatically foil that attempt. This is
because, that container violates the max
limit of 500 MB that is set per containerin

Minimum memory | Indicates the minimum | MB the enforced Limit Range. The container

requests in memory request limit creation fails, even if that operation does

container set in the Limit Range not violate the total memory consumption
for containers in this limit set in the resource quota of that
namespace. namespace.

If the value of the Maximum memory
limits in container measure reports the
value 0, it means that the containers in the
namespace have no upper bound on the
amount of memory they use. In such
situations, the Container could use all of the
memory available on the Node where it is
running which in turn could invoke the OOM
Killer. Further, in case of an OOM Kill, a
container with no resource limits will have a
greater chance of being killed.

Default memory | Indicates the default MB These measures will be reported

o . e only if a if default memory

limits in container | memory limit defined in requests/limits are set in the Limit
the Limit Range for Range enforced for the containers

containers in this In a namespace.

namespace. Default memory requests and limits can be
set for the containers in a pod, using the
Limit Range specification. These default
settings apply only when minimum and/or
maximum memory limits are not defined at
the individual container-level (during

110

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

container creation).

Forinstance, if a container being created is
not configured with a memory limit, but is
configured with a memory request, then the
default memory limit configured in the Limit
Range will apply to that container. If a
container being created is not configured

amount of CPU
resources that
containers in this
namespace are allowed
to use, as per the
resource quota.

Default memory Indicates the default MB with a memory request, but is configured
requests in memory request setting with a memory limit instead, then
container defined in the Limit Kubernetes does not automatically apply
Range for containers in the default memory request configured in
this namespace. the Limit Range to that container. Instead,
the limits set for that container during
creation are automatically set as its
requests. On the other hand, if a container
is being created with neither memory limits
nor memory requests defined, then the
default memory limit and request defined in
the Limit Range will automatically apply.
CPU limit Indicates the total Millicpu Resource requests/limits set using the

ResourceQuota object govern the
aggregate resource consumption of a
namespace - i.e., the total resources that
can be consumed/requested across all
pods/containers in a namespace.

A resource quota is violated only when the
total consumption of a resource, across
pods/containers in the namespace,
exceeds the limits defined in the resource
quota.

Forinstance, say that the resource quota of
a namespace enforces a CPU usage limit
of 2 cores and a memory usage limit of
500Gi. In this case, Kubernetes will allow
you to create 2 containers with a CPU core
each and 100Gi of memory each. However,

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

CPU requests

Indicates the minimum
amount of CPU
resources that is
guaranteed to the
containers in this
namespace, as per the
resource quota.

Millicpu

Memory limit

Indicates the total
amount of memory
resources that
containers in this
namespace are allowed
to use, as per the
resource quota.

MB

Memory requests

Indicates the minimum
amount of memory
resources that is
guaranteed to the
containers in this
namespace, as per the
resource quota.

MB

if an attempt is made to create another
container configured with 1 CPU core and
200Gi of memory, then such an addition
operation will fail. This is because, the
addition increases the total CPU usage of
the namespace to 3 CPU cores, which
violates the 2 core limit set by the resource
quota.

Used CPU limits

Indicates the sum of the
CPU limits configured
for the containers in this
namespace.

Millicpu

If aresource quota is enabled for a
namespace , you may want to compare the
value of this measure with that of the

CPU limits for that namespace. If this
comparison reveals that the value of this
measure is equal to or close to that of the
CPU limits measure, it implies that that
namespace has or is about to exhaust its
quota of CPU resources. If the node on
which the containers are running is
resource-thick, you may want to
reconfigure the resource quota and increase
the aggregate CPU consumption capacity
of the namespace, so as to prevent a
resource quota violation and consequent
throttling of creation/updation operations on

112

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

the namespace.

Used memory
limits

Indicates the sum of the
memory limits
configured for the
containers in this
namespace.

MB

If aresource quota is enabled for a
namespace, you may want to compare the
value of this measure with that of the
Memory limits measure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of the Memory limits
measure, it implies that that namespace
has or is about to exhaust its quota of
memory resources. If the node on which the
containers are running is resource-thick,
you may want to reconfigure the resource
quota and increase the aggregate memory
consumption capacity of the namespace,
so as to prevent a resource quota violation
and consequent throttling of
creation/updation operations on the
namespace.

Used requests
CPU

Indicates the sum of the
CPU requests
configured for the
containers in this
namespace.

Millicpu

If aresource quota is enabled for a
namespace, you may want to compare the
value of this measure with that of the

CPU requests measure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of the CPU requests
measure, it implies that that namespace is
rapidly utilizing the CPU resources
guaranteed to it. If the node on which the
containers are running is resource-thick,
you may want to reconfigure the resource
quota and increase the aggregate requests
for the namespace, so as to prevent a
resource quota violation and consequent
throttling of creation/updation operations on
the namespace.

113

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Used requests
memory

Indicates the sum of the
memory requests
configured for the
containers in this
namespace.

MB

If aresource quota is enabled for a
namespace , you may want to compare the
value of this measure with that of

th Memory requests measure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of the Memory requests
measure, it implies that that namespace is
rapidly utilizing the memory resources
guaranteed toit. If the node on which the
containers are running is resource-thick,
you may want to reconfigure the resource
quota and increase the aggregate memory
requests for the namespace, so as to
prevent a resource quota violation and
consequent throttling of creation/updation
operations on the namespace.

Maximum
CPU limits in pod

Indicates the maximum
CPU usage limit set in
the Limit Range for
pods in this
namespace.

Millicpu

These measures will be reported
only if a Limit Range has been
configured and enabled for the
pods in a namespace, and CPU
limits/requests have been
configured in that Limit Range.
Typically, to limit consumption by individual
pods in a namespace, a Limit Range

specification is used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each pod in that namespace will
be determined by the min/max limits
defined within that Limit Range. In this case
therefore, the max and min limit settings in
the Limit Range will be reported as values
of these measures, respectively. Moreover,
in this case, Kubernetes will automatically
foil any attempt to create/update a
container, if that operation ends up violating
the limit set in the Limit Range for pods in

114

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Minimum CPU
requests in pod

Indicates the minimum
amount of CPU
resources guaranteed to
the pods in this
namespace.

Millicpu

the namespace. For instance, say that the
Limit Range specification enforced on a
namespace rules that no single pod in that
namespace should consume CPU over
800m (max limit) or lesser than 100m (min
limit). In this case, if an attempt is made to
create a single pod containing containers
with a total CPU limit of 900m, then
Kubernetes will automatically foil that
attempt. This is because, that pods violates
the max limit of 800m that is set per pod in
the enforced Limit Range. The pod creation
fails, even if that pod does not violate the
total CPU consumption limit set in the
resource quota of that namespace.

Maximum memory
limits in pod

Indicates the maximum
memory usage limit set
in the Limit Range for
pods in this
namespace.

MB

These measures will be reported
only if a Limit Range has been
configured and enabled for the
pods in a namespace, and memory
limits/requests have been
configured in that Limit Range.

To limit consumption by individual pods ina
namespace, a Limit Range specification is

used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each pod in that namespace will
be determined by the min/max limits
defined within that Limit Range. In this case
therefore, the max and min memory limit
settings in the Limit Range will be reported
as values of these measures, respectively.
Moreover, in this case, Kubernetes will
automatically foil any attempt to
create/update a pod, if that operation may
potentially violate the limit set in the Limit
Range. For instance, say that the Limit
Range specification enforced on a

115

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

namespace rules that no single pod in that
namespace should consume memory over
500 MB (max limit) or lesser than 100 MB
(min limit). In this case, if an attempt is
made to create a single pod containing
containers with a total memory limit of 800
MB, then Kubernetes will automatically foil
that attempt. This is because, that pod
violates the max limit of 500 MB that is set
per pod in the enforced Limit Range. The
pod creation fails, even if that operation
does not violate the total

Minimum memory | Indicates the minimum | MB

requests in amount of memory L)
) memory consumption limit set in the
container resources guaranteed to
. . . resource quota of that namespace.
the containers in this
namespace. If the value of the Maximum memory

limits in pod measure reports the value 0, it
means that the pods in the namespace
have no upper bound on the amount of
memory they use. In such situations, the
pods could use all of the memory available
on the Node where it is running which in
turn could invoke the OOM Killer. Further, in
case of an OOM Kill, a pod with no resource
limits will have a greater chance of being
killed.

The detailed diagnosis of the Total pods measure reveals the names of the pods in the namespace,
the IP address of the pods, and the node on which each pod is running.

Pods Details

POD NAME POD IP ADDRESS NODE NAME
Jun 18,2019 17:20:39

name-568774¢6f6-zxz7g 10.38.0.30 worker]-kube
name-568774c6f6-bfzvv 1038038 worker]-kube
name-568774c6f6-fz3cm 104501 worker2-kube
name-568774¢c6f6-bapkm 10.4502 worker2-kube
name-568774c66-fbirf 104503 worker2-kube

Figure 3.29: The detailed diagnosis of the Total Pods measure

The detailed diagnosis of the Total services measure reveals the names of the services in the
namespace.

116

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Services Details
SERVICES NAME

Jun 18, 2019 18:06:19
httpd

kubernetes
kubernetes-tutorial-cluster-ip
my-service

mysgl

nginx

nginx1

php-apache
redis-master
redis-slave

tomeat

tomcat-jk

web

Figure 3.30: The detailed diagnosis of the Total services measure
3.1.9 Kube Persistent Volumes Test

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned using Storage Classes. It is a resource in the cluster just
like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle
independent of any individual pod that uses the PV.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a pod. Pods
consume node resources and PVCs consume PV resources. Pods can request specific levels of
resources (CPU and Memory). Claims can request specific size and access modes (e.g., can be
mounted once read/write or many times read-only).

Typically, a user creates a PersistentVolumeClaim with a specific amount of storage requested and
with certain access modes. A control loop in the master watches for new PVCs, checks if any static
PV (a PV manually created by the administrator) matches the new PVC, and binds them together.
When none of the static PVs the administrator created matches a user’'s PVC, the cluster may try to
dynamically provision a volume specially for the PVC. If a PV was dynamically provisioned for a new
PVC, the loop will always bind that PV to the PVC. Claims will remain unbound indefinitely if a
matching volume does not exist. Claims will be bound as matching volumes become available. For
example, a cluster provisioned with many 50Gi PVs would not match a PVC requesting 100Gi. The
PVC can be bound when a 100Gi PV is added to the cluster.

When a user is done with their volume, they can delete the PVC objects from the API which allows
reclamation of the resource.

If there are many unfulfilled PVCs, an administrator may quickly want to check the status of the
existing PVs to determine why they could not be bound to any of the PVCs - is it because the PVs
are already bound? is it because the PVs have been released, but cannot be reclaimed? or has
reclamation failed for many PVs? The Kube Persistent Volumes test provides answers to these
questions!

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

This test auto-discovers PVs and reports the bind status of each PV, thereby pointing administrators
to those PVs that are unbound, bound, or released, and those that could not be reclaimed. This way,
administrators can figure out if the bind/relcamation status of a PV is why it could not be bound to a
PVC. Also, if there are one/more available/unbound PVs, then administrators can use this test to
verify the configuration - i.e., the access mode and storage capacity - of such PVs. This will reveal if
those PVs are unbound because their configuration does not match any open PVC.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Persistent Volume in the Kubernetes/OpenShift
cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the eG

Authentication
Token

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

agent, by default, connects to the Kubernetes APl via an HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

119

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

DD Frequency

Detailed Diagnosis

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:1. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

» The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Status

Description Me.asurement Interpretation

Unit
Indicates the current This measure can report any of the
status of this PV. following values:

« Available: A free resource that is yet

bound to a claim
« Bound: The volume is bound to a claim

« Released: The claim has been deleted,
but the resource is not reclaimed by the
cluster. This depends upon the reclaim
policy of the PV. For instance, if the
reclaim policy is Retain, then the
cluster will not automatically reclaim

the resource once it is released; it can

120

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement

Unit

Interpretation

only be manually reclaimed.

« Failed: The volume has failed its

automatic reclamation.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value
Available 1
Bound 2
Released 3
Failed 4
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a PV. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Using the detailed diagnosis of this
measure, you can determine the
namespace to which a PV belongs, the
PVC that binds the PV (in case the PV is
Bound), the reclaim policy configured for
the PV, and the storage class (in case the
PV is dynamically provisioned).

Age

Indicates how old this
PVis.

The value of this measure is expressed in
number of days, hours, and minutes.

Access modes

Indicates the access
modes configured for
this PV.

A PersistentVolume can be mounted on a
host in any way supported by the resource
provider. As shown in the table below,
providers will have different capabilities
and each PV’s access modes are set to
the specific modes supported by that
particular volume. For example, NFS can

121

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

support multiple read/write clients, but a
specific NFS PV might be exported on the
server as read-only. Each PV gets its own
set of access modes describing that
specific PV’s capabilities.

The access modes are:

« ReadWriteOnce —the volume can be

mounted as read-write by a single node

« ReadOnlyMany —the volume can be

mounted read-only by many nodes

« ReadWriteMany — the volume can be

mounted as read-write by many nodes

The aforesaid access modes also
represent the values that this measure
can report. The numeric values that
correspond to these measure values are

as follows:

Measure Value Numeric Value
ReadOnlyMany 1
ReadWriteMany 2
ReadWriteOnce 3

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the access mode of a PV. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.

Storage Indicates the storage GB
capacity configured for
this PV.

122

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

The detailed diagnosis of the Status measure reveals the namespace to which a PV belongs, the
PVC that binds the PV (in case the PV is Bound), the reclaim policy configured for the PV, and the
storage class (in case the PV is dynamically provisioned). If a PV is in the Released (but not
reclaimed) state or in the Failed state, then you can use the detailed diagnosis to identify what
reclaim policy applies to that PV, so you can easily troubleshoot the failure.

Persistent Volumes Details
NAMESPACE CLAIM NAME RECLAIM POLICY STORAGE CLASS
Sep 30,2019 17:31:17

defautt mysal-pve Retain manual

Figure 3.31: The detailed diagnosis of the Status measure reported by the Kube Persistent Volumes test
3.1.10 The Kube Workloads Layer
With the help of the tests mapped to this layer, you can:

« Pinpoint Pods that are in a Failed or Pending state, and those that are over-subscribing to a
node's capacity;

« Spot Deployments where the actual state does not match the desired state;

« ldentify Daemonsets that are running where they should not be and those that are not running
where they should be;

« Promptly detect scaling issues experienced by a Horizonal Pod Autoscaler;

« Quickly capture failed jobs;

123

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

hd Deployments By Mamespace
w kubernetes-dashboard
kubernetes-dashboard
kubernetes-metrics-scraper
« Summary
hd o Daemonset By Namespace
v o default
«" newrelic-infra
v & kube-system
«" kube-proxy
+ weave-net
«' Summary
e 0 Heorizental Pod Autoscaler By Namespaces
v o default
«' php-apache
« Summary
hd o Jobs By Namespaces
« default

«' Summary

Figure 3.32: The tests mapped to the Kube Workloads layer
3.1.11 Pods by Namespace Test

Pods are the smallest deployable uni ts of computing that can be created and managed in
Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers (such as
Docker containers), with shared storage/network, and a specification for how to run the containers.
A Pod’s contents are always co-located and co-scheduled, and run in a shared context.

Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until
termination (according to restart policy) or deletion. If a Node dies, the Pods scheduled to that node
are scheduled for deletion, after a timeout period. At any given point in time, an administrator needs
to know at which phase a Pod is in its life cycle, so they can promptly detect Pod failures or undue
slowness in Pod creation and rapidly initiate investigations into the same. This is necessary because,
if a Pod fails, then the cluster's actual state may go out of sync with its desired state.

Once a Pod is assigned to a node by scheduler, kubelet starts creating containers using container
runtime. Alongside status of Pods, an administrator also needs to keep track of the status of
containers at all times, as container failures impact the availability and performance of the
containerized applications. This way, administrators can detect and resolve issues in containerized
applications before end-users notice.

124

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Typically, when Pods run containers, they use the CPU and memory resources on the node to which
they are scheduled. By default, a Pod in Kubernetes will run with no limits on CPU and memory. This
means that a single Pod can end up hogging the resources of the node! To avoid this, administrators
can control the amount of CPU and memory resources each container in a Pod can use by setting
resource requests and limits in the Pod configuration file. APod can use as much compute
resources as represented by the sum of requests and limits of all containers in that Pod. This means
that if the per container limits are not prudently set, then you could have Pods that over-subscribe to
the node's capacity. Also, if containers are not sized according to their actual usage, then it can
adversely impact the performance of the containerized applications. This is why, it is imperative that
administrators track the actual resource usage of Pods, proactively detect potential resource
contentions, and tweak usage limits and/or priorities to prevent such contentions. The Pods by
Namespace test helps administrators perform all of the above!

This test auto-discovers the Pods in each Namespace, and reports the status of each Pod and that
of the containers in every Pod. This leads administrators to Pods and containers in an abnormal
state. Additionally, the test reports the resource requests and limits for each Pod, the resource
capacity of the Node to which each Pod is scheduled, and actual resource utilization. In the process,
the test accurately pinpoints those Pods that are over-subscribing to the node's capacity and those
Pods that may potentially cause a contention for resources on the node. Since the test also reveals
the QoS priority setting of each Pod, administrators can also figure out if a change in priority can help
prevent probable resource contentions/overcommitment.

Target of the test : A Kubernetes/OpenShift Cluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Pod in every namespace in the
Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

125

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is
managing the cluster. In this case, the load balancer will route the eG agent's
connection request to any available master node in the cluster, thus enabling
the agent to connect with the API server on that node, run APl commands on
it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API via an HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, when manually adding that cluster for monitoring using the

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter only accessing the API and pulling metrics. If for any reason,
you generate a new authentication token for the target cluster at a later point in time,
then make sure you update this parameter with the change. For that, copy the new

126

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Report System
Namespace

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

token and paste it against this parameter.

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespace may not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace from monitoring. Accordingly, this flag is set to No by
default.

If required, you can set this flag to Yes, and enable monitoring of the kube-system
namespace.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can maodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

127

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement Description gﬁialtsurement Interpretation
Status Indicates where this A Pod can be in one of the following phases
Pod is inits lifecycle. inits lifecycle:

« Pending: The Pod has been accepted by
the Kubernetes system, but one or more
of the Containerimages has not been
created. This includes time before being
scheduled as well as time spent
downloading images over the network,

which could take a while.

« Running: The Pod has been bound to a
node, and all of the Containers have
been created. At least one Container is
still running, oris in the process of

starting or restarting.

o Succeeded: All Containers in the Pod
have terminated in success, and will not

be restarted.

« Failed: All Containers in the Pod have
terminated, and at least one Container
has terminated in failure. That is, the
Container either exited with non-zero

status or was terminated by the system.

« Unknown: For some reason the state of

128

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

the Pod could not be obtained, typically
due to an error in communicating with the

host of the Pod.

« CrashLoopBackoff: A Pod is starting,
crashing, starting again, and then
crashing again.

The numeric values that correspond to this
are detailed in the table below:

Measure Value Numeric Value

Running 1

Succeeded

Completed

Failed

Pending

CrashLoopBackOff

N|lo|lo|b~|lwOw]|DN

Unknown

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a Pod. In the graph of this
measure however, the state is indicated
using the numeric equivalents only.

Use the detailed diagnosis of this measure
to know which containers are in the Pod,
the images used by the containers, and the
reason for the status.

Age Indicates how old this The value of this measure is expressed in
Podis. number of days, hours, and minutes.

Use the detailed diagnosis of this measure
to know which node a Pod is scheduled to,
the IP address of the Pod, and the images

129

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mt:iatsurement Interpretation
used by the containers in the Pod.
Termination grace | Shows the optional Seconds Because Pods represent running processes

period

duration in seconds the
Pod needs to terminate
gracefully.

on nodes in the cluster, it is important to
allow those processes to gracefully
terminate when they are no longer needed
(vs being violently killed with a KILL signal
and having no chance to clean up). Users
should be able to request deletion and know
when processes terminate, but also be able
to ensure that deletes eventually complete.
When a user requests deletion of a Pod, the
system records the intended grace period
before the Pod is allowed to be forcefully
killed, and a TERM signal is sent to the
main process in each container. Once the
grace period has expired, the KILL signal is
sent to those processes, and the Pod is
then deleted from the API server. The
default grace period is 30 seconds.

The kubectl delete command supports the
—-grace-period=<seconds> option which
allows a user to override the default and
specify their own value. The value 0 force
deletes the Pod. You must specify an
additional flag --force along with --grace-
period=0 in order to perform force
deletions.

Quality of service

Indicates the Quality of
Service (QOS)
classification assigned
to this Pod based on
resource requirement.

Kubermnetes provides different levels of
Quality of Service to pods depending on
what they request and what limits are set
for them. Pods that need to stay up and
consistently good can request guaranteed
resources, while pods with less exacting
requirements can use resources with
less/no guarantee.

For each resource, Kubernetes divide Pods
into 3 QoS classes: Guaranteed, Burstable,
and Best-Effort, in decreasing order of

130

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

priority.

o Guaranteed: Pods are considered top-
priority and are guaranteed to not be
killed until they exceed their limits. If
limits and optionally requests (not equal
to 0) are set for all resources across all
containers and they are equal, then the

pod is classified as Guaranteed.

« Burstable: Pods have some form of
minimal resource guarantee, but can use
more resources when available. Under
system memory pressure, these
containers are more likely to be killed
once they exceed their requests and no
Best-Effort pods exist. If requests and
optionally limits are set (not equal to 0)
for one or more resources across one or
more containers, and they are not equal,

then the pod is classified as Burstable.

» Best-Effort: Pods will be treated as
lowest priority. Processes in these pods
are the first to get killed if the system
runs out of memory. These containers
can use any amount of free memory in
the node though. If requests and limits
are not set for all of the resources,
across all containers, then the pod is

classified as Best-Effort.

This test reports one of the above 3
QOS classes as the value of this measure.
The numeric values that correspond to

131

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

these measure values are as follows:

Measure Value Numeric Value
Guaranteed 1
Burstable 2
Best Effort 3
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the QOS class of a Pod. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Restart policy Indicates the restart This measure reports one of the following
policy of all containers values:

within this Pod.
« Always: This means that the container

will be restarted even if it exited with a
zero exit code (i.e. successfully). This is
useful when you do not care why the
container exited, you just want to make
sure that it is always running (e.g. aweb

server). This is the default.

« OnFailure: This means that the container
will only be restarted if it exited with a
non-zero exit code (i.e. something went
wrong). This is useful when you want
accomplish a certain task with the pod,
and ensure that it completes
successfully - if it does not it will be

restarted until it does.

« Never: This means that the container will

not be restarted regardless of why it

132

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

exited.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value
Always 1
OnFailure 2

Never 3
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the restart policy of the containers in a Pod.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

Are all init Indicates whether/not Init containers are specialized containers

containers the init containers (if that run before app containers in a Pod. Init

initialized? any) in this Pod have containers can contain utilities or setup
started successfully. scripts not present in an app image.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1

No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the status of Init containers. In the graph of
this measure however, the same is
indicated using the numeric equivalents

133

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

only.

If this measure reports the value No or
Unknown for a Pod, then you can use the
detailed diagnosis of this measure to figure
out the reason for the same.

Is Pod ready? Indicates whether/not If a Pod is in the Ready state, it means that
this Pod is ready. the Pod is able to serve requests and
should be added to the load balancing pools
of all matching Services.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the Ready state of a Pod. In the graph of
this measure however, the same is
indicated using the numeric equivalents

only.
Are all containers | Indicates whether/not If a container is in the Ready state, it
ready? all containers in this means that the container is ready to service
Pod are ready. requests.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

134

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

_ M remen .
Measurement Description U::iatsu ement Interpretation
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not the containers in a Pod are
ready. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

Is pod scheduled? | Indicates whether/not
this Pod has been
scheduled to a node.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a Pod has been scheduled to a
node. In the graph of this measure however,
the same is indicated using the numeric
equivalents only.

If this measure reports the value No for a
Pod-i.e., if aPod is not scheduled to a
node - then you can use the detailed
diagnosis of this measure to figure out the
reason for the anomaly.

Total containers Indicates the count of | Number
containers in this Pod.
Volumes mounted | Indicates the count of | Number

135

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

volumes mounted in
this Pod.

Init containers

Indicates the total
number of init
containers (if any) in
this Pod.

Number

Init containers are specialized containers
that run before app containers in a Pod. Init
containers can contain utilities or setup
scripts not present in an app image.

Priority

Indicates the priority
class assigned to this
Pod.

You can assign pods a priority class, which
is a non-namespaced object that defines a
mapping from a name to the integer value of
the priority. The higher the value, the higher
the priority.

A priority class object can take any 32-bit
integer value smaller than or equal to
1000000000 (one billion). Reserve numbers
larger than one billion for critical pods that
should not be preempted or evicted.

There are two reserved priority classes for
for critical system pods to have guaranteed
scheduling.

« System-node-critical: This priority class
has a value of 2000001000 and is used
for all pods that should never be evicted

from a node.

« System-cluster-critical: This priority
class has a value of 2000000000 (two
billion) and is used with pods that are
important for the cluster. Pods with this
priority class can be evicted from a node
in certain circumstances. For example,
pods configured with the system-node-
critical priority class can take priority.
However, this priority class does ensure

guaranteed scheduling.

136

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

This test reports one of the above two
priority classes as the value of this
measure. The numeric values that
correspond to these measure values are as
follows:

Measure Value Numeric Value

System-cluster-critical 1

System-node-critical 2

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the priority class assigned to a Pod. In the
graph of this measure however, the same is
indicated using the numeric equivalents
only.

Running
containers

Indicates the count of
running containers in
this Pod.

Number

If a container is in the Running state, it
indicates that the container is executing
without any issues.

Use the detailed diagnosis of this measure
to know which containers in a Pod are in the
Running state.

Terminated
containers

Indicates the count of
containers in this Pod
that are in a Terminated
state.

Number

If a container is in the Terminated state, it
means that the container completed its
execution and has stopped running. A
container enters into this when it has
successfully completed execution or when
it has failed for some reason.

If the containers in a Pod entered this state
because they have failed, then use the
detailed diagnosis of this measure to know
which are those containers, why the failure
occurred, and the exit code.

Waiting containers

Indicates the count of
containers in this Pod

Number

Waiting state is the default state of a
container. If container is not in either

137

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

that are in a Waiting
state.

Running or Terminated state, it is in Waiting
state. A container in Waiting state still runs
its required operations, like pulling images,
applying Secrets, etc.

Use the detailed diagnosis of this measure
to know which containers are in the Waiting
state and why.

Uptime of pods Indicates the total time | Seconds
for which the
containers in this Pod
were up and running.
Number of times | Indicates the number of | Number Use the detailed diagnosis of this measure
container has been | times the containers in to identify the containers that were
restarted this Pod have been restarted and to determine the number of
restarted. times each container was restarted.
Frequently restarted containers can thus be
isolated.
CPU requests Indicates the minimum | Millicpu This is the sum of CPU requests configured
CPU resources for all containers in a Pod.
guaranteed to this Pod. A request is the amount of that resource
that the system will guarantee to the Pod.
CPU limits Indicates that Millicpu This is the sum of CPU limits set for all
maximum amount of containers in a Pod.
CPU resources that A limit is the maximum amount that the
this Pod can use. .
system will allow the Pod to use.
Total CPUs on Indicates the total Number
node number of CPU cores
available to the node to
which this Pod is
scheduled.
CPU capacity on | Indicates the Millicpu
node CPU capacity of the
node to which this Pod
is scheduled.
CPU limits Indicates what Percent The formula used for computing this

138

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mt:iatsurement Interpretation

allocation percentage of the measure is as follows:
capacity of the node s (CPU limits/CPU capacity on node)*100
allocated as CPU limits
to containers in this If the value of this measure exceeds 100%,
Pod. In other words, it means that the Pod is oversubscribing to
this is the percentage the node's capacity. In other words, it
of anode's means that the Pod has been allowed to
CPU capacity that the use more resources than the node's
containers on this Pod capacity.
are allowed to use.

CPU requests Indicates what Percent The formula used for computing this

allocation percentage of the total measure is as follows:

CPU .capacity of the (CPU requests/CPU capacity on

node is set as CPU node)*100

requests for the

containers on this Pod. Compare the value of this measure across
In other words, this is Pods to know which Pod has been

the percentage of a guaranteed the maximum CPU resources.
node's CPU capacity

that the containers on

this Pod are guaranteed

toreceive.

CPU usage Indicates the amount of | Millicpu Ideally, the value of this measure should be
CPU resources used much lesser than the value of the CPU
by this Pod. capacity on node measure. If the value of

this measure is equal to oris rapidly
approaching the value of the CPU capacity
on node measure, it means that the Pod is
over-utilizing the CPU resources of the
node.

CPU utilization Indicates the Percent A value close to 100% is indicative of
percentage of CPU excessive CPU usage by a Pod, and hints
resources utilized by at a potential CPU contention on the node.
this Pod. A value greater than 100% implies that the

Pod has probably over-subscribed to the
node's capacity.

Containers without | Indicates the number of | Number If limit is not set, then if defaults to 0

139

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mt:ia;surement Interpretation

CPU limits set containers in this Pod (unbounded)
for which CPU limits
are not set.

Containers without | Indicates the number of | Number In the case that request is not set for a

CPU requests set | containers in this Pod container, it defaults to limit.
for which CPU
requests are not set.

Memory requests | Indicates the minimum | GB This is the sum of memory requests
memory resources configured for all containers in a Pod.
guaranteed to this Pod. A request is the amount of that resource

that the system will guarantee to the Pod.

Memory limits Indicates the maximum | GB This is the sum of memory limits set for all
amount of memory containers in a Pod.
resources that this Pod A limit is the maximum amount that the
can use. .

system will allow the Pod to use.

Memory capacity | Indicates the GB

on node memory capacity of the
node to which this Pod
is scheduled.

Memory limits Indicates what Percent The formula used for computing this

allocation percentage of the measure is as follows:
memc.)ry capacity of the (Memory limits/Memory capacity on
node is allocated as node)*100
memory limits to
containers in this Pod. If the value of this measure exceeds 100%,
In other words, this is it means that the Pod is oversubscribing to
node's memory means that the Pod has been allowed to
capacity that the use more resources than the node's
containers on this Pod capacity.
are allowed to use.

Memory requests | Indicates what Percent The formula used for computing this

allocation

percentage of the total
memory capacity of the
node is set as memory
requests for the

measure is as follows:

(Memory requests/Memory capacity on
node)*100

140

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mt:ia;surement Interpretation
containers on this Pod. Compare the value of this measure across
In other words, this is Pods to know which Pod has been
the percentage of a guaranteed the maximum memory
node's memory resources.
capacity that the
containers on this Pod
are guaranteed to
receive.

Memory usage Indicates the amount of | GB Ideally, the value of this measure should be
memory resources much lesser than the value of the Memory
used by this Pod. capacity on node measure. If the value of

this measure is equal to oris rapidly
approaching the value of the Memory
capacity on node measure, it means that
the Pod is over-utilizing the memory
resources of the node.

Memory utilization | Indicates the Percent A value close to 100% is indicative of
percentage of memory excessive memory usage by a Pod, and
resources utilized by hints at a potential memory contention on
this Pod. the node.

A value greater than 100% implies that the
Pod has probably over-subscribed to the
node's capacity.

Containers without | Indicates the number of | Number If limit is not set, then it defaults to 0

memory limits set | containers in this Pod (unbounded)
for which memory
limits are not set.

Containers without | Indicates the number of | Number In the case that request is not set fora

memory requests
set

containers in this Pod
for which memory
requests are not set.

container, it defaults to limit.

The detailed diagnosis of the Status measure reveals which containers are in the Pod, the images

used by the containers, and the reason for the status.

141

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Pod status Details

CONTAINER NAME CONTAINER ID IMAGES MAME IMAGES ID

Aug 20, 2019 19:17:41

install 831d0foe6fa9007ac4c] 2f0b229d42dd5a67ed1 be2e380844de] 26a766d1ed0a busybox:latest busybox@sha256:9f1003¢480699be56815db0f3146ad2e22efea
nginx N/& nginx N/A

Figure 3.33: The detailed diagnosis of the Status measure reported by the Pods by Namespace test

The detailed diagnosis of the Age measure reveals which node a Pod is scheduled to, the IP
address of the Pod, and the images used by the containers in the Pod.

Pods Details

NODE NAME

NODE IP ADDRESS POD IP ADDRESS IMAGES
Aug 20, 2019 19:17:41
worker2 19216811 87

10.36.09 nginx

Figure 3.34: The detailed diagnosis of the Age measure reported by the Pods by Namespace test

If the Are all init containers initialized? measure reports the value Yes or Unknown, then you can use

the detailed diagnosis of this measure to figure out the reason why the init containers failed to
initialize.

Init Containers Details
REASON

MESSAGE
Aug 20,2019 19:17:41

Containershotinitialized

containers with incomplete status: [install]

Figure 3.35: The detailed diagnosis of the Are all init containers initialized? measure

If the containers in a Pod entered the Terminated state, then use the detailed diagnosis of the
Terminated containers measure to know which are those containers, why the failure occurred, and
the exit code.

Terminated Container Details

CONTAINER NAME CONTAINER ID

IMAGES NAME
Aug 20, 2019 16:47:23
install

IMAGES ID
docker://1cd12b3c8135b52ad8el edfc22c3be5004a9ee30f2169833ec6ae468a9chT160

busybox:latest busybox@sha256:9f1003c480699be56815db0f3146ad

Figure 3.36: The detailed diagnosis of the Terminated containers measure

Use the detailed diagnosis of the Waiting containers measure to know which containers are in the
Waiting state and why.

142

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Waiting Container Details
CONTAINER NAME CONTAINER ID IMAGES NAME IMAGES ID
Aug 20,2019 19:17:41
install 831d0f9e6fa9007ac4c] 2f0b229d42dd5a67e91he2e380844de126a766d 1ed0a busybox:latest busybox@sha256:9f1003c480699be56815db0f8146ad2e22efea

nginx N/A nginx N/A

Figure 3.37: The detailed diagnosis of the Waiting containers measure
3.1.12 Deployments by Namespace Test

A Deployment provides declarative updates for Pods and ReplicaSets. While a Pod encapsulates
an application’s container (or, in some cases, multiple containers), storage resources, a unique
network IP, and options that govern how the container(s) should run, a ReplicaSet is used to
maintain a stable set of replica (identical) Pods running at any given time.

Using a Deployment, you can easily:

« Deploy a ReplicaSet

« Update Pods (PodTemplateSpec)

« Rollback to older Deployment versions
« Scale Deployment up or down

» Pause and resume the Deployment

« Determine state of replicas

o Clean up older ReplicaSets

o Canary Deployment

Whenever a Deployment is used to perform such operations, it is only natural that administrators
want to know the status of the deployment - whether it is paused or progressing. Most importantly,
administrators will want to be alerted if the Deployment was unable to deliver the intended/desired
result of the operation. For instance, an administrator would want to be alerted if any deployment
fails to create the desired number of available replicas in a ReplicaSet, fails to update one/more
replicas with changes to a Pod template, or does not have the adequate number of Pods to reach full
capacity. This is because, such failures may result in a mismatch between the cluster's desired state
and its actual state, which in turn may affect the availability and performance of the containerized
applications that overlay the cluster. This is where the Deployments by Namespace test helps!

This test auto-discovers Deployments in a Namespace, and for each Deployment, reports the
overall status of the deployment - i.e., whether the desired state of the Deployment is the same as its
actual state. If the state of the Deployment is Unhealthy, then you can use this test to figure out what

143

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

could have caused the anomaly - is it because of a replica failure? is it because of unavailable Pods?
or is it because of the Pods that are not yet up-to-date with changes made to the Pod template?

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Deployment in every namespace configured in the
Kubernetes/OpenShift cluster being monitored

First-level Descriptor: Namespace

Second-level Descriptor: Deployment

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APlI commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubemetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by

144

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the eG

Authentication
Token

Report System
Namespace

Proxy Host

Proxy Port

agent, by default, connects to the Kubernetes APl via an HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespace may not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace from monitoring. Accordingly, this flag is set to No by
default.

If required, you can set this flag to Yes, and enable monitoring of the kube-system
namespace.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is

145

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement

Status

Description Me?surement Interpretation

Unit
Indicates whether/not This measure reports the value Healthy if
the desired state of this the desired state of the Deployment is the
deployment is the same same as its actual state. In other words, if
as its actual state. the value of the Total pods with

deployment measure is the same as the
value of Total available pods with

146

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

deployment measure, then this measure
will report the value Healthy. If not, this
measure will report the value Unhealthy.
For instance, if the Deployment seeks to
deploy a ReplicaSet with 3 replica (Pods)
in it, and succeeds in creating such a
ReplicaSet, then the value of this measure
will be Healthy. On the other hand, if the
Deployment created a ReplicaSet with
only two available replica Pods, then the
value of this measure will be Unhealthy.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value

Healthy 1

Unhealthy 0
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a Deployment. In the graph of
this measure however, the same is
indicated using the numeric equivalents

only.
Is deployment Indicates whether/not You can pause a Deployment before
paused? this Deployment has triggering one or more updates and then
been paused. resume it. This allows you to apply

multiple fixes in between pausing and
resuming without triggering unnecessary
rollouts.

The values that this measure can report
and their corresponding numeric values
are listed in the table below:

147

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement

Unit

Interpretation

Measure Value Numeric Value

Yes 1
No 0
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the whether/not a Deployment has been
paused. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

Age

Indicates how old this
Deployment is.

The value of this measure is expressed in
number of days, hours, and minutes.

You can use the detailed diagnosis of this
measure to know the images that a
Deployment pulled from the Container
Registry to create containers on replica
Pods.

Is progressing?

Indicates whether/not
this Deployment is in
progress.

A Deployment enters various states during
its lifecycle.

Kubemnetes marks a Deployment as
progressing when one of the following
tasks is performed:

« The Deployment creates a new

ReplicaSet.

« The Deployment is scaling up its

newest ReplicaSet.

« The Deployment is scaling down its

older ReplicaSet(s).

« New Pods become ready or available
(ready for at least

MinReadySeconds).

148

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

Kubemetes marks a Deployment as
complete when it has the following
characteristics:

. The Deployment has minimum
availability. Minimum availability means
that the Deployment's number of
available replicas equals or exceeds the
number required by the Deployment
strategy.

. Allof the replicas associated with the
Deployment have been updated to the
latest version you have specified,
meaning any updates you've requested
have been completed.

. Noold pods for the Deployment are
running.

Your Deployment may get stuck trying to
deploy its newest ReplicaSet without ever
completing. This can occur due to some of
the following factors:

« Insufficient quota

« Readiness probe failures

« Image pull errors

« Insufficient permissions

« Limit ranges

« Application runtime misconfiguration

Typically, a Deployment is considered to
have Failed, if it is making progress for a
duration beyond the

progressDeadlineSeconds configuration.

This measure reports the value Yes fora
Deployment, if it is in the progressing or

149

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

complete state. The value No is reported,
if the Deployment is in fail to progress
state. The value Unknown is reported if
the Deployment is not in any of the above-
mentioned states - i.e., if the state cannot
be determined.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value
Yes 1

No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not a Deployment is progressing.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

|s available?

Indicates whether/not
this Deployment is
available.

Number

A deployment is said to be Available, if it
has minimum availability. Minimum
availability is dictated by the parameters
specified in the deployment strategy. For
instance, if the default Rolling Update
strategy is used, then the Max
Unavailable parameter of the strategy
indicates the Minimum Availability during
an upgrade. For example, if the Max
Unavailable is set to 25% , then it means
that a minimum of 75% of Pods should be
available in the Deployment when an
update is in progress.

If the Deployment is Available, then the
value of this measure is Yes. If the

150

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

Deployment is unavailable - i.e., if the
Minimum Availability criteria is not met -
then, the value of this measure is No. If
the availability of the Deployment cannot
be determined, then the value of this
measure will be Unknown.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value
Yes 1

No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to
indicate whether/not a Deployment is
Available. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If the value of this measure for any
Deployment is No, then you can use the
detailed diagnosis of this measure to
identify the unavailable Pods in the
Deployment, and the reason for their
unavailability. A Pod is said to be
Available, if it is ready without any
containers crashing for at least the
duration configured against
minReadySeconds in the Pod
specification. Any Pod that is not ready, or
is ready but has containers crashing for a
period of time beyond the
minReadySeconds duration, is
automatically considered Unavailable.

Is replica failure? Indicates whether/not The value Yes for this measure, indicates

151

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

any replica in this
Deployment has failed.

that one/more replicas in the Deployment
could not be created. The value No
indicates that all replicas were created.
The value Unknown implies that the state
of the replicas could not be determined.

The numeric values that correspond to
these measure values are as follows:

Measure Value Numeric Value
Yes 1
No 0
Unknown 2
Note:

By default, this test reports the Measure
Values listed in the table above to
indicate whether/not any replicas in the
Deployment could not be created. In the
graph of this measure however, the same
is indicated using the numeric equivalents
only.

If the failure of one/more replicas causes a
a mismatch between the desired state and
actual state of the Deployment, then the
value of the Status measure of that
Deployment will change to Unhealthy.

Observed
generation

Indicates the generation
observed after this
Deployment.

Number

A generation is a sequence number
representing a specific generation of the
desired state.

If the value of this measure for a
Deployment matches with the desired
generation sequence number of that
Deployment, it implies that the
Deployment is complete.

If it does not match, then it means that a
Deployment is progressing or has

152

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement

Unit

Interpretation

failed. In other words, if the value of the Is
progressing? measure for a Deployment
is Yes or No, then it means that the
desired generation sequence number and
the observed generation sequence number
of that Deployment is not the same.

with deployment

available Pods created
by this Deployment.

Total pods with Indicates the desired Number
deployment number of non-
terminated Pod replicas
targeted by this
Deployment.
Total pods with Indicates the total Number Typically, whenever changes are made to
updated number of non- a Deployment's Pod template - say, labels
deployment terminated Pod replicas or container images of the template are
that have been updated changed - then a Deployment rollout is
by this Deployment with triggered. A new ReplicaSet is created and
changes (if any) made the Deployment manages moving the
to the Pod template Pods from the old ReplicaSet to the new
specification. one at a controlled rate.
Ideally, the value of this measure should
be the same as the value of the Total
pods with deployment measure. If not,
then it means that the desired number of
Pod replicas are not yet fully updated with
the changes to the Pod template.
Ready pods with Indicates the number of | Number
deployment ready Pods created by
this Deployment.
Total available pods | Indicates the number of | Number A Pod is said to be Available, if it is ready

without any containers crashing for at
least the duration configured against
minReadySeconds in the Pod
specification.

Ideally, the value of this measure should
be the same as the value of the Total

pods with deployment measure. If not,
then the Status measure of this test will

153

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

report the value Unhealthy. This means
that the desired state of the Deployment is
not the same as its actual state.

Total unavailable
pods with
deployment

Indicates the total
number of unavailable
Pods created by this
Deployment.

Number

Any Pod that is not ready, or is ready but
has containers crashing for a period of
time beyond the minReadySeconds
duration, is automatically considered
Unavailable.

Ideally, the value of this measure should
be 0. If this measure reports a non-zero
value or a value equal to or close to the
value of the Total pods with deployment
measure, then the Status measure of this
test will report the value Unhealthy. This
means that the desired state of the
Deployment is not the same as its actual
state.

In the event that this measure reports a
non-zero value, then use the detailed
diagnosis of this measure to identify the
unavailable Pod replicas in the
Deployment.

Collision count

Indicates the count of
hash collisions for this
deployment.

Number

The Deployment controller uses this field
as a collision avoidance mechanism when
it needs to create the name for the newest
ReplicaSet.

Pods created by
this deployment

Indicates the number of
Pods created by this
Deployment that are
currently running.

Number

To know which Pods created by this
Deployment are currently running, use the
detailed diagnosis of this measure.

Retain old replica
count

Indicates the number of
old Replica Sets that
this Deployment should
retain to allow rollback.

Number

A Deployment’s revision history is stored
in the ReplicaSets it controls.

When configuring a Deployment, you can
optionally specify
.spec.revisionHistoryLimit, where you
can indicate the number of old

154

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

ReplicaSets to retain to allow rollback.
This value is reported as the value of this
measure.

Old ReplicaSets consume resources in
etcd and crowd the output of kubect! get
rs. The configuration of each Deployment
revision is stored in its ReplicaSets;
therefore, once an old ReplicaSet is
deleted, you lose the ability to rollback to
that revision of Deployment. By default, 10
old ReplicaSets will be kept, however its
ideal value depends on the frequency and
stability of new Deployments.

More specifically, setting this field to zero
means that all old ReplicaSets with 0
replicas will be cleaned up. In this case, a
new Deployment rollout cannot be undone,
since its revision history is cleaned up.

You can use the detailed diagnosis of the Age measure to know the images that a Deployment
pulled from the Container Registry to create containers on replica Pods.

Images Details
IMAGE NAME
Aug 20,2019 19:13:21

k8s gerio/hpa-example

Figure 3.38: The detailed diagnosis of the Age measure of the Deployments by Namespace test

If the value of the Is available? measure for any Deployment is No, then you can use the detailed
diagnosis of this measure to identify the unavailable Pods in the Deployment, and the reason for
their unavailability. A Pod is said to be Available, if it is ready without any containers crashing for at
least the duration configured against minReadySeconds in the Pod specification. Any Pod that is not
ready, or is ready but has containers crashing for a period of time beyond the minReadySeconds

duration, is automatically considered Unavailable.

155

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Unavailable Pod Details
POD NAME POD IP ADDRESS NODE NAME NODE IP ADDRESS REASON MESSAGE
Aug 20,2019 17:32:15

php-apache-5986bb6ha-z2zbs - worker2 192.168.11.87 ContainersNotReady containers with unready status: [php-apache]

Figure 3.39: The detailed diagnosis of the Is available? measure reported by the Deployments by Namespace
test

In the event that the Total unavailable pods with deployment measure reports a non-zero value, then
use the detailed diagnosis of this measure to identify the unavailable Pod replicas in the Deployment.
You can also use the detailed diagnostics to figure what could have rendered a Pod unavailable.
This information aids troubleshooting.

Unavailable Pod Details

POD NAME POD IP ADDRESS NODE NAME NODE IP ADDRESS REASON MESSAGE
Aug 20, 2019 17:32:15

php-apache-5986bb6h9-z2zbs - waorker2 192.168.11.87 ContainersNotReady containers with unready status: [php-apache]

Figure 3.40: The detailed diagnosis of the Total unavailable pods with deployment measure
3.1.13 Daemonset by Namespace

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the
cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are garbage
collected. Deleting a DaemonSet will clean up the Pods it created.

Some typical uses of a DaemonSet are:

« running a cluster storage daemon, such as glusterd, ceph, on each node.
« running alogs collection daemon on every node, such as fluentd or logstash.

« running a node monitoring daemon on every node
Daemon pods are typically scheduled using one of the following:

« Daemonset Controller: Normally, the machine that a Pod runs on is selected by the Kubernetes
scheduler. However, Pods created by the DaemonSet controller have the machine already
selected .

« Default scheduler: You can also schedule DaemonSets using the default scheduler instead of the
DaemonSet controller, by adding the NodeAffinity term to the DaemonSet pods, instead of the
.spec.nodeName term. The default scheduler is then used to bind the pod to the target host.

Regardless of which scheduler (Daemonset Controller or default scheduler) schedules Daemon
Pods, taints and tolerations are used to ensure that Daemon pods are not scheduled onto
inappropriate nodes. One or more taints are applied to a node; this marks that the node should not

156

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

accept any pods that do not tolerate the taints. Tolerations are applied to pods, and allow (but do not
require) the pods to schedule onto nodes with matching taints.

Sometimes, a Daemon Pod may be 'misscheduled' on to a node where it does not belong. In other
words, a Daemon Pod could be scheduled on to a node without 'matching taints'. This can cause
certain cluster operations to run on nodes they should not run on, hampering cluster performance in
the process. At some other times, a Daemon Pod may not run on the desired set of nodes. For
instance, an anti-virus daemon, which should typically run on all nodes in a cluster/namespace, may
run only on a few nodes. This is also detrimental to cluster performance. To ensure peak cluster
performance, administrators should rapidly identify misscheduled DaemonSets and those that are
not running on the desired nodes, and figure out what could have triggerred these anomalies. This is
where the DaemonSet by Namespace test helps!

This test auto-discovers the DaemonSets in each namespace, and for each DaemonSet, reports the
count of nodes scheduled to run that DaemonSet, the count of nodes on which it should run, and the
count of nodes on which it should not. This way, the test promptly alerts administrators to incorrect
scheduling of DaemonSets. Detailed diagnostics reveal which Daemon Pods are running on which
node, thereby enabling administrators to quickly identify those nodes running Daemon Pods they
should not be running. Additionally, the test also alerts administrators if a DaemonSet is updated.
Target of the test : A Kubernetes/OpenShift Cluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each DaemonSet in every namespace configured in the
Kubernetes/OpenShift cluster being monitored

First-level Descriptor: Namespace

Second-level Descriptor: DaemonSet

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 644.3.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APlI commands. To enable this connection, the eG

agent has to be configured with either of the following:

157

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubemnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift clusteris SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API viaan HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then

158

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:7. This indicates that, by default, detailed measures will be
generated every third time this test runs, and also every time the test detects a
problem. You can modify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

159

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurements made by the test

Measurement

Description

Measurement
Unit

Interpretation

on nodes

nodes (in this
namespace) that should
be running this
DaemonSet and have

Age Indicates how old this The value of this measure is expressed in
DaemonSet is. number of days, hours, and minutes.
You can use the detailed diagnosis of this
measure to know the labels and images
used by the daemons run by the
DaemonSet.
DaemonSet Indicates the number of | Number Use the detailed diagnosis of this
currently scheduled | nodes (in this measure to know which Daemon Pods
on nodes namespace) that are are running on which nodes in the
currently running this namespace.
DaemonSet and are
supposed to run this
DaemonSet.
DaemonSets Indicates the number of | Number Ideally, the value of this measure should
misscheduled on nodes in this be 0.
nodes namespace, that are
running this
DaemonSet, but are not
supposed to run this
DaemonSet.
DaemonSettorun | Indicates the number of | Number The value of this measure also includes
on nodes nodes (in this the count of nodes that are already
namespace) that should running the DaemonSet.
be running this Ideally therefore, this value of this
DaemonSet.
measure should be the same as the value
of the DaemonSet currently scheduled
on nodes measure. Any mismatch
implies issues in scheduling, which in tun
may impact cluster performance.
DaemonSet running | Indicates the number of | Number

160

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

one or more of the
Daemon Pods already
running and ready.

DaemonSet Indicates the number of | Number Updating a DaemonSet may involve:
updated on nodes | nodes (in this

namespace) that run the
updated daemon pod are changed, the DaemonSet will

« Changing node labels: If node labels

Spec. promptly add Pods to newly matching
nodes and delete Pods from newly not-

matching nodes.

« Changing a Daemon Pod: You can
modify the Pods that a DaemonSet
creates. However, Pods do not allow
all fields to be updated. Also, the
DaemonSet controller will use the
original template the next time a node

(even with the same name) is created.

« Deleting a DaemonSet: When
deleting a DaemonSet, you can
choose to leave the Daemon Pods on
the nodes. In this case, if you
subsequently create a new
DaemonSet with the same selector,
the new DaemonSet adopts the
existing Pods. If any Pods need
replacing the DaemonSet replaces

them according to its update Strategy.

. Performing a rolling update on a
DaemonSet: With RollingUpdate

update strategy, after you update a

DaemonSet template, old DaemonSet

161

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mc:iatsurement Interpretation
pods will be killed, and new
DaemonSet pods will be created
automatically, in a controlled fashion.
DaemonSet Indicates the number of | Number A Daemon Pod is considered to be
available on nodes | nodes (in this 'available' if it is ready without any of its
namespace) that should containers crashing for at least the
be running this duration specified against
DaemonSet and have spec.minReadySeconds in the
one or more of the DaemonSet configuration (YAML) file.
Daemon Pods running
and available.
DaemonSet Indicates the number of | Number A Daemon Pod is considered to be
unavailable on nodes (in this 'unavailable' if it is not ready without any
nodes namespace) that should of its containers crashing for even the
be running this minimum duration specified against
DaemonSet, but does spec.minReadySeconds in the
not have it running and DaemonSet configuration (YAML) file.
availaple. Ideally, the value of this measure should
be 0.

Using the detailed diagnosis of the Age measure you can determine the label that has been
assigned to a particular DaemonSet, and the images that the containers on the Daemon Pods are
pulling from the Container Registry.

Daemens Details
LABELS IMAGES
Aug 20,2019 19:13:19

newrelic-infra newrelic/infrastructure-k8s:1.9.3

Figure 3.41: The detailed diagnosis of the Age measure of the DaemonSet by Namespace test

To know the Daemon Pods running a DaemonSet and the nodes on which these Pods are running,
use the detailed diagnosis of the DaemonSet currently scheduled on nodes measure. Using this
information, you can figure out if the DaemonSet is running on a node it is not supposed to run on
and if itis not running on any node it should actually run on.

162

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Current pods Details

POD NAME NODE NAME
Aug 20, 2019 19:13:19

newrelic-infra-angnr worker2
newrelic-infra-cdvhk master2
newrelic-infra-cggrc master3

newrelic-infra-j99ts workerl

newrelic-infra-kgkvs master]

Figure 3.42: The detailed diagnosis of the DaemonSet currently scheduled on nodes measure
3.1.14 Horizontal Pod Autoscaler by Namespaces Test

Horizontal Pod Autoscaling allows you to define rules that will scale the numbers of replicas up or
down in deployments, replica sets, or replication controllers, based on CPU utilization and optionally
external and custom metrics. For instance, if you have a containerized application that uses up a lot
of CPU under load, then you can configure a Horizonal Pod Autoscaler to automatically scale up the
Deployment, so that additional replicas of this application (Pod) are automatically created to provide
extra capacity when CPU utilization exceeds a target level. Likewise, you can configure the
Horizonal Pod Autoscaler to scale down a Deployment, so that replica Pods are automatically
terminated to release CPU resources when actual CPU utilization drops below a target level.

Typically, when creating a horizontal autoscaler, you can specify the target utilization value of the
metric - this can be a raw value or an average value. Optionally, you can also specify the following:

« The maximum number of replicas the autoscaler can scale up to;
« The minimum number of replicas the autoscaler can scale down to

Whenever the autoscaler runs, the controller manager obtains the actual metrics from the resource
metrics API (for per-pod resource metrics), or the custom metrics API (for metrics other than CPU
and memory that are associated with a Pod), or the external metrics API (for metrics that are not
associated with any object in the Kubernetes system - eg., an external queuing system, such as the
AWS SQS service), as the case may be. Then, it does the following:

o For per-pod resource metrics (like CPU), the controller fetches the metrics from the resource
metrics API for each Pod targeted by the HorizontalPodAutoscaler. Then, if a target utilization
value is set, the controller calculates the utilization value as a percentage of the equivalent
resource request on the containers in each pod. If a target raw value is set, the raw metric values
are used directly. The controller then takes the mean of the utilization or the raw value (depending
on the type of target specified) across all targeted pods, and produces a ratio, which will be used
to scale the number of desired replicas.

« For per-pod custom metrics, the controller functions similarly to per-pod resource metrics, except
that it works with raw values, not utilization values.

163

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

« For object metrics and external metrics, a single metric is fetched, which describes the object in
question. This metric is compared to the target value, to produce a ratio as above.

If actual resource usage exceeds the targeted value, then the autoscaler uses the ratio it computes
to scale up the replicas. On the other hand, if the actual resource usage falls below the targeted
value, then the autoscaler uses the ratio it computes to scale down.

The efficiency of the autoscaler therefore relies on the successful computation of scales by the
autoscaler, and how prudently you set the scaling limits (i.e., the minimum and maximum replica
count for the autoscaler) and the target utilization values. Sometimes, the autoscaler may fail to
compute scales. At some other times, user errors may restrict scalability or environmental issues
may prevent scaling from even happening. At such times, the success of scaling hinges on the
administrator's ability to promptly detect, diagnose, and fix the bottlenecks to scaling. With the
Horizonal Pod Autoscaler by Namespaces test, administrators have the ability to achieve the above!

The test auto-discovers the Horizonal Pod autoscalers defined in each namespace. For each
autoscaler in a namespace, the test then reports whether/not that autoscaler can actually perform
scaling, reveals if its scalability is constricted by its configuration, and alerts administrators if the
autoscaler is unable to compute the scales. This way, the test enables administrators promptly
capture problems impeding efficient autoscaling. If minimum and maximum replica counts were
specified as part of the autoscaler definition, then the test also reports these numbers, so
administrators can quickly figure out if changing these values can enhance scalability. Moreover, by
enabling administrators to track current CPU utilization levels alongside the target utilization levels,
the test not only helps them compute the scaling ratio themselves, but also helps them figure out if
the target needs to be reset. Furthermore, by reporting the desired and current replica counts, the
test reveals to administrators whether/not the autoscaler has successfully scaled up the replica
count to the desired level.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each autoscaler in each namespace of the
Kubernetes/OpenShift cluster being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

164

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Port

Load Balancer/
Master Node IP

SSL

Authentication
Token

Specify the port at which the specified Host listens. By default, this is 6443.

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on the master node and run APl commands. To enable this connection, the eG
agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APlI commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubermnetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why, the
eG agent, by default, connects to the Kubernetes API via an HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication token that you provided in

165

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

Proxy Host

Proxy Port

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 71.:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

166

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement Description grt:iatsurement Interpretation

Age Indicates the age of The value of this measure is expressed in
this autoscaler. number of days, hours, and minutes.

Is able to scale? Indicates whether/not This measure reports the value Yes if the
this autoscaler is autoscaler is able to fetch and update
allowed to scale. scales. The value No is reported if backoff

conditions - eg., a CrashLoopBackOff that is
causing a Pod to start and crashing in a loop
- are preventing scaling. The value
Unknown is reported if the state cannot be
determined.

The numeric values that correspond to these
measure values are as follows:

Measure Value Numeric Value
Yes 1

No 2
Unknown 3
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not an autoscaler is allowed to
scale. In the graph of this measure however,
the same is indicated using the numeric
equivalents only.

If this measure reports the value No or
Unknown, then use the detailed diagnosis
of this measure to know what prevented the
autoscaler from performing scaling.

167

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement

Unit

Interpretation

Is scaling active?

Indicates whether/not
this autoscaleris
enabled and is able to
calculate the desired
scales.

This measure reports the value Yes if the
autoscaler is able to fetch metrics and
compute the scales. The value No is
reported if there are problems with fetching
metrics. The value Unknown is reported if
the state cannot be determined.

The numeric values that correspond to these
measure values are as follows:

Measure Value Numeric Value
Yes 1

No 2
Unknown 3
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not an autoscaler is able to fetch
metrics. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the value No or
Unknown, then use the detailed diagnosis
of this measure to know why the autoscaler
could not fetch metrics.

Is scaling limited?

Indicates whether/not
this autoscaler's
ability to scale is
restricted by a
maximum / minimum
replica count
specification.

This measure reports the value Yes if you
have to raise or lower the minimum or
maximum replica count for the autoscaler to
perform scaling. The value No is reported if
the requested scaling is allowed. The value
Unknown is reported if the state cannot be
determined.

The numeric values that correspond to these
measure values are as follows:

168

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

. . Measurement .
Measurement Description Unit Interpretation
Measure Value Numeric Value
Yes 1
No 2
Unknown 3
Note:

By default, this test reports the Measure
Values listed in the table above to indicate
whether/not an autoscaler is restricted by its
minimum/maximum replica count
specification. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the value No or
Unknown, then use the detailed diagnosis
of this measure to know why the autoscaler
could not scale.

Minimum replicas | Shows the lower limit | Number If the value of this measure is the same as
for the number of that of the Current replicas measure, then
Pods that can be set the autoscaler will not be able to scale down
by this autoscaler. until the minimum replica count is decreased
(Default: 1) in the autoscaler definition. Under such

circumstances, you will find that the Is
scaling limited? measure reports the value

Yes.
Maximum replicas | Shows the upper limit | Number The value of this measure cannot be lesser
for the number of pods than the value of the Minimum replicas
that can be set by this measure.

autoscaler. .)
If the value of this measure is the same as

that of the Current replicas measure, then
the autoscaler will not be able to scale up
until the maximum replica count is increased
in the autoscaler definition. Under such
circumstances, you will find that the Is
scaling limited? measure reports the value

169

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement Description mt:iatsurement Interpretation
Yes
Target CPU Indicates the target Percent If a target utilization is not set in the
utilization average CPU autoscaler's definition, then the default
utilization autoscaling policy will be used.
(represented as a
percentage of
requested CPU) set
for this autoscaler.
Current Indicates the actual Percent If the value of this measure is greater than
CPU tilization average CPU that of the Target CPU utilization
utilization across all measure, the autoscaler will automatically
Pods targeted by this scale up the replica Pod count to the desired
autoscaler. level or up to the maximum replica count
(whichever limit is reached first).
If the value of this measure is lesser than
that of the Target CPU utilization
measure, the autoscaler will automatically
scale down the replica pod count to the
desired level or up to the minimum replica
count (whichever limit is reached first).
Desired replicas Indicates the number | Number
of replicas up to which
this autoscaler can
scale up or scale
down.
Current replicas Indicates the number | Number If the value of this measure is not equal to

of replicas currently
managed by this
autoscaler.

that of the Desired replicas measure, it
could mean one of the following:

« Autoscaling has failed,;

« The minimum / maximum replica count
specification in the autoscaler definition

are restricting scalability.

In the case of the former, you will have to

170

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Unit Interpretation

Measurement Description

investigate the reasons for the failure. In the
case of the latter, check the value of the
Minimum replicas and Maximum replicas
measures and see if changing them will
improve scalability of the autoscaler.

If the Is scaling active? measure reports the value No or Unknown, then use the detailed diagnosis of
this measure to know why the autoscaler could not fetch metrics.

Scaling active Details
REASON MESSAGE
Aug 20,2019 19:23:45

FailedGetResourceMetric the HPA was unable to compute the replica count: unable to get metrics for resource cpu: no metrics retumned from resource metrics API

Figure 3.43: The detailed diagnosis of the Is scaling active? measure
3.1.15 Jobs by Namespaces Test

A Job creates one or more Pods and ensures that a specified number of them successfully
terminate. As pods successfully terminate, the Job tracks how many Pods completed their tasks
successfully. When a specified number of successful completions is reached, the task (ie, Job) is
complete.

Jobs are useful for large computation and batch-oriented tasks. Jobs can be used to support parallel
execution of Pods. You can use a Job to run independent but related work items in parallel: sending
emails, rendering frames, transcoding files, scanning database keys, etc.

In the real world, failure of such tasks can degrade the performance of business-critical applications
managed by the Kubnernetes system. Likewise, delays in Job execution can also significantly delay
the delivery of key business services that overlay the Kubernetes cluster. To ensure peak
application/service performance at all times, it is imperative that administrators track the status and
duration of each Job that is run on Kubernetes, promptly capture Job failures and slowness, rapidly
determine the reason why a Job failed, and swiftly fix it. This is where the Jobs by Namespaces test
helps!

This test auto-discovers the namespaces configured in the Kubernetes system, and for each
namespace, reports the count of Jobs in different operational states. In the process, the test brings
failed and slow Jobs to light. Detailed diagnostics of the test describes the failed and slow Jobs and
also provides the reason why Jobs failed. Administrators can use this information to effectively

171

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

troubleshoot the failure. Additionally, the test reports the status of Pods created by the Jobs, and
alerts administrators if any Job resulted in Pod failures.

Target of the test : A Kubernetes/OpenShift Cluster
Agent deploying the test : A remote agent

Outputs of the test : One set of results for each namespace in the Kubernetes/OpenShift cluster
being monitored

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is
6443.

Load Balancer/ Master Node IP To run this test and report metrics, the eG agent needs to connect to the
Kubernetes API on the master node and run APl commands. To enable
this connection, the eG agent has to be configured with either of the
following:

« If only a single master node exists in the cluster, then configure the

eG agent with the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you
need to configure the eG agent with the IP address of the load balancer
that is managing the cluster. In this case, the load balancer will route
the eG agent's connection request to any available master node in the
cluster, thus enabling the agent to connect with the API server on that

node, run APl commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node
IP that you configured when manually adding the Kubernetes/OpenShift
cluster for monitoring, using the Kubernetes/OpenShift Cluster
Preferences page in the eG admin interface (see Figure 2.3). The steps
for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster
Using eG Enterprise?

172

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description

Whenever the eG agent runs this test, it uses the IP address that is
displayed (by default) against this parameter to connect to the Kubernetes
API. If there is any change in this IP address at a later point in time, then
make sure that you update this parameter with it, by overriding its default
setting.

SSL By default, the Kubernetes/OpenShift cluster is SSL-enabled. This is why,
the eG agent, by default, connects to the Kubernetes APl via an
HTTPS connection. Accordingly, this flag is set to Yes by default.

If the clusteris not SSL-enabled in your environment, then set this flag to
No.

Authentication Token The eG agent requires an authentication bearer token to access the
Kubernetes API, run APl commands on the cluster, and pull metrics of
interest. The steps for generating this token have been detailed in Section
1.1

Typically, once you generate the token, you can associate that token with
the target Kubernetes/OpenShift cluster, when manually adding that
cluster for monitoring using the eG admin interface. The steps for
managing the cluster using the eG admin interface are discussed
elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you
provided in the Kubernetes Cluster Preferences page of the eG
admin interface, when manually adding the cluster for monitoring (see
Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed
(by default) against this parameter for accessing the API and pulling
metrics. If for any reason, you generate a new authentication token for the
target cluster at a later point in time, then make sure you update this
parameter with the change. For that, copy the new token and paste it
against this parameter.

Job Age In Seconds By default, this parameter is set to 300 seconds. This means that, by
default, this test will count any Job that runs for a duration over 300
seconds as a Longest running Job. You can override this default setting
by specifying a different duration (in seconds) value here.

Proxy Host If the eG agent connects to the Kubernetes API on the master node via a
proxy server, then provide the IP address of the proxy server here. If no
proxy is used, then the default setting -none - of this parameter, need not

173

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
be changed,
Proxy Port If the eG agent connects to the Kubernetes API on the master node via a

proxy server, then provide the port number at which that proxy server
listens here. If no proxy is used, then the default setting -none - of this
parameter, need not be changed,

Proxy Username, Proxy These parameters are applicable only if the eG agent uses a

Password, Confirm Password ~ proxy server to connect to the Kubernetes/OpenShift
cluster, and that proxy server requires authentication. In this
case, provide a valid user name and password against the PROXY
USERNAME and PROXY PASSWORD parameters, respectively. Then,
confirm the password by retyping it in the CONFIRM PASSWORD text box.

If no proxy server is used, or if the proxy server used does not require
authentication, then the default setting - none - of these parameters, need
not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 7:7. This indicates that, by default,
detailed measures will be generated every time this test runs, and also
every time the test detects a problem. You can modify this frequency, if
you so desire. Also, if you intend to disable the detailed diagnosis
capability for this test, you can do so by specifying none against DD
frequency.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the
eG agents can be configured to run detailed, more elaborate tests as and
when specific problems are detected. To enable the detailed diagnosis
capability of this test for a particular server, choose the On option. To
disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability
will be available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed

diagnosis measures should not be 0.

174

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurements made by the test

Measurement

Description

Measurement
Unit

Interpretation

Completed jobs

Indicates the number
of Jobs in this

namespace that have
completed execution.

Number

A non-parallel Job is one that creates only
one Pod. Such a Job is said to have
completed if that Pod terminates
successfully. On the other hand, a parallel
Job is one that creates multiple Pods. In
the case of such Jobs, you need to specify
the desired number of completions using
the completions field in your Job
specification. A parallel Job is said to have
completed only if the desired number of
Pods terminate successfully.

A high value is desired for this measure.

Failed jobs

Indicates the number
of Jobs in this
namespace that failed.

Number

A Job is said to have failed if the specified
number of Pods could not complete the
tasks.

By default, a Job will run uninterrupted
unless a Pod fails (restartPolicy=Never) or
a Container exits in error
(restartPolicy=OnFailure). At which point,
the Job will retry Pod creation. However,
there are situations where you want to fail a
Job after some amount of retries due to a
logical error in configuration etc. To do so,
set .spec.backoffLimit to specify the
number of retries before considering a Job
as failed. The back-off limit is set by default
to 6. Once .spec.backoffLimit has been
reached the Job will be marked as failed
and any running Pods will be terminated.

Another way to fail a Job is by setting an
active deadline. Do this by setting the
.spec.activeDeadline Seconds field of
the Job to a number of seconds. The
activeDeadline Seconds applies to the
duration of the Job, no matter how many

175

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

Pods are created. Once a Job reaches
activeDeadlineSeconds, all of its running
Pods are terminated and the Job status will
become type: Failed with reason:
DeadlineExceeded.

Note that a Job’s
.spec.activeDeadlineSeconds takes
precedence over its .spec.backoffLimit.
Therefore, a Job that is retrying one or more
failed Pods will not deploy additional Pods
once it reaches the time limit specified by
activeDeadlineSeconds, even if the
backoffLimitis not yet reached.

Ideally, the value of this measure should be
0. If the measure reports a non-zero value,
then you can use the detailed diagnosis of
this measure to know which Jobs failed and
why.

of Pods created by
Jobs in this
namespace, which are
currently in the
Succeeded state.

Running pods Indicates the number | Number If a Pod is in the Running state, it means
of Pods created by that the Pod has been bound to a node, and
Jobs in this all of the Containers have been created. At
namespace, which are least one Container is still running, oris in
currently in the the process of starting or restarting.
Running state.

Failed pods Indicates the number | Number If aPod is in the Failed state, it means that
of Pods created by all Containers in the Pod have terminated,
Jobs in this and at least one Container has terminated
namespace, which are in failure. That is, the Container either
currently in the Failed exited with non-zero status or was
state. terminated by the system.

Succeeded pods Indicates the number | Number If aPod is in the Succeeded state, it means

that all Containers in the Pod have
terminated in success, and will not be
restarted.

176

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

of cron Jobs that are
currently active in this
namespace.

Longest running Indicates the number | Number Ideally, the value of this measure should be
jobs of Jobs in this 0.
namespace that have .
b i If this measure reports a non-zero value,
een.runnmg ora then use the detailed diagnosis of this
duration greater than . .
measure to know which Jobs are executing
the value of the JOB .
foralong time.
AGE SECONDS
parameter.
Active cron jobs Indicates the number | Number A Cron Job creates Jobs on a time-based

schedule.

One CronJob object is like one line of a
crontab (cron table)file. It runs a Job
periodically on a given schedule, written in
Cron format.

To know which Jobs in a namespace have been running for a long time, use the detailed diagnosis of
the Longest running jobs measure.

Scaling active Details
JOB NAME
Aug 20, 2019 19:04:15

hello-1566307860

Figure 3.44: The detailed diagnosis of the Longest running jobs measure

3.1.16 The Kube Application Services Layer

The tests mapped to this layer help you monitor Services, and quickly detect those Services that are
not running currently.

177

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

@ Kube Application Services

v @ services By Namespace
v o default
+' kubernetes
v & kubernetes-dashhoard
' dashboard-metrics-scraper
' kubernetes-dashboard

' Summary

Figure 3.45: The tests mapped to the Kube Application Services layer
3.1.17 Services by Namespace Test

In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a policy by which
to access them (sometimes this pattern is called a micro-service). Services enable a loose coupling
between dependent Pods.

A Service is required because, Pods are mortal - they are born, and they die. In a deployment
therefore, the set of Pods running in one moment in time could be different from the set of Pods
running that application a moment later. This leads to a problem: if some set of Pods (call them
“backends”) provides functionality to other Pods (call them “frontends”) inside your cluster, how do
the frontends find out and keep track of which IP address to connect to, so that the frontend can use
the backend part of the workload? This is where Services help! By associating a Service with a set of
dependent pods, you can make sure that Kubernetes automatically reconciles changes among pods
so that your applications continue to function.

A Service is defined using YAML (preferred) or JSON, like all Kubernetes objects. The set of Pods
targeted by a Service is usually determined by a LabelSelector.

Although each Pod has a unique IP address, those IPs are not exposed outside the cluster without a
Service. In fact, using Services, you can allow your applications to receive traffic from outside the
cluster. By default however, a Service is accessible from within the cluster only. You can override
this default setting using the ServiceType specification in the service definition. With the help of this
specification, you can indicate where the Service should be exposed and what type of traffic (internal
or external) it can receive. This means that if a Service is not up and running, then, depending upon
the ServiceType, the unavailability of the Service can deny external users access to the application
and can even hamper internal application operations. To assure users of continued access to their
applications running in the Kubernetes cluster and to ensure peak application performance at all

178

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

times, administrators should not only be able to promptly detect the non-availability of a Service, but
should also be able to rapidly tell what type of Service it is and why it is not up. This is where the
Services by Namespace test helps!

This test auto-discovers the Services defined within each namespace, and reports the current state,
type, and age of each Service. This way, the test promptly alerts administrators if any Service is not
up and running. Detailed diagnostics of the test also reveal the reason why the Service is so.
Additionally, the test also reports the number and names of Pods that each Service targets and the
LabelSelector used by each Service to identify the Pods. These details help in troubleshooting the
abnormal state of a Service.

Target of the test : A Kubernetes/OpenShift Cluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Service in every namespace configured in the
Kubernetes/OpenShift cluster being monitored

First-level Descriptor: Namespace

Second-level Descriptor: Service

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer/ To run this test and report metrics, the eG agent needs to connect to the Kubernetes
Master Node IP API on the master node and run APl commands. To enable this connection, the eG

agent has to be configured with either of the following:

« If only a single master node exists in the cluster, then configure the eG agent with

the IP address of the master node.

« Ifthe target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is managing the
cluster. In this case, the load balancer will route the eG agent's connection request
to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run APl commands on it, and pull metrics.

179

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter

Description

SSL

Authentication
Token

Report System
Namespace

By default, this parameter will display the Load Balancer / Master Node IP that you
configured when manually adding the Kubernetes/OpenShift cluster for monitoring,
using the Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately in How to Monitor the Kubernetes/OpenShift Cluster Using eG
Enterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubemetes API. If there is any change
in this IP address at a later point in time, then make sure that you update this parameter
with it, by overriding its default setting.

By default, the Kubernetes/OpenShift clusteris SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API viaan HTTPS connection.
Accordingly, this flag is set to Yes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to No.

The eG agent requires an authentication bearer token to access the Kubernetes API,
run APl commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes/OpenShift cluster, when manually adding that cluster for monitoring using
the eG admin interface. The steps for managing the cluster using the eG admin
interface are discussed elaborately in Section Chapter 2

By default, this parameter will display the Authentication Token that you provided in
the Kubernetes Cluster Preferences page of the eG admin interface, when manually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pulling metrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespace may not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace from monitoring. Accordingly, this flag is set to No by
default.

If required, you can set this flag to Yes, and enable monitoring of the kube-system

180

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Parameter Description
namespace.

Proxy Host If the eG agent connects to the Kubernetes API on the master node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on the master node via a proxy server,

Proxy Username,
Proxy Password,
Confirm Password

DD Frequency

Detailed Diagnosis

then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes/OpenShift cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username and Proxy Password parameters, respectively. Then, confirm the
password by retyping it in the Confirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can maodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

181

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurements made by the test

Measurement Description ﬁ:ia:surement Interpretation
Service Type Indicates the type of The values that this measure reports and
this Service. their corresponding numeric values are

detailed in the table below:

Measure Value Numeric Value
ClusterlP 1
NodePort 2
ExternalName 3
LoadBalancer 4

Each of these types have been briefly
described below:

o ClusterlP: Exposes the Service on an
internal IP in the cluster. This type makes
the Service only reachable from within the

cluster.

o NodePort: Exposes the Service on the
same port of each selected Node in the
cluster using NAT. Makes a Service
accessible from outside the cluster using
<NodelP>:<NodePort>. Superset of
ClusterlP.

« ExternalName: Exposes the Service
using an arbitrary name (specified by
externalName in the spec) by returning a
CNAME record with the name. No proxy
is used. This type requires v1.7 or higher

of kube-dns.

o LoadBalancer: Creates an external load

balancer in the current cloud (if supported)

182

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement

Description

Measurement
Unit

Interpretation

and assigns a fixed, external IP to the

Service. Superset of NodePort.

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the Service type. In the graph of this
measure however, the type is indicated
using the numeric equivalents only.

Age

Indicates how old this
Service is.

The value of this measure is expressed in
number of days, hours, and minutes.

You can use the detailed diagnosis of this
measure to know the Cluster IP on which
the Service has been exposed, the
LabelSelector using which the Service
identifies the Pods, and the internal and
external endpoints associated with the
Service.

Total pods

Indicates the number
of pods that this
Service targets.

Number

Use the detailed diagnosis of this measure
to know which Pods are targeted by the
Service and which Node each Pod is running
on.

Status

Indicates the current

status of this Service.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value
Running 1
Pending 0

If the value of this measure is Pending, then
you can use the detailed diagnosis of this
measure to understand why the Service is in
a Pending state.

Note:

183

Chapter 3: Monitoring the Kubernetes/OpenShift Cluster

Measurement
Unit

Measurement Description

Interpretation

By default, this test reports the Measure
Values listed in the table above to indicate
the Service status. In the graph of this
measure however, the status is indicated
using the numeric equivalents only.

The detailed diagnosis of the Age measure reports the service type, the cluster IP address on which
the service is exposed, the internal and external endpoints of the service, and the label selector.

Services Details
SERVICE TYPE CLUSTER IP ADDRESS INTERNAL ENDPQOINTS EXTERNAL ENDPOINTS LABELS

LoadBalancer 10.99.51.107 my-service-8080-TCPmy-service:31291.TCP - “run”"b-exmpl"

Figure 3.46: The detailed diagnosis of the Age measure of the Services by Namespace test

184

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even the most challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learn more visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2019 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fithess for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	1.1 How Does eG Enterprise Monitor a Kubernetes/OpenShift Cluster?
	1.1.1 Configuring the eG Agent to Connect to the Master Node
	1.1.2 Configuring the eG Agent with an Authentication Bearer Token

	Chapter 2: How to Monitor the Kubernetes/OpenShift Cluster Using eG Enterprise?
	Chapter 3: Monitoring the Kubernetes/OpenShift Cluster
	3.1 The Kube Control Plane Layer
	3.1.1 Kube Events Test
	3.1.2 API Server Connectivity Test
	3.1.3 Kube Garbage Collection Test
	3.1.4 Kube Master Services Test
	3.1.5 The Kube Cluster Layer
	3.1.6 Kube Cluster Nodes Test
	3.1.7 Kube Cluster Overview Test
	3.1.8 Kube Namespaces Test
	3.1.9 Kube Persistent Volumes Test
	3.1.10 The Kube Workloads Layer
	3.1.11 Pods by Namespace Test
	3.1.12 Deployments by Namespace Test
	3.1.13 Daemonset by Namespace
	3.1.14 Horizontal Pod Autoscaler by Namespaces Test
	3.1.15 Jobs by Namespaces Test
	3.1.16 The Kube Application Services Layer
	3.1.17 Services by Namespace Test

	About eG Innovations

