
Monitoring Kubernetes Cluster

eG Innovations Product Documentation

www.eginnovations.com



Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice.
No part of this document may be reproduced or disclosed to others without the prior permission
of eG Innovations Inc. eG Innovations Inc. makes no warranty of any kind with regard to the
software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 7, Windows 8, Windows 10, Windows 2012,
Windows 2016, and Windows 2019 are either registered trademarks or trademarks of Microsoft
Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Copyright

©2019 eG Innovations Inc. All rights reserved.



Table of Contents
CHAPTER 1: INTRODUCTION TOMONITORING THE KUBERNETES CLUSTER 1

1.1 How Does eGEnterpriseMonitor a Kubernetes Cluster? 5

1.1.1 Configuring the eG Agent to Connect to the Master Node 5

1.1.2 Configuring the eG Agent with an Authentication Bearer Token 5

CHAPTER 2: HOW TOMONITOR THE KUBERNETES CLUSTER USINGEGENTERPRISE? 7

CHAPTER 3: 10

CHAPTER 3: MONITORING THE KUBERNETES CLUSTER 10

3.1 The Kube Control Plane Layer 12

3.1.1 Kube Events Test 12

3.1.2 API Server Connectivity Test 53

3.1.3 Kube Garbage Collection Test 56

3.1.4 Kube Master Services Test 62

3.1.5 The Kube Cluster Layer 67

3.1.6 Kube Cluster Nodes Test 67

3.1.7 Kube Cluster Overview Test 88

3.1.8 Kube Namespaces Test 101

3.1.9 Kube Persistent Volumes Test 117

3.1.10 The Kube Workloads Layer 123

3.1.11 Pods by Namespace Test 124

3.1.12 Deployments by Namespace Test 142

3.1.13 Daemonset by Namespace 155

3.1.14 Horizontal Pod Autoscaler by Namespaces Test 162

3.1.15 Jobs by Namespaces Test 170

3.1.16 The Kube Application Services Layer 176

3.1.17 Services by Namespace Test 177

ABOUT EG INNOVATIONS 184



Table of Figures
Figure 1.1: Basic architecture of a Kubernetes Cluster 2

Figure 1.2: How the Kubernetes Cluster works 3

Figure 2.1: Choosing to monitor Containers 7

Figure 2.2: Selecting the remote agent that should monitor the Kubernetes cluster 8

Figure 2.3: Adding a Kubernetes cluster 8

Figure 3.1: Layer model of the Kubernetes Cluster 10

Figure 3.2: The tests mappedto the Kube Control Plane layer 12

Figure 3.3: The detailed diagnosis of the Back-off restarting failed containers measure 51

Figure 3.4: The detailed diagnosis of the Killing containers measure 51

Figure 3.5: The detailed diagnosis of the Containers exceeded grace period measure 51

Figure 3.6: The detailed diagnosis of the Evicted pods measure 51

Figure 3.7: The detailed diagnosis of the Failed to stop pods measure 52

Figure 3.8: The detailed diagnosis of the Pulling images measure 52

Figure 3.9: The detailed diagnosis of the Failed resource metric measure 52

Figure 3.10: The detailed diagnosis of the Failed to compute desired number of replicas measure 52

Figure 3.11: The detailed diagnosis of the Found failed daemon pods on node measure 52

Figure 3.12: The tests mapped to the Kube Cluster layer 67

Figure 3.13: The detailed diagnosis of the Running pods measure 87

Figure 3.14: The detailed diagnosis of the Total containers measure 87

Figure 3.15: The detailed diagnosis of the CPU limits allocation measure 87

Figure 3.16: The detailed diagnosis of the CPU requests allocation measure 88

Figure 3.17: The detailed diagnosis of the Memory limits allocation measure 88

Figure 3.18: The detailed diagnosis of the Memory requests allocation measure 88

Figure 3.19: The detailed diagnosis of the Master nodes measure 98

Figure 3.20: The detailed diagnosis of the Worker nodes measure 98

Figure 3.21: The detailed diagnosis of the Nodes added to cluster measure 99

Figure 3.22: The detailed diagnosis of the Nodes removed from cluster measure 99

Figure 3.23: The detailed diagnosis of the Nodes not running measure 99

Figure 3.24: The detailed diagnosis of the Unknown nodes measure 99

Figure 3.25: The detailed diagnosis of the Running pods measure reported by the Kube Cluster Overview test 100

Figure 3.26: The detailed diagnosis of the Pending pods measure reported by the Kube Cluster Overview test 100

Figure 3.27: The detailed diagnosis of the CPU requests allocation measure reported by the Kube Cluster Over-
view test 101

Figure 3.28: The detailed diagnosis of the Memory request allocation measure reported by the Kube Cluster
Overview test 101

Figure 3.29: The detailed diagnosis of the Total Pods measure 116

Figure 3.30: The detailed diagnosis of the Total services measure 117

Figure 3.31: The detailed diagnosis of the Status measure reported by the Kube Persistent Volumes test 123



Figure 3.32: The tests mapped to the Kube Workloads layer 124

Figure 3.33: The detailed diagnosis of the Status measure reported by the Pods by Namespace test 141

Figure 3.34: The detailed diagnosis of the Age measure reported by the Pods by Namespace test 142

Figure 3.35: The detailed diagnosis of the Are all init containers initialized? measure 142

Figure 3.36: The detailed diagnosis of the Terminated containers measure 142

Figure 3.37: The detailed diagnosis of the Waiting containers measure 142

Figure 3.38: The detailed diagnosis of the Age measure of the Deployments by Namespace test 155

Figure 3.39: The detailed diagnosis of the Is available? measure reported by the Deployments by Namespace
test 155

Figure 3.40: The detailed diagnosis of the Total unavailable pods with deployment measure 155

Figure 3.41: The detailed diagnosis of the Age measure of the DaemonSet by Namespace test 162

Figure 3.42: The detailed diagnosis of the DaemonSet currently scheduled on nodes measure 162

Figure 3.43: The detailed diagnosis of the Is scaling active? measure 170

Figure 3.44: The detailed diagnosis of the Longest running jobs measure 176

Figure 3.45: The tests mapped to the Kube Application Services layer 177

Figure 3.46: The detailed diagnosis of the Age measure of the Services by Namespace test 183



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

1

Chapter 1: Introduction toMonitoring the Kubernetes Cluster

Kubernetes is an open-source system for managing - i.e., running and co-ordinating - containerized
applications across a cluster of machines. It allows users to define how their applications should run
and how they should interact with other applications or the outside world. Using Kubernetes, users
can ensure high-availability of their containerized applications, scale their services up or down,
perform graceful rolling updates, and switch traffic between different versions of applications to test
features or rollback problematic deployments.

At its base, Kubernetes brings together multiple physical or virtual servers into a cluster using a
shared network to communicate between them. Though the cluster can contain any host that runs
containerized applications, the most common or popular deployment of Kubernetes has it managing
a cluster of Docker hosts. This cluster is the physical platform where all Kubernetes components,
capabilities, and workloads are configured.

Themachines in the cluster are each given a role within the Kubernetes ecosystem. One server (or a
small group in highly available deployments) functions as the master server. This server acts as a
gateway and brain for the cluster. It is the primary point of contact with the cluster and is responsible
for most of the centralized logic Kubernetes provides.

The other servers in the cluster are designated as worker (or slave) nodes: servers responsible for
accepting and running workloads using local and external resources. Worker nodes run applications
and services in containers, and therefore require a container runtime (like Docker). The node
receiveswork instructions from themaster server and creates or destroys containers accordingly.

Together, the Kubernetes master and worker nodes form the Kubernetes control plane. To ensure
the high availability of the containerized applications and services, the control plane responds to
changes in the cluster and works to restore the cluster to its desired state.



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

2

Figure 1.1: Basic architecture of a Kubernetes Cluster

The cluster's desired state is typically defined by the user ( a developer/admin) who connects to the
Kubernetes master server. To represent the state of a cluster, Kubernetes uses persistent entities
called Objects. A Kubernetes object is a “record of intent”– once you create the object, the
Kubernetes system will constantly work to ensure that object exists. By creating an object, you are
effectively telling the Kubernetes system what you want your cluster’s workload to look like; this is
your cluster’s desired state. Some of themost commonly used Kubernetes objects include:

l Pod: A Pod represents a unit of deployment: a single instance of an application in Kubernetes,
which might consist of either a single Docker container or a small number of containers that are
tightly coupled and that share resources. Other than container(s), a Pod encapsulates a unique
network IP and options that govern how the container(s) should run.

l Service: A Service is an abstraction which defines a logical set of Pods and a policy by which to
access them (sometimes this pattern is called amicro-service).

l Volume: At its core, a volume is just a directory, possibly with some data in it, which is accessible
to the containers in a Pod.

l Namespace: Kubernetes supports multiple virtual clusters called Namespaces, which are backed
by the same physical cluster. Namespaces are a way to divide cluster resources betweenmultiple
users (via resource quota).

l ReplicaSet: A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any
given time. As such, it is often used to guarantee the availability of a specified number of identical
Pods.



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

3

l Deployment: A Deployment provides declarative updates for Pods and ReplicaSets. You
describe a desired state in a Deployment. You can define Deployments to create new
ReplicaSets, or to remove existing Deployments and adopt all their resources with new
Deployments.

l DaemonSet: A DaemonSet ensures that all (or some) Nodes run a copy of a Pod - eg., running a
cluster storage daemon, such as glusterd, ceph, on each node.

Every Kubernetes object includes two nested object fields that govern the object’s configuration: the
object spec and the object status. When a user connects to themaster server, he/shemust provide a
spec describing the desired state for the object–the characteristics that the user wants the object to
have. For instance, a Kubernetes Deployment is an object that can represent an application running
on the cluster. When the user creates the Deployment, he/she might set the Deployment spec to
specify that theywant three replicas of the application to be running.

Figure 1.2: How the Kubernetes Cluster works

The master server exposes a Kubernetes API (the kube-apiserver process), which receives the
object spec from the user. The API then runs the spec by the scheduler (the kube-scheduler
process). The scheduler selects the worker (or slave) node to which the new objects should be
assigned. Factors taken into account for scheduling decisions include individual and collective
resource requirements, hardware/software/policy constraints, affinity and anti-affinity specifications,
data locality, inter-workload interference and deadlines. Alongside, the master sever also stores the
configuration and status data of objects created, in a consistent, highly-available key-value store
called etcd.



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

4

Once the scheduler assigns a worker (or slave) node, the controller manager (the kube-controller-
manager process) on the master node then sends the object spec to that node (via the Kubernetes
API), so it can create the desired object.

Upon receipt of the object spec, the kubelet on that node ensures objects are created accordingly.
The kubelet is the node-agent that resides on each worker node. The kubelet is also responsible for
registering a node with a Kubernetes cluster, and sending events, pod status, and resource
utilization reports to themaster server.

At frequent intervals, the kubelet, via the API, updates the etcd on the master with the Object status
of objects. This is the actual state of the objects. The watch functionality of etcd monitors changes to
the Object spec (i.e., desired state) and the Object status (i.e., actual state). If the Object spec and
Object status do not match, then the control loops run by the controller manager respond to these
discrepancies and work to make the actual state of all the objects in the system match the desired
state that the user provided. For example, if the kubelet reports that a Pod in a ReplicaSet is down,
then the etcd's watch functionality figures out that the object spec is not in syncwith the object status.
To manage the state of objects, the controller manager, through control loops, sends instructions
(via API) to the kubelet to create another Pod or restart the Pod that is down, and thus restores the
ReplicaSet object to its desired state.

Now, if the kubelet on the worker node fails to create a desired object - say, a Pod - then the desired
state of the cluster will not be restored. Likewise, if a Pod running a critical application/service
suddenly goes down, and the kubelet fails to restart that Pod or create another one in its stead, then
again the actual state will not be in sync with the desired state. Under such circumstances,
containerized applications and services may be rendered unavailable to end- users. Since
Kubernetes is widely used in mission-critical environments - eg.,microservices, DevOps, serverless
computing, and multi-cloud environments - for processing business-critical workloads, the non-
availability of applications can adversely impact productivity and business continuity. To avoid this,
administrators must closely monitor the status of the objects managed and operations performed by
Kubernetes, proactively capture abnormalities, and resolve them well before end-users notice. This
is where eG Enterprise helps!

eG Enterprise provides a dedicated monitoring model for those Kubernetes clusters that manage
Docker hosts and containers. This model continuously monitors the status of the cluster nodes, the
Kubernetes control plane services running on the master node, and the workloads and application
services on the worker nodes. In the process, the test promptly detects and alerts administrators to
real/potential operational failures that may cause amismatch between the actual state of objects and
the desired cluster state. Rapid problem detection enables swift problem resolution, which in turn
ensures the high availability of business-critical applications/services running within the containers in
the cluster.



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

5

1.1 How Does eG Enterprise Monitor a Kubernetes Cluster?
eG Enterprisemonitors Kubernetes in an agentlessmanner. A single remote agent deployed on a
Windows host in the environment uses the Kubernetes API on themaster node of the Kubernetes
cluster to pull useful metrics on cluster performance.

To enable the eG agent to use the Kubernetes API, you need to:

1. Configure the eG agent to connect to themaster node of the Kubernetes cluster

2. Configure the eG agent with an authentication bearer token

Each of these requirements have been discussed in detail below.

1.1.1 Configuring the eG Agent to Connect to theMaster Node

To connect to the Kubernetes API, you first need to configure the eG agent with the IP address of
the master node of the cluster. If the target cluster consists of more than one master node, then the
eG agent should be configured to connect to the load balancer that is managing the cluster. In this
case, the load balancer will route the eG agent's connection request to any available master node in
the cluster, thus enabling the agent to connect with the API server on that node, run API commands
on it, and pull metrics.

You can provide the IP address of the master node/load balancer when adding a Kubernetes cluster
for monitoring using the eG administrative interface. Refer to SectionChapter 2 to know how.

1.1.2 Configuring the eG Agent with an Authentication Bearer Token

To access the Kubernetes API, run API commands on it, and pull metrics, the eG agent has to be
configured with a valid authentication bearer token. To generate this token, follow the steps below:

1. Go to themaster node shell in the Kubernetes cluster.

2. Type the below command to create the "eginnovations" service account

kubectl create - f
https://raw.githubusercontent.com/eGInnovationsInc/kubernetes/master/eginnovations.yaml

3. Type the below command to get the secret name associated with "eginnovations" service
account. Usually, the secret name is in the format "eginnovations-token-xxxxx".

kubectl get serviceaccount eginnovations | grep -i tokens



Chapter 1: Introduction to Moni toring the Kubernetes Cluster

6

4. Type the below command and replace the <xxxxx> with the secret name token from step 3 to
get the authentication bearer token.

kubectl describe secrets <xxxxx> | grep -I "token:"

5. Copy the token from step 4 and paste to the AUTHENTICATION TOKEN field in the monitoring
information section of the Kubernetes Cluster Preferences page that appears when
managing a Kubernetes cluster using the eG admin interface. To know how to manage a
cluster using the eG admin interface, refer to SectionChapter 2



Chapter 2: How to Moni tor the Kubernetes Cluster Using eG Enterpri se?

7

Chapter 2: How toMonitor the Kubernetes Cluster Using eG
Enterprise?

Tomonitor the Kubernetes cluster using eG Enterprise, you need to first manage it .

eG Enterprise does not automatically discover the Kubernetes cluster. Tomanage the cluster
therefore, you need tomanually add it to the eG Enterprise system using the eGadmin interface. For
this, follow the steps below:

1. Login to the eGadmin interface.

2. Figure 2.1 then appears prompting you to pick what you want to monitor. Select Containers
from Figure 2.1.

Figure 2.1: Choosing tomonitor Containers

3. Since eG Enterprise monitors containers in an agentless manner, eG Enterprise automatically
displays the remote agents that may pre-exist in the target environment (see Figure 2.2). From
the list in Figure 2.2, select the remote agent you want to use for monitoring the Kubernetes
cluster, by clicking on it.



Chapter 2: How to Moni tor the Kubernetes Cluster Using eG Enterpri se?

8

Figure 2.2: Selecting the remote agent that shouldmonitor the Kubernetes cluster

4. This will invoke Figure 2.3, using which you can configure the details of the Kubernetes cluster
you want to monitor.

Figure 2.3: Adding a Kubernetes cluster

5. In Figure 2.3, specify the following:

l Provide a uniqueNICK NAME for the Kubernetes cluster you want to monitor.

l Specify the PORT at which the cluster listens. The default port is 6443.

l The eG agent requires an authentication bearer token to access the Kubernetes API, run
API commands on the cluster, and pull metrics of interest. The steps for generating this token
have been detailed in Section 1.1 You will also find these steps displayed in the right panel of



Chapter 2: How to Moni tor the Kubernetes Cluster Using eG Enterpri se?

9

Figure 2.3. Once you generate a token by following the displayed (or documented) steps, copy
the token and paste it against AUTHENTICATION TOKEN in Figure 2.3.

l The Kubernetes API server exists on the master node of a Kubernetes cluster. This means
that the eGagent should connect to themaster node to use the API. To enable this connection,
specify the IP address of the master node in the LOAD BALANCER / MASTER NODE IP text
box in Figure 2.3. Some Kubernetes clusters may support multiple master nodes. When
monitoring such a cluster, you will have to configure the eG agent with the IP address of the
load balancer that is managing the cluster. In other words, you will have to specify the IP
address of the load balancer in the LOAD BALANCER / MASTER NODE IP text box of Figure
2.3. In this case, the load balancer will route the eG agent's connection request to any available
master node in the cluster, thus enabling the agent to connect with the API server on that
node.

l Finally, click the Update button in Figure 2.3 to add the component to the eG Enterprise
system.



Chapter 3:

10

Chapter 3:

Chapter 3: Monitoring the Kubernetes Cluster

Figure 1 depicts the layer model of the KubernetesCluster.

Figure 3.1: Layer model of the Kubernetes Cluster

Each layer of Figure 1 is mapped to tests that report a wide variety of status metrics - eg., node
status, Pod status, Daemonset status, etc. - thus bringing abnormalities to the attention of
administrators. Using these metrics, administrators can find quick and accurate answers to the
following performance queries:

l Is the Kubernetes API server available?

l Are any nodes running Daemonsets they should not?

l Are any nodes not running the Daemonsets they should?

l Are all Deployments healthy? If not, whih are the Deployments that failed to create the desired
number of Pod replicas?

l Is anyDeployment unavailable?

l Has any Deployment failed to update all desired Pod replicas with changes to the Pod
template?

l Are backoff conditions not allowing anyHorizonal Pod autoscaler to perform scaling?

l Is any autoscaler unable to compute scales? If so, why?

l Has the scaling ability of any autoscaler been inhibited by the replica limits set?

l Has the target utilization level for scaling been set correctly for all autoscalers?



Chapter 3: Moni toring the Kubernetes Cluster

11

l Did any autoscaler fail to scale the current replica count to the desired levels?

l Have any Jobs failed in a namespace?Which one is it?

l Are all Pods in a namespace, which were created by Jobs, running?

l Did any Job take too long to run? If so, which one is it?

l Are all nodes running?Which nodes are not running?

l Has any node beenmarked as 'unschedulable'? If so, which one?

l Is any node in a bad condition? If so, why? Is it because of a network misconfiguration?
insufficient disk space? low memory? process pressure?

l Are all nodes ready to accept Pods?Which are the ones that are not ready?

l Is any node running to full Pod capacity?

l Are any node's resources been overcommitted? If so, which resource (CPU or memory) has
been overcommitted, and which Pods on the nodes are over-subscribing to that resource?

l Is any node running out of CPU or memory resources?

l How manymaster and worker nodes does the cluster have?

l Are there any Pending Pods in the cluster?Which are they?

l Have any Pods in the cluster failed?

l Is the write-through cache of the etcd used optimally?

l AreGolang collectors spending toomuch time in garbage collection?

l Are all keymaster services up and running?

l Are any namespaces terminating?

l Has any namespace exhausted or is about to exhaust its quota of Pods and/or services?

l Is the (CPU and/or memory) resource quota of any namespace nearing exhaustion?

l Are there any free Persistent Volumes, or are all of them bound to a claim?

l Has any Persistent Volume failed automatic reclamation?

l How manyPods in a namespace are ready to serve requests?Which ones are they?

l Which Pod is in what phase of its lifecycle?

l Are there any Podswith containers that are not ready to service requests?

l Which Pods are not yet scheduled to nodes, and why?



Chapter 3: Moni toring the Kubernetes Cluster

12

l Does any Pod have containers that terminated abnormally? If so, which containers and which
Pod terminated so, and why?

l Are any Services in a namespace in a Pending state currently? If so, why?

l Have any failure/problem events been detected recently in the Kubernetes cluster? What
events are those - did Pod creation fail? did any containers get killed? did Pods get evicted?
did any nodes run out of resources? did auto-scaling fail for any HPA?When did such events
occur, why, and which nodes and Podswere impacted?

3.1 The Kube Control Plane Layer
Using the test mapped to this layer, you can:

l Track and capture failure events that occur in the Kubernetes cluster;

l Detect the unavailability of the Kube API server;

l Identifymaster services that are not running;

l Capture issues in garbage collection byGolang collectors

Figure 3.2: The tests mappedto the Kube Control Plane layer

3.1.1 Kube Events Test

Kubernetes events are a resource type in Kubernetes that are automatically created when other
resources have state changes, errors, or other messages that should be broadcast to the system.
These events are an invaluable resource when debugging issues in a Kubernetes cluster.

Hence, to be able to rapidly detect and troubleshoot issues impacting cluster performance,
administrators should keep an eye out for Kubernetes events, and capture these events whenever
they are created. The Kube Events test helps administrators achieve this!



Chapter 3: Moni toring the Kubernetes Cluster

13

This test intercepts Kubernetes events as and when they are created by the Kubernetes system,
and brings every such event to the notice of administrators. Such events can point to normal cluster
operations - eg., Pod creation, container creation etc. - and also abnormalities such as image pulling
failures, scheduling failures etc. Whenever the test alerts administrators to an error or a failure event,
administrators can use the detailed diagnostics provided by the test to determine why the
error/failure occurred. This can greatly help in troubleshooting problem events.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes cluster beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

14

Parameter Description

in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.



Chapter 3: Moni toring the Kubernetes Cluster

15

Parameter Description

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Terminated all
pods

Indicates the number of times all
the Pods in the cluster were
terminated during the last
measurement period.

Number Use the detailed diagnosis of this
measure to know which Pods on
which nodes were terminated in
which namespace, and why.

Nodes
registered

Indicates the number of nodes that
were registered during the last
measurement period.

Number

Removing
nodes

Indicates the number of nodes that
were gracefully removed/drained
during the last measurement period.

Number Draining a node does the following:

l It cordons the node: Cordoning a

nodemeans that it will bemarked

unschedulable, so new pods can

no longer be scheduled to the

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

16

Measurement Description Measurement
Unit Interpretation

node.

l It evicts or deletes the Pods on

that node: After the node is made

unschedulable, the drain

commandwill try to evict the pods

that are already running on that

node. If eviction is supported on

the cluster (from Kubernetes

version 1.7) the drain command

will use the Eviction API that

takes disruption budgets into

account, if it’s not supported it will

simply delete the pods on the

node.

Use the detailed diagnosis of this
measure to know which which nodes
wereremoved/drained from which
namespace, and why.

Deleting nodes Indicates the number of nodes that
were deleted during the last
measurement period.

Number Deleting the node object from
Kubernetes causes all the Pod
objects running on the node to be
deleted from the apiserver, and frees
up their names.

Use the detailed diagnosis of this
measure to know which nodes were
deleted from which namespace.

Deleting all
pods

Indicates the number of times all
Pods on a node were deleted since
the last measurement period.

Number Use the detailed diagnosis of this
measure to know which Pods were
deleted from which nodes in which
namespace, and why.

Terminating
evicted pods

Indicates the number of times since
the last measurement period, Pods
were evicted.

Number One of themost useful events to
monitor is when a node begins



Chapter 3: Moni toring the Kubernetes Cluster

17

Measurement Description Measurement
Unit Interpretation

evicting pods. This event happens
when a node determines that pods
need to be evicted to free up some
resource such as CPU, memory, or
disk. An eviction can have
devastating consequences if the
kubelet is unable to determine the
best resources to evict. For
instance, the kubelet detecting disk
pressuremay sometimes evict Pods
that have no effect on disk usage.
The evicted Pods may also get
scheduled on other nodes,
overloading their other resources and
also causing evictions. Knowing
when evictions happened, and being
able to correlate it with other events
in that time frame, can help avoid the
issue.

You can use the detailed diagnosis
of this measure to know which Pods
were evicted and when eviction
occurred.

Ready nodes Indicates the number of times the
NodeReady event occurred since
the last measurement period.

Number

Nodes not
ready

Indicates the number of times the
NodeNotReady event occurred
during the last measurement period.

Number Use the detailed diagnosis of this
measure to know which nodes were
not ready , and when the event
occurred.

Nodes are
schedulable

Indicates the number of times the
NodeSchedulable event occurred
during the last measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
started, when it ended, and which
nodes were found schedulable in the
process, and which Pods were
scheduled to those nodes.

CIDR not Indicates the number of times the Number Kubernetes assigns each node a



Chapter 3: Moni toring the Kubernetes Cluster

18

Measurement Description Measurement
Unit Interpretation

available CIDRNotAvailable event occurred
during the last measurement period.

range of IP addresses, a CIDR
block, so that each Pod can have a
unique IP address.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

CIDR
assignments
failed

Indicates the number of times the
CIDRAssignmentFailed event
occurred during the last
measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Starting
kubelets

Indicates the number of times the
Starting event occurred during the
last measurement period.

Number

Kubelet setup
failed

Indicates the number of times the
KubeletSetupFailed event occurred
during the last measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Volume
mounts failed

Indicates the number of times the
FailedMount event occurred during
the last measurement period.

Number The FailedMount and
FailedAttachVolume events can help
you debug issues with storage.
These events will prevent Pods from
starting correctly. Youmay think that
your Pods are just slow to start, but if
there are permissions or networking
issues when creating network
volumes, you will need to rectify
them to get your Pods working again.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Nodes selector
mismatch

Indicates the number of times in the
last measurement period, the
NodeSelectorMismatching event
occurred.

Number You can constrain a Pod to only be
able to run on particular Node(s), or
to prefer to run on particular nodes.

nodeSelector is the simplest



Chapter 3: Moni toring the Kubernetes Cluster

19

Measurement Description Measurement
Unit Interpretation

recommended form of node selection
constraint. nodeSelector is a field of
PodSpec. It specifies amap of key-
value pairs. For the pod to be eligible
to run on a node, the nodemust have
each of the indicated key-value pairs
as labels (it can have additional
labels as well). Themost common
usage is one key-value pair.

If, when attempting to schedule a
Pod, scheduler finds that that Pod's
nodeSelector does not have any
matching node, the
NodeSelectorMismatching event is
triggered. In this case, the Pod in
question will remain in the Pending
state until a matching node is found.
.

Insufficient
free CPU

Indicates the number of times
during the last measurement period
the InsufficientFreeCpu event was
triggered.

Number If a Pod is stuck in the Pending
state, it means that it can not be
scheduled onto a node. Generally
this is because there are insufficient
resources of one type or another that
prevent scheduling. The scheduler
triggers an InsufficientFreeCpu or an
InsufficientFreeMemory event at
around such times.

In this case you can try several
things:

l Addmore nodes to the cluster.

l Terminate unneeded pods to

make room for pending pods.

l Check that the pod is not larger

than your nodes. For example, if

all nodes have a capacity of



Chapter 3: Moni toring the Kubernetes Cluster

20

Measurement Description Measurement
Unit Interpretation

cpu:1, then a pod with a request of

cpu: 1.1 will never be scheduled.

You can use the detailed diagnosis
of thesemeasures to identify the
nodes on which the events occurred,
when it occurred, which Pods were
impacted, and why.

Insufficient
freememory

Indicates the number of times
during the last measurement period
the InsufficientFreeMemory event
was triggered.

Number

Out of disk
nodes

Indicates the number of OutofDisk
events that occurred during the last
measurement period.

Number OutOfDisk indicates that the file
system on the worker node is full.
Kubernetes begins migrating pods
off the node until the situation is fixed
and the status of the nodemoves
back to Ready.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Host network
not supported

Indicates the number of
HostNetworkNotSupported events
that occurred during the last
measurement period.

Number If you use the host network mode for
a container, that container’s network
stack is not isolated from the node's
(the container shares the host’s
networking namespace), and the
container does not get its own IP-
address allocated. For instance, if
you run a container which binds to
port 80 and you use host networking,
the container’s application is
available on port 80 on the node’s IP
address. Host mode networking can
be useful to optimize performance,
and in situations where a container
needs to handle a large range of
ports, as it does not require network
address translation (NAT), and no
“userland-proxy” is created for each
port.

Undefined Indicates the number of times the Number If Pod requests bandwidth shaping,



Chapter 3: Moni toring the Kubernetes Cluster

21

Measurement Description Measurement
Unit Interpretation

shaper NilShaper event occurred during the
last measurement period.

but the shaper is undefined, then this
event occurs.

Nodes
rebooted

Indicates the number of times the
Rebooted event occurred during the
last measurement period.

Number Use the detailed diagnosis of this
measure to know which nodes were
rebooted, when, why, and which
Pods were impacted.

Node has
sufficient disk

Indicates the number of times the
NodeHasSufficientDisk event was
triggered during the last
measurement period.

Number

Nodes out of
disk space

Indicates the number of times the
NodeOutofDisk event occurred
since the last measurement period.

Number OutOfDisk indicates that the file
system on the worker node is full.
Kubernetes begins migrating pods
off the node until the situation is fixed
and the status of the nodemoves
back to Ready.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Invalid disk
capacity

Indicates the number of times the
InvalidDiskCapacity event
occurred since the last
measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Free disk
space failed

Indicates the number of times the
FreeDiskSpaceFailed event
occurred during the last
measurement period.

Number This event occurs if the host file
system is full. One of the common
reasons for this is the garbage
collector's failure to delete any
image.

Pulling images Indicates the number of times the
Pulling event occurred during the
last measurement period.

Number During the deployment of an
application to a Kubernetes cluster,
you will typically want one or more
images to be pulled from aDocker
registry. In the application's manifest
file you specify the images to pull,



Chapter 3: Moni toring the Kubernetes Cluster

22

Measurement Description Measurement
Unit Interpretation

the registry to pull them from, and the
credentials to use when pulling the
images.

Use the detailed diagnosis of this
measure to know when this event
occurred, which image was being
pulled, and which nodes and Pods
were impacted by the event.

Images pulled Indicates the number of times the
Pulled event occurred during the
last measurement period.

Number Images are pulled based on the
ImagePullPolicy.

The default pull policy is
IfNotPresent which causes the
Kubelet to skip pulling an image if it
already exists. If you would like to
always force a pull, you can do one
of the following:

l set the imagePullPolicy of the

container to Always.

l omit the imagePullPolicy and use

:latest as the tag for the image to

use.

l omit the imagePullPolicy and the

tag for the image to use.

l enable the AlwaysPullImages

admission controller.

Images
created

Indicates the number of times the
Created event occurred during the
last measurement period.

Number

Images started Indicates the number of times the
Started event occurred during the
last measurement period.

Number

Failed to pull
images

Indicates the number of times the
Failed event occurred during the

Number Common causes for failure to pull
images are:



Chapter 3: Moni toring the Kubernetes Cluster

23

Measurement Description Measurement
Unit Interpretation

last measurement period. l Network connectivity issues

l Incorrect image tag

l The image does not exist

l Kubernetes does not have

permission to pull the image

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Images
neverpull
policy violated

Indicates the number of times
during the last measurement period
the ErrImageNeverPull event
occurred.

Number The never pull policy disables
images pulling completely. If this
policy is set, then the image is
assumed to exist locally. No attempt
is made to pull the image.

This pull policy should be used if you
want or need to have a full control on
which images are used. It is a good
choice for containers that are
dedicated to a project where only
specific images can be used.

If, when attempting to pull an image,
the kubelet finds that the image is
not present locally, then this policy is
violated.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Back off
pulling images

Indicates the number of times the
BackOff event occurred in the last
measurement period.

Number This event is triggered, if:

l There is an invalid container

image tag;

l Kubernetes does not have



Chapter 3: Moni toring the Kubernetes Cluster

24

Measurement Description Measurement
Unit Interpretation

permissions to access the image;

l The image does not exist;

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Containers
created

Indicates the number of times the
Created event occurred in the last
measurement period.

Number This event is triggered every time a
container is created.

Killing
containers

Indicates the number of times the
Killing event occurred in the last
measurement period.

Number This event is triggered every time a
container is killed.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Containers
unhealthy

Indicates the number of times the
Unhealthy event occurred in the
last measurement period.

Number There is a single main process that is
running in a container. Such a
process can start other child
processes within a container, if
necessary. Every such process,
including themain process, can have
its own lifecycle – but if themain
process stops, the container stops
as well.

A container is healthy, by themost
general definition, if its main process
is running. If the container’s main
process is terminated unexpectedly,
then the container is considered
unhealthy.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Pods sync Indicates the number of times the Number Use the detailed diagnosis of this



Chapter 3: Moni toring the Kubernetes Cluster

25

Measurement Description Measurement
Unit Interpretation

failed FailedSync event occurred in the
last measurement period.

measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed pods
config
validation

Indicates the number of times the
FailedValidation event occurred in
the last measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Out of disk in
pods

Indicates the number of times the
OutOfDisk event occurred in the
last measurement period.

Number Sometimes, the container(s) running
in a Pod can fill up disk space,
triggering anOutOfDisk event.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Host/Port
conflict

Indicates the number of times the
HostPortConflict event occurred in
the last measurment period.

Number

Pods created Indicates the number of times the
SuccessfulCreate event occurred
in the last measurement period.

Number

Failed
replicaset

Indicates the number of times the
FailedCreate event occurred in the
last measurement period.

Number This event is triggered if a
ReplicationController fails to create
Pods. In such a case, use the
detailed diagnosis of this measure to
know when this event occurred,
why, on which nodes, and which
Pods were impacted.

Typically, if a ReplicationController
cannot create Pods, youmay have
to debug the Pods. The first step in
debugging a Pod is taking a look at it.
Check the current state of the Pod
and recent events: Look at the state
of the containers in the Pod. Are they
all running? Have there been recent
restarts? Then, continue debugging



Chapter 3: Moni toring the Kubernetes Cluster

26

Measurement Description Measurement
Unit Interpretation

depending on the state of the Pods.
Are Pods stuck in a Pending
state? Then, check for resource
inadequacies. Are the Pods in
Waiting state? Then, check if there
are any issues in image pulling. Are
the Pods crashing? Then, study the
container logs for troubleshooting the
same.

Pods deleted Indicates the number of times the
SuccessfulDelete event occurred in
the last measurement period.

Number

Pods delete
failed

Indicates the number of times the
FailedDelete event occurred in the
last measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Preempting
containers

Indicates the number of times the
PreemptContainer event occurred
in the last measurement period.

Number

Containers
exceeded
grace period

Indicates the number of times the
ExceededGracePeriod event
occurred in the last measurement
period.

Number As part of the graceful termination
lifecycle, Kubernetes first sends a
SIGTERM signal to the containers in
a Pod to let the containers know that
they are going to be shut down soon.
At this point, Kubernetes waits for a
specified time called the termination
grace period. This is 30 seconds by
default. If the containers in the Pod
are still running after the grace
period, Kubernetes triggers the
ExceededGracePeriod event, and
sends the SIGKILL signal to forcibly
remove the containers.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.



Chapter 3: Moni toring the Kubernetes Cluster

27

Measurement Description Measurement
Unit Interpretation

Failed to
attach volume

Indicates the number of times the
FailedAttachVolume event
occurred in the last measurement
period.

Number The FailedAttachVolume is an error
that occurs when Persistent Volume
(PV) is unable to be detached from a
node. This means it can no longer be
attached to another node and
happens because Kubernetes will
not force detatch PVs from nodes. In
other words, the
FailedAttachVolume event is an
outcome of a fundamental failure to
unmount and detach the volume from
the failed node.

The FailedMount event typically
follows the FailedAttachVolume
event because themount operation
happens after the attach operation
and because the attach has already
failed, it means that themount
operation is not possible.

The FailedMount and
FailedAttachVolume events can help
you debug issues with storage.
These events will prevent Pods from
starting correctly. Youmay think that
your Pods are just slow to start, but if
there are permissions or networking
issues when creating network
volumes, you will need to rectify
them to get your Pods working again.

Use the detailed diagnosis of these
measures to know when these
events occurred, why, on which
nodes, and which Pods were
impacted.

Failedmount Indicates the number of times the
FailedMount event occurred in the
last measurement period.

Number

Volume resize
failed

Indicates the number of times the
VolumeResizeFailed event
occurred in the last measurement
period.

Number Typically, if a PVC is already
attached to a Pod, then resizing that
PVC would fail with the



Chapter 3: Moni toring the Kubernetes Cluster

28

Measurement Description Measurement
Unit Interpretation

VolumeResizeFailed event. In such
cases, update the size of the PV,
then edit the PVC accordingly, and
delete the Pod to get it to the
detached state. Then, recreate that
Pod.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

File system
resize failed

Indicates the number of times the
FileSystemResizeFailed event
occurred in the last measurement
period.

Number This event is triggered if errors are
encountered when expanding the file
system.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failedmap
volume

Indicates the number of times the
FailedMapVolume event occurred
in the last measurement period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Container
GC failed

Indicates the number of times the
ContainerGCFailed event occurred
in the last measurement period.

Number Typically, whenever Pod eviction
thresholds are too close to the
node's physical memory limits, one
of these events will be triggered.

Use the detailed diagnosis of these
measures to know when these
events occurred, why, on which
nodes, and which Pods were
impacted.

ImageGC
failed

Indicates the number of times the
ImageGCFailed event occurred in
the last measurement period.

Failed node
allocatable
enforcement

Indicates the number of times the
FailedNodeAllocatableEnforcement
event occurred in the last
measurement period.

Number The kubelet exposes a feature
namedNode Allocatable that helps
to reserve compute resources for
system daemons.

Allocatable on a Kubernetes node is
defined as the amount of compute



Chapter 3: Moni toring the Kubernetes Cluster

29

Measurement Description Measurement
Unit Interpretation

resources that are available for
Pods.

To properly enforce node allocatable
constraints on the node, youmust
enable the new cgroup hierarchy via
the --cgroups-per-qos flag. This
flag is enabled by default. When
enabled, the kubelet will parent all
end-user pods under a cgroup
hierarchy managed by the kubelet.

Following is the recommended
cgroup configuration for Kubernetes
nodes. All OS system daemons are
expected to be placed under a top
level SystemReserved cgroup.
Kubelet and Container Runtime are
expected to be placed under
KubeReserved cgroup.

kube-reserved is meant to capture
resource reservation for kubernetes
system daemons like the kubelet,
container runtime, node problem
detector, etc.

system-reserved is meant to
capture resource reservation for OS
system daemons like sshd, udev,
etc

To optionally enforce system-
reservedon system daemons,
specify the parent control group for
OS system daemons as the value for
--system-reserved-cgroup kubelet
flag. If this specification includes an
invalid cgroup, then Kubelet will fail
to enforce system-reserved, and will
trigger the
FailedNodeAllocatableEnforcement



Chapter 3: Moni toring the Kubernetes Cluster

30

Measurement Description Measurement
Unit Interpretation

event.

Sandbox
changed

Indicates the number of times the
SandboxChanged event occurred in
the last measurement period.

Number Whenever the config map or any
other part of a Pod setup changes,
the SandboxChanged event is
triggered.

Failed to
create pod
sandbox

Indicates the number of times the
FailedCreatePodSandBox event
occurred in the last measurement
period.

Number At the lowest layers of a Kubernetes
node is the software that, among
other things, starts and stops
containers. We call this the
“Container Runtime”. The plugin API
for container runtimes in Kubernetes
is called Container Runtime
Interface (CRI).

A Pod is composed of a group of
application containers in an isolated
environment with resource
constraints. In CRI, this environment
is called PodSandbox.

Before starting a Pod, kubelet calls
RuntimeService.RunPodSandbox to
create the environment. This
includes setting up networking for a
pod (e.g., allocating an IP). If kubelet
is unable to create the environment
for running a Pod, the
FailedCreatePodSandBox event is
triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed pod
sandbox
status

Indicates the number of times the
FailedPodSandBoxStatus event
occurred in the last measurement
period.

Number If kubelet is unable to get the Pod
sandbox status, then the
FailedPodSandBoxStatus event is
triggered.

Use the detailed diagnosis of this



Chapter 3: Moni toring the Kubernetes Cluster

31

Measurement Description Measurement
Unit Interpretation

measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Container
probe warnings

Indicates the number of times the
ContainerProbeWarning event
occurred in the last measurement
period.

Number A Probe is a diagnostic performed
periodically by the kubelet on a
Container.

The kubelet can optionally perform
and react to three kinds of probes on
running Containers:

l livenessProbe: Indicates whether

the Container is running. If the

liveness probe fails, the kubelet

kills the Container, and the

Container is subjected to its

restart policy.

l readinessProbe: Indicates

whether the Container is ready to

service requests. If the readiness

probe fails, the endpoints

controller removes the Pod’s IP

address from the endpoints of all

Services that match the Pod.

l startupProbe: Indicates whether

the application within the

Container is started. All other

probes are disabled if a startup

probe is provided, until it

succeeds. If the startup probe

fails, the kubelet kills the

Container, and the Container is

subjected to its restart policy.



Chapter 3: Moni toring the Kubernetes Cluster

32

Measurement Description Measurement
Unit Interpretation

A ContainerProbeWarning event is
triggered when any of these probes
fail.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed post
start hook

Indicates the number of times the
FailedPostStartHook event
occurred during the last
measurement period.

Number Hooks enable Containers to be
aware of events in their management
lifecycle and run code implemented
in a handler when the corresponding
lifecycle hook is executed.

There are two hooks that are
exposed to Containers:

l PostStart: This hook executes

immediately after a container is

created. However, there is no

guarantee that the hook will

execute before the container

ENTRYPOINT. No parameters

are passed to the handler.

l PreStop: This hook is called

immediately before a container is

terminated due to an API request

or management event such as

liveness probe failure,

preemption, resource contention

and others. A call to the preStop

hook fails if the container is

already in terminated or

completed state. It is blocking,

meaning it is synchronous, so it



Chapter 3: Moni toring the Kubernetes Cluster

33

Measurement Description Measurement
Unit Interpretation

must complete before the call to

delete the container can be sent.

No parameters are passed to the

handler.

If a hook handler fails, it broadcasts
an event. While failure of the
PostStart hook handler triggers the
FailedPostStartHook event, the
failure of the PreStop hook handler
triggers the FailedPreStopHook
event.

Use the detailed diagnosis of these
measures to know when these
events occurred, why, on which
nodes, and which Pods were
impacted.

Failed pre stop
hook

Indicates the number of times the
FailedPreStopHook event occurred
during the last measurement period.

Number

Node has
sufficient
memory

Indicates the number of times the
NodeHasSufficientMemory event
occurred in the last measurement
period.

Number If theMemoryPressure condition of a
node is False, it implies that that
node has sufficient memory. In such
cases, the
NodeHasSufficientMemory event is
generated.

Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which
Pods were impacted.

Failed
resource
metric

Indicates the number of times the
FailedGetResourceMetric event
occurred in the last measurement
period.

Number The Horizontal Pod Autoscaler
automatically scales the number of
Pods in a replication controller,
deployment or replica set based on
observed CPU utilization (or, with
custommetrics support, on some
other application-providedmetrics).

At configured intervals, the controller
manager queries the resource



Chapter 3: Moni toring the Kubernetes Cluster

34

Measurement Description Measurement
Unit Interpretation

utilization against themetrics
specified in each
HorizontalPodAutoscaler definition.
The controller manager obtains the
metrics from either the resource
metrics API (for per-pod resource
metrics), or the custommetrics API
(for all other metrics). Typically,
metrics are fetched from a series of
aggregated APIs - metrics.k8s.io,
custom.metrics.k8s.io, and
external.metrics.k8s.io. The
controller then calculates the actual
utilization value of the resource,
considers the target/desired
utilization value that is set, and
computes the ratio between the
desired and actual metric value. The
autoscaler then scales the desired
number of replicas up or down based
on this ratio.

One of the common reasons for the
failure of auto-scaling is the inability
of the controller to fetch the resource
metrics from the API. Without the
metrics, scales cannot be computed,
and consequently, the count of
replicas cannot be scaled up/down.
The FailedGetResourceMetric is
broadcast everytime the controller
fails to get resourcemetrics.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Node has no
disk pressure

Indicates the number of times the
NodeHasNoDiskPressure event
occurred in the last measurement

Number If the DiskPressure condition of a
node is False, it implies that that
node has sufficient disk space. In



Chapter 3: Moni toring the Kubernetes Cluster

35

Measurement Description Measurement
Unit Interpretation

period. such cases, the
NodeHasNoDiskPressure event is
generated.

Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which
Pods were impacted.

Node has
sufficient PID

Indicates the number of times the
NodeHasSufficientPID event
occurred in the last measurement
period.

Number If the PIDPressure condition of a
node is False, it implies that that
node has sufficient processes. In
such cases, the
NodeHasSufficientPID event is
generated.

Use the detailed diagnosis of this
measure to know when this event
occurred, on which nodes, and which
Pods were impacted.

Provisioning
failed

Indicates the number of times the
ProvisioningFailed event occurred
in the last measurement period.

Number This event is triggered if Kubernetes
fails to provision a volume for a PVC.

If a PV belonging to a StorageClass
needs to be dynamically provisioned
for a PVC, then a key field that your
StorageClass definition should
contain is the Provisioner.
A Provisioner determines what
volume plugin is to be used for
provisioning PVs dynamically.
Likewise, the definition should also
includemountOptions. In this case,
if the Provisioner - i.e., volume plugin
- in use does not support mount
options, then volume provisioning
will fail. Wheremultiple
mountOptions are provided,
provisioning failures will also occur if
even one of themount options is
found to be invalid.



Chapter 3: Moni toring the Kubernetes Cluster

36

Measurement Description Measurement
Unit Interpretation

Provisioning failures may also occur
if:

l The volume plugin does not match

any of the supported plugins;

l The application is requestingmore

storage space than is available in

the underlying volumes that have

been provisioned.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Back-off
restarting
failed
containers

Indicates the number of times the
BackOff event occurred in the last
measurement period.

Number If this event is triggered, it means
that Kubernetes started your
container, then the container
subsequently exited. This forced
Kubernetes to restart the container.
After restarting it a few times,
Kubernetes declares that the
container is in the BackOff state.
However, Kubernetes will keep on
trying to restart it. Common causes
for this are:

l The application inside the
container keeps crashing

l Some type of parameters of the
pod or container have been
configured incorrectly

l An error has beenmade when
deploying Kubernetes

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.



Chapter 3: Moni toring the Kubernetes Cluster

37

Measurement Description Measurement
Unit Interpretation

Completed
jobs

Indicates the number of times the
SawCompletedJob event occurred
in the last measurement period.

Number A Job creates one or more Pods and
ensures that a specified number of
them successfully terminate. As
pods successfully complete, the Job
tracks the successful completions.
When a specified number of
successful completions is reached,
the task (ie, Job) is complete.

This event is triggered every time a
Job completes.

Error creating
pods

Indicates the number of times the
FailedCreate event occurred, with
themessage "Error creating: pods",
in the last measurement period

Number If a Job fails to create Pods, then this
event is triggered. An entire Pod can
fail for a number of reasons, such as
when the Pod is kicked off the node
(node is upgraded, rebooted, deleted,
etc.), or if a container of the Pod fails
and the
.spec.template.spec.restartPolicy =
"Never". When a Pod fails, then the
Job controller starts a new Pod.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Successfully
schedule pods

Indicates the number of times the
Scheduled event occurred, in the
last measurement period.

Number This event is generated if a Pod is
successfully scheduled to a node.

Failed to
schedule pods

Indicates the number of times the
FailedScheduling event occurred in
the last measurement period.

Number This event is generated if a Pod
could not be scheduled to any node
in a cluster. One of the common
causes for scheduling failures is the
lack of adequatememory and/or
CPU resources in the nodes to
accommodate the Pods.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and



Chapter 3: Moni toring the Kubernetes Cluster

38

Measurement Description Measurement
Unit Interpretation

which Pods were impacted.

Failed to stop
pods

Indicates the number of times the
FailedKillPod event occurred in the
last measurement period.

Number This event occurs if a Pod is stuck in
the Terminating state. This is
detected by finding Pods where
every container has been terminated,
but the Pod is still running. Usually,
this is caused when a node in the
cluster gets taken out of service
abruptly, and the cluster scheduler
and controller-manager do not clean
up all of the pods on that node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Failed to
create a pod
container

Indicates the number of times the
FailedCreatePodContainer event
occurred in the last measurement
period.

Number This event is generated if
Kubernetes fails to create a
container in a Pod.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes, and
which Pods were impacted.

Network is not
ready

Indicates the number of times the
NetworkNotReady event occurred
in the last measurement period.

Number This event is triggered if the Pod's
runtime network is not ready.

Failed to place
pods on node

Indicates the number of times the
FailedPlacement event occurred in
the last measurement period.

Number This event is triggered if the
Daemonset Controller fails to place a
Pod on a node. Common reasons for
this are:

l Insufficient resources on the

node;

l The node has beenmarked as

Unschedulable

Use the detailed diagnosis of this



Chapter 3: Moni toring the Kubernetes Cluster

39

Measurement Description Measurement
Unit Interpretation

measure to know when this event
occurred, why, on which nodes.

Found failed
daemon pods
on node

Indicates the number of times the
FailedDaemonPod event occurred
in the last measurement period.

Number This event is often associated with
the cluster health rather than issues
with the daemon set.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, on which nodes.

Failed to
cancel
deployments

Indicates the number of times the
DeploymentCancellationFailed
event occurred in the last
measurement period.

Number While a running Deployment can be
canceled, most often, it is the stuck
Deployments that are canceled. The
cancellation is a best-effort
operation, andmay take some time
to complete. The replication
controller may partially or totally
complete its deployment before the
cancellation is effective.

If a Deployment is successfully
canceled, then the
DeploymentCancelled event is
triggered. When canceled, the
deployment configuration will be
automatically rolled back by scaling
up the previous running replication
controller.

On the other hand, if cancellation of a
Deployment fails, then the
DeploymentCancellationFailed
event is triggered.

You can use the detailed diagnosis
of thesemeasures to know when
each of these events occurred, why,
and on which nodes.

Cancelled
deployments

Indicates the number of times the
DeploymentCancelled event
occurred in the last measurement
period.

Number

Created new
replication
controllers

Indicates the number of times the
DeploymentCreated event occurred
in the last measurement period.

Number This event is triggered every time a
new Deployment is created.

You can use the detailed diagnosis



Chapter 3: Moni toring the Kubernetes Cluster

40

Measurement Description Measurement
Unit Interpretation

of this measure to know when this
event occurred, on which nodes, and
which Pods were created in the
process.

No available
ingress IP to
allocate to
service

Indicates the number of times the
IngressIPRangeFull event occurred
in the last measurement period.

Number Ingress exposes HTTP and HTTPS
routes from outside the cluster to
services within the cluster. Traffic
routing is controlled by rules defined
on the Ingress resource.

An Ingress can be configured to give
Services externally-reachable URLs,
load balance traffic, terminate SSL /
TLS, and offer name based virtual
hosting. An Ingress controller is
responsible for fulfilling the Ingress,
usually with a load balancer, though
it may also configure your edge
router or additional frontends to help
handle the traffic.

When an Ingress is created,
typically, an IP address is allocated
by the Ingress Controller to satisfy
the Ingress. Ingress controllers and
load balancers may take aminute or
two to allocate an IP address. Until
that time, you often see the address
listed as <pending>.

Sometimes, the Ingress Controller
may not find any IP address to
allocate to the service for which the
Ingress was created. In this case,
the Ingress will fail with the event
IngressIPRangeFull.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.



Chapter 3: Moni toring the Kubernetes Cluster

41

Measurement Description Measurement
Unit Interpretation

Failed to
detach
volumes

Indicates the number of times the
FailedDetachVolume event
occurred in the last measurement
period.

Number This event is triggered if a volume
fails to be detached from a node.

A Persistent Volume that cannot be
detached poses a problem if you try
to create another Pod using the
same PVC.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
unmount
volumes

Indicates the number of times the
FailedUnMount event occurred in
the last measurement period.

Number This event is triggered if Kubernetes
failed to unmount a volume from a
node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed
unmapped
devices

Indicates the number of times the
FailedUnmapDevice event
occurred in the last measurement
period.

Number If a Podmounted with a storage
device - i.e., a volume - is deleted,
then the tear down process should
be able to unmap the device. If it fails
to do so, then the
FailedUnmapDevice event is
triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Unsupported
mount option

Indicates the number of times the
UnsupportedMountOptionevent
occurred in the last measurement
period.

Number If a PV belonging to a StorageClass
needs to be dynamically provisioned
for a PVC, then a key field that your
StorageClass definition should
contain is the Provisioner.
A Provisioner determines what
volume plugin is to be used for
provisioning PVs dynamically.



Chapter 3: Moni toring the Kubernetes Cluster

42

Measurement Description Measurement
Unit Interpretation

Additionally, the definitionmay also
includemountOptions. In this case,
if the Provisioner - i.e., volume plugin
- in use does not support mount
options, then the
UnsupportedMountOption event will
be triggered, resulting in the failure of
volume provisioning. Wheremultiple
mountOptions are provided,
provisioning failures will also occur if
even one of themount options is
found to be invalid.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Invalid selector Indicates the number of times the
InvalidSelector event occurred in
the last measurement period.

Number If this event occurs, it implies that
the target scalable's selector could
not be parsed.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Unknown
metric source
type

Indicates the number of times the
InvalidMetricSourceType event
occurred in the last measurement
period.

Number This event occurs if the
HPA controller encounters an
unknownmetric source type.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.
One of the common

Failed to
convert the
given HPA

Indicates the number of times the
FailedConvertHPA event occurred
in the last measurement period.

Number This event is fired if the the HPA
controller was unable to convert the
given HPA to the v2alpha1 version.

Use the detailed diagnosis of this
measure to know when this event



Chapter 3: Moni toring the Kubernetes Cluster

43

Measurement Description Measurement
Unit Interpretation

occurred, why, and which nodes and
Pods were impacted by the event.

HPA controller
was unable to
get the targets

Indicates the number of times the
FailedGetScale event occurred in
the last measurement period.

Number This event is triggered if the
Horizontal Pod Autoscaler (HPA)
was not able to get the scale for the
given scalable resource. If this event
occurs, then the HPA will be unable
to perform up/down scaling.
Therefore, the AbleToScale status
condition of the HPA will become
False.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
compute
desired
number of
replicas

Indicates the number of times the
FailedComputeMetricsReplicas
event occurred in the last
measurement period.

Number This event is triggered if the
Horizontal Pod Autoscaler is unable
to compute the replica count. This
can happen if the controller is unable
to connect to the custom/resource
metrics API, for any reason.
Because of this, the controller will
not be able to compute the resource
utilization value. Without the
resource utilization, the controller will
not be able to compute the replica
count.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed rescale Indicates the number of times the
FailedRescale event occurred in
the last measurement period.

Number A scale update was needed and the
HPA controller was unable to
actually update the scale
subresource of the target scalable,
then this event is fired.

Use the detailed diagnosis of this



Chapter 3: Moni toring the Kubernetes Cluster

44

Measurement Description Measurement
Unit Interpretation

measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Failed to
update status

Indicates the number of times the
FailedUpdateStatus event occurred
in the last measurement period.

Number The event is triggered if the HPA
controller fails to update the status of
the HPA object.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

No persistent
volumes
available

Indicates the number of times the
FailedBinding event occurred in the
last measurement period.

Number To associate a Pod with storage, a
cluster administrator should first
create a PersistentVolume (PV) that
is backed by physical storage. A
cluster user should then create a
PersistentVolumeClaim (PVC),
which gets automatically bound to a
PV. Finally, the user creates a Pod
that uses the PVC as storage.

If a PVC is created, but no
PersistentVolumes are available for
the PVC to be bound to, then the
FailedBinding event gets fired. In
such cases, Pods that use unbound
PVCs will stay in the Pending state,
until the problem is resolved.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume size or
class is
different

Indicates the number of times the
VolumeMismatch event occurred in
the last measurement period.

Number This event is triggered if the volume
size or class is different from what is
requested in the claim.

Typically, a user creates a
PersistentVolumeClaim (PVC) with



Chapter 3: Moni toring the Kubernetes Cluster

45

Measurement Description Measurement
Unit Interpretation

a specific amount of storage
requested and with certain access
modes. A control loop in themaster
watches for new PVCs, checks if
any static PV (a PV manually
created by the administrator) exactly
matches the new PVC, and binds
them together. Claims will remain
unbound indefinitely if a matching
volume does not exist. Claims will
be bound as matching volumes
become available. For example, a
cluster provisioned with many 50Gi
PVs would not match a PVC
requesting 100Gi. The PVC can be
bound when a 100Gi PV is added to
the cluster. Until a 100Gi
PV becomes available, the cluster
will not bind the PVC with any of the
existing PVs; instead, it will fail
binding with the event
VolumeMismatch.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error creating
recycler pods

Indicates the number of times the
VolumeFailedRecycle event
occurred in the last measurement
period.

Number An administrator can configure a
custom recycler Pod template using
the Kubernetes controller manager
command line arguments. The
custom recycler Pod templatemust
contain a volumes specification.
You need to configure the path of the
volume to be recycled in the path
specification of the volumes
section.

Typically, when a Pod is deleted and
the PV has to be freed up, the



Chapter 3: Moni toring the Kubernetes Cluster

46

Measurement Description Measurement
Unit Interpretation

recycler Pod comes in and tries to
make the PV available. But,
sometimes, due to certain errors, the
recycler POD may switch to the
'failed' state. For instance, if the
recycler Pod fails to remove the
.snapshot folder, the Pod will fail to
be created. As a result, the PV too
fails to become available - i.e.,
volume recycling fails. n such a
situation, the VolumeFailedRecycle
event is fired.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume is
recycled

Indicates the number of times the
VolumeRecycled event occurred in
the last measurement period.

Number This event is triggered every time a
volume is successfully recycled.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Pod is
recylced

Indicates the number of times the
RecyclerPod event occurred in the
last measurement period.

Number This event is triggered every time a
recycler pod is successfully
recycled.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Volume is
deleted

Indicates the number of times the
VolumeDelete event occurred in the
last measurement period.

Number Every time a volume is deleted, the
VolumeDelete event is triggered.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error when Indicates the number of times the Number This event is triggered if volume



Chapter 3: Moni toring the Kubernetes Cluster

47

Measurement Description Measurement
Unit Interpretation

deleting the
volume

VolumeFailedDelete event
occurred in the last measurement
period.

deletion fails.

This can happen if the path
specification in your PV does not
match with the actual path of the
volume being deleted.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error cleaning
provisioned
volume

Indicates the number of times the
ProvisioningCleanupFailed event
occurred in the last measurement
period.

Number This event is triggered if a
provisioned volume is not
automatically cleaned up, when the
Podmounting that volume is
removed. In this case, you will have
tomanually delete the volume.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error creating
load balancer

Indicates the number of times the
CreatingLoadBalancerFailed event
occurred in the last measurement
period.

Number If the static IP address defined in the
loadBalancerIP property of the
Kubernetes servicemanifest does
not exist, or has not been created in
the node resource group and no
additional delegations are
configured, the load balancer service
creation fails with the event
CreatingLoadBalancerFailed.

Many load balancer issues around
creating, updating, and deleting the
load balancer can also be traced to a
permissions issue with your cloud
provider. Ensure that your
Kubernetes nodes have the ability to
create andmodify load balancers in
your cloud provider to avoid these
issues. If your cloud provider



Chapter 3: Moni toring the Kubernetes Cluster

48

Measurement Description Measurement
Unit Interpretation

provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Deleting load
balancer

Indicates the number of times the
DeletingLoadBalancer event
occurred in the last measurement
period.

Number Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Not available
nodes for Load
Balancer
service

Indicates the number of times the
UnAvailableLoadBalancer event
occurred in the last measurement
period.

Number Load balancers require at least one
server to send traffic to for the load
balancing. This can be an issue if the
service is not able to target any
pods, or if the load balancer is unable
to health check any servers in your
cluster. In such a situation, the
UnAvailableLoadBalancer event
gets fired. To troubleshoot this issue,
check the endpoints registered with
the service using kubectl describe
service <service>, figure out which
nodes those pods run on, and
compare it to the servers registered
to the load balancer in your cloud
provider.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error updating
load balancer
with new hosts

Indicates the number of times the
LoadBalancerUpdateFailed event
occurred in the last measurement
period.

Number Many load balancer issues around
creating, updating, and deleting the
load balancer can be traced to a
permissions issue with your cloud
provider. Ensure that your



Chapter 3: Moni toring the Kubernetes Cluster

49

Measurement Description Measurement
Unit Interpretation

Kubernetes nodes have the ability to
create andmodify load balancers in
your cloud provider to avoid these
issues. If your cloud provider
provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Error deleting
load balancer

Indicates the number of times the
DeletingLoadBalancerFailed event
occurred in the last measurement
period.

Number Many load balancer issues around
creating, updating, and deleting the
load balancer can be traced to a
permissions issue with your cloud
provider. Ensure that your
Kubernetes nodes have the ability to
create andmodify load balancers in
your cloud provider to avoid these
issues. If your cloud provider
provides Identity & Access
Management (IAM) double-check the
permissions that your nodes and
pods have.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Deleted load
balancer

Indicates the number of times the
DeletedLoadBalancer event
occurred in the last measurement
period.

Number This event occurs if a load balancer
is deleted.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

System out of
memory

Indicates the number of times the
SystemOOM event occurred in the

Number This event is triggered if a node runs
out of memory. Such an event can



Chapter 3: Moni toring the Kubernetes Cluster

50

Measurement Description Measurement
Unit Interpretation

last measurement period. happen if the kubelet is unable to
reclaim memory by proactively
failing one or more Pods on the node.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

Evicted pods Indicates the number of times the
Evicted event occurred in the last
measurement period.

Number This event happens when a node
determines that Pods need to be
evicted, or terminated, to free up
some resource such as CPU,
memory, or disk. This can have
devastating consequences if the
kubelet is unable to determine the
best resources to evict. For
instance, if a kubelet detecting disk
pressure on a node evicted Pods that
have no effect on disk usage, then
such an eviction will not ease the
disk space crunch on that node.
Moreover, since the evicted Pods
would get scheduled on other nodes,
they will also overload the other
nodes, thus causingmore evictions.
Knowing when evictions happened,
and being able to correlate it with
other events in that time frame, can
help avoid the issue.

Use the detailed diagnosis of this
measure to know when this event
occurred, why, and which nodes and
Pods were impacted by the event.

You can use the detailed diagnosis of theBack-off restarting failed containersmeasure to know
when the BackOff event occurred, themessage that was displayed when the event occurred, and
the nodes and Pods impacted by the event.



Chapter 3: Moni toring the Kubernetes Cluster

51

Figure 3.3: The detailed diagnosis of the Back-off restarting failed containers measure

You can use the detailed diagnosis of the Killing containersmeasure to know when the Killing event
occurred, the message that was displayed when the event occurred, and the nodes and Pods
impacted by the event.

Figure 3.4: The detailed diagnosis of the Killing containers measure

Using the detailed diagnosis of the Containers exceeded grace period measure, you can quickly
determine when the ExceededGracePeriod event occurred, why the event was triggered, and which
nodes and Podswere impacted by the event.

Figure 3.5: The detailed diagnosis of the Containers exceeded grace periodmeasure

Using the detailed diagnosis of the Evicted pods measure, you can quickly determine when the
Evicted event occurred, why the event was triggered, and which nodes and Pods were impacted by
the event.

Figure 3.6: The detailed diagnosis of the Evicted pods measure

With the help of the detailed diagnosis of the Failed to stop podsmeasure, you can at-a-glance figure
out when the FailedKillPod event occurred, and which nodes and Podswere impacted by that event.
You can also view the error message that Kubernetes throws when firing this event, so you can
troubleshoot easily.



Chapter 3: Moni toring the Kubernetes Cluster

52

Figure 3.7: The detailed diagnosis of the Failed to stop pods measure

Use the detailed diagnosis of thePulling imagesmeasures to know when the Pulling event occurred,
which image was being pulled, and which nodes and Podswere impacted by the event.

Figure 3.8: The detailed diagnosis of the Pulling images measure

Use the detailed diagnosis of the Failed resource measure to determine when the
FailedGetResourceMetric event occurred, what could have caused the event to be triggered, and
which Podswere impacted by the event.

Figure 3.9: The detailed diagnosis of the Failed resourcemetric measure

Using the detailed diagnosis of the Failed to compute desired number of replicasmeasure to know
when the FailedComputeMetricsReplicas event occurred, why, and which Podswere impacted.

Figure 3.10: The detailed diagnosis of the Failed to compute desired number of replicas measure

By viewing the detailed diagnosis of the Found failed daemon pods on node measure, you will be
able to ascertain when the FailedDaemonPod event occurred and which Pod was impacted by the
event. The detailed diagnosis also reveals the error message that the event throws, so you can
troubleshoot easily.

Figure 3.11: The detailed diagnosis of the Found failed daemon pods on nodemeasure



Chapter 3: Moni toring the Kubernetes Cluster

53

3.1.2 API Server Connectivity Test

The API server is the component on the master that exposes the Kubernetes API. It is the front-end
for the Kubernetes control plane. All communication paths from the cluster to themaster terminate at
the API server. The cluster receives Object specs from users via the API server on the master node.
While the master uses the API server to forward the Object specs to the scheduler and to the
kubelets, the kubelets also update the master with the Object status via the API server. Instructions
for creating, starting, destroying objects on a worker node are also sent to worker nodes via the API
server only.

This implies that the non- availability of the API server can bring the entire cluster to a
standstill! Administrators may no longer be able to stop, update, or start new pods, services, or the
replication controller. Moreover, users will be denied access to the cluster, and consequently, to the
business-critical applications/services running within! To avoid this, administrators must periodically
check if the API server is available and promptly detect its unavailability. This is exactly what the
API Server Connectivity test does!

At configured intervals, this test checks whether/not the API server is available, and instantly alerts
administrators if it is not. This way, the test urges administrators to investigate the reason for the
non-availability and fix it, so that cluster operations resume quickly.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes cluster beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

54

Parameter Description

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display theLoad Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, when
manually adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the



Chapter 3: Moni toring the Kubernetes Cluster

55

Parameter Description

default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy
server to connect to the Kubernetes cluster, and that proxy server
requires authentication. In this case, provide a valid user name and password
against theProxy Username andProxy Password parameters, respectively. Then,
confirm the password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Availability Indicates whether/not the
API server is available.

Percent If the value of this measure is 0, it
indicates that the API server is
unavailable. The value 100 on the other

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

56

Measurement Description Measurement
Unit Interpretation

hand indicates that the API server is
available.

In the event of the non-availability of
the API server, you can use the
detailed diagnosis of this measure to
figure out the reason for the non-
available. You can also use the
/var/log/kube-apiserver.log file on the
master node to figure out what could
have caused the failure of the server.

The common causes for the
unavailability of the API server are as
follows:

l API server VM shutting down or

crashing;

l API server losing access to its

backing storage

To ensure the high availability of the
API server, youmay want to consider
the following courses of action:

l Use IaaS provider’s automatic VM

restarting feature for IaaS VMs;

l Use IaaS providers reliable storage
(e.g. GCE PD or AWS EBS volume)
for VMs with apiserver+etcd

3.1.3 KubeGarbage Collection Test

The Kubernetes project is written in the Go programming language (also known as Golang). Go is a
statically typed, compiled programming language designed at Google. Go is syntactically similar to
C, but with memory safety, garbage collection, structural typing, and communicating sequential
processes (CSP)-style concurrency.



Chapter 3: Moni toring the Kubernetes Cluster

57

Garbage collectors have the responsibility of tracking heap memory allocations, freeing up
allocations that are no longer needed, and keeping allocations that are still in- use. The Go
programming language uses a non-generational concurrent tri-color mark and sweep collector.

When a collection starts, the collector runs through four phases of work:

l Mark Setup

l Marking

l Mark Termination

l Sweeping

TheMark Setup phase is where the Write Barrier is turned on. The purpose of the Write Barrier is to
allow the collector to maintain data integrity on the heap during a collection since both the collector
and application goroutines will be running concurrently. In order to turn the Write Barrier on, every
application goroutine running must be stopped. The only way to do that is for the collector to watch
and wait for each goroutine to make a function call. Function calls guarantee the goroutines are at a
safe point to be stopped.

Once theWrite Barrier is turned on, the collector commences with theMarking phase. The Marking
phase consists of marking values in heap memory that are still in-use. This work starts by inspecting
the stacks for all existing goroutines to find root pointers to heap memory. Then the collector must
traverse the heap memory graph from those root pointers. The first thing the collector does in this
phase is take 25% of the available CPU capacity for itself. For example, if an application uses 4
CPUs, then the collector will hog an entire CPU while at this phase. In this case typically, the
collector will use the 25% CPU capacity that it has set aside for this phase, to do the marking work,
allowing normal application work to continue on the remaining 75%.

Once theMarking work is done, the next phase isMark Termination. This is when theWrite Barrier
is turned off, various clean up tasks are performed, and the next collection goal is calculated.

Once the collection is finished, the full CPU capacity is released for the use of the application
Goroutines again, thus bringing the application back to full throttle.

Sweeping typically happens after the collection is finished. Sweeping is when the memory
associated with values in heap memory that were not marked as in-use are reclaimed. This activity
occurs when application Goroutines attempt to allocate new values in heapmemory.

In summary, by performing garbage collection, Golang ensures that applications make optimal use
of available heap memory. While this improves application performance at one end, at the other,
every collection also inflicts certain latencies on the running application that may slow down



Chapter 3: Moni toring the Kubernetes Cluster

58

application work. For instance, at the Mark Setup phase, the garbage collector stops all application
Goroutines, so it can turn on the Write Barrier. This imposes a Stop the World (STW) latency on the
running application. Likewise, the application Goroutines are stopped at theMark Termination phase
as well, once again inflicting an STW latency on the applications. Also, sometimes, garbage
collection steals CPU capacity to stay alive, and degrades application performance in the bargain.
For instance, in the Marking phase, if the Goroutine dedicated to the collector is unable to finish the
marking work before the heap memory in- use reaches its limit, the collector will recruit the
application Goroutines to assist with the Marking work. This is called a Mark Assist. When this
happens, the application will be forced to compete with the collector for the available CPU
resources. This contention can occasionally choke application performance! 

To optimize garbage collection and eliminate its ill effects, administrators must ensure that the
collector does more work, while consuming minimum time and resources. For this purpose,
administrators must first study the garbage collection activity closely, and figure out how much time
and resources the collector typically invests in this process. This is where, the Kube Garbage
Collection test helps!

This test monitors the garbage collection activity of Golang, and reports the time the Golang collector
spends collecting garbage. Administrators will be alerted if too much time is being spent in garbage
collection. The test also reveals the number of threads and Goroutines presently engaged in
garbage collection, thus revealing how resource-intensive the garbage collection is. This way, the
test enables administrators to periodically review the garbage collection activity, assess its impact on
application performance, and figure out if it needs to be fine-tuned to reduce application latencies.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes cluster beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

59

Parameter Description

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter only accessing the API and pullingmetrics. If for any reason,
you generate a new authentication token for the target cluster at a later point in time,
thenmake sure you update this parameter with the change. For that, copy the new



Chapter 3: Moni toring the Kubernetes Cluster

60

Parameter Description

token and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

Measurement Description
Measurement
Unit

Interpretation

AvgGC invocation
duration

Indicates the average time
spent in garbage
collection.

Seconds A low value is desired for this
measure. A very high value or a
consistent increase in the value of this
measure is a cause for concern, as it
indicates that the garbage collector is
probably taking too long to complete
collections.

Since garbage collection often triggers
stop-the-world latencies in
applications, prolonged garbage
collection activities can adversely
impact application availability and
performance. In short, the longer GC
runs, poorer will be application
performance.

One way to reduceGC time, is to fine-

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

61

Measurement Description
Measurement
Unit

Interpretation

tune the configuration option called
GC Percentage at runtime. This is set
to 100 by default. This value
represents a ratio of how much new
heapmemory can be allocated before
the next collection has to start. Setting
the GC Percentage to 100means,
based on the amount of heapmemory
marked as live after a collection
finishes, the next collection has to
start at or before 100% more new
allocations are added to heapmemory.
You could decide to change theGC
Percentage value to something larger
than 100. This will increase the amount
of heapmemory that has to be
allocated before the next collection can
start, thus delaying the start of the next
collection.

On the flip side though, increasing the
GC percentage will slow down the
pace of the collector. The collector has
a pacing algorithm which is used to
determine when a collection is to start.
The algorithm depends on a feedback
loop that the collector uses to gather
information about the running
application and the stress the
application is putting on the heap.
Stress can be defined as how fast the
application is allocating heapmemory
within a given amount of time. It’s that
stress that determines the pace at
which the collector needs to run.

Onemisconception is thinking that
slowing down the pace of the collector
is a way to improve performance. In



Chapter 3: Moni toring the Kubernetes Cluster

62

Measurement Description
Measurement
Unit

Interpretation

reality though, application performance
truly improves only whenmore work is
getting done between collections or
during a collection. This can be
achieved only by reducing the amount
or the number of allocations any piece
of work is adding to heapmemory.

Increasing the GC percentage in fact,
increases the workload of collections
by addingmore to the heapmemory
after every collection. In the long run,
this may degrade application
performance than improve it.

OS threads created Indicates the number of
threads spawned by the
garbage collection
process.

Number A large value for this measure is
indicative of resource-intensive
garbage collections.

Goroutines Indicates the number of
Goroutines used for
garbage collection.

Number An unusually high value for this
measure could indicate that the
garbage collector is probably recruiting
application Goroutines as well to do
theMarking work on the collections.
This in turn could be because of of
Marking workloads that the collector is
unable to complete using just its
dedicated Goroutines. Such workloads
are usually imposed by applications
that consume heapmemory
significantly.

3.1.4 KubeMaster Services Test

Master components/servicesmake global decisions about the cluster (for example, scheduling), and
detect and respond to cluster events. These services are as follows:



Chapter 3: Moni toring the Kubernetes Cluster

63

l kube-apiserver: This exposes the Kubernetes API and front-ends the control pane.

l kube-scheduler: This watches newly created pods that have no node assigned, and selects a
node for them to run on.

l kube-controller-manager: This runs processes called controllers. These controllers include:

o Node controller:Responsible for noticing and responding when nodes go down.

o Replication controller: Responsible for maintaining the correct number of pods for every
replication controller object in the system.

o Endpoints controller:Populates the Endpoints object (that is, joins Services & Pods).

o Service Account and Token controllers: Creates default accounts and API access tokens for
new namespaces

l etcd: Consistent and highly-available key value store used as Kubernetes’ backing store for all
cluster data.

The failure of any of these services can be business-impacting! For instance, if the kube-scheduler is
not running, then pods will have no nodes to run on. Without the kube-controller-manager, cluster
state cannot bemanaged. Such anomalies can threaten the availability of the cluster and deny users
access to critical applications/services running on the cluster. To avoid this, administrators must
keep track of the state of each of themaster services. This is where, eG Enterprise helps!

Using the API Server Connectivity test, administrators can periodically check if the kube-api-
server service is running or not. With the help of theKube Master Services test, administrators can
keep tabs on the running state of the other master services, namely - the scheduler, the etcd, and the
controller-manager. If any of these services is down, then the Kube Master Services test promptly
alerts administrators to the failure of the corresponding service. This way, the test enables
administrators to rapidly troubleshoot the abnormal state of a critical master service, restore the
service to normalcy, and assure users of uninterrupted access to containerized business
applications.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes cluster beingmonitored



Chapter 3: Moni toring the Kubernetes Cluster

64

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

65

Parameter Description

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be



Chapter 3: Moni toring the Kubernetes Cluster

66

Parameter Description

available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

State Indicates the current state
of this service.

The values that this measure can report
and their corresponding numeric values
are listed in the table below:

Measure
Value

Numeric
Value

Running 1

Not Running 0

Unknown 2

If this measure reports the valueNot
Running orUnknown, then use the
detailed diagnosis of this measure to
determine why. You can also use the
/var/log/kube-scheduler.log file on the
master to troubleshoot issues with the
scheduler. Likewise, use the
/var/log/kube-controller-manager.log
file on themaster to troubleshoot
issues with the controller-manager.

Note:

By default, this measure reports the
Measure Values discussed above to
indicate the state of amaster service.
In the graph of this measure however,
the same is represented using the
numeric equivalents only.

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

67

3.1.5 The Kube Cluster Layer

Using the test mapped to this layer, you can:

l Understand the composition and receive an overview of the health of the Kubernetes cluster;

l Track the status of each of the nodes in a Kubernetes cluster, monitor resource allocations to
Pods and containers on each node, and identify overcommitted nodes;

l Determine whether/not the resource allocations to Pods/containers in each namespace align
with resource quota or LimitRange settings;

l Identify Persistent Volumes that are unbound, and those that have failed automatic
reclamation;

Figure 3.12: The tests mapped to the Kube Cluster layer

3.1.6 Kube Cluster Nodes Test

A node is a worker machine in Kubernetes. A nodemay be a VM or physical machine, depending on
the cluster. Each node contains the services necessary to run pods and is managed by the master
components. The services on a node include the container runtime, kubelet and kube-proxy.

A node's status contains information such as the addresses (hostname, external IP address, internal
IP address of the node), conditions describing the status of running nodes, the total resource
capacity of the node and the usable (allocatable) capacity, and general information pertaining to the
node (eg., kernel version, Kubernetes version etc.).



Chapter 3: Moni toring the Kubernetes Cluster

68

Nodes are automatically managed by the Node controller. If a node is unreachable beyond a
configured duration, then the node controller automatically deletes all the Pods on that node.
However, sometimes, manual administration/management of nodes may become necessary. For
instance, administrators may have to manually delete unreachable node objects, if the node
controller is unable to do so. Likewise, if a node is to be rebooted, then the administrator will have to
manuallymark that node as "unschedulable", so that new Pods do not get scheduled to that node.

While the Node controller manages the node 'condition', the Kubernetes scheduler manages Pod
placements by automatically comparing the resource requirement of the containers in the Pods with
the total and allocatable resource capacity of the nodes, and scheduling Pods on those nodes that fit
their resource profile. Sometimes, a nodemay run Pods that oversubscribe to the node's resources -
i.e., the sum of limits of the containers on the node may exceed the total resource capacity of the
node. In an overcommitted environment, it is possible that the Pods on the node will attempt to use
more compute resource than is available at any given point in time. If this happens, it can degrade
the performance of containerized applications, as you may have a single Pod hogging the node's
resources! Administratorsmay hence want to be promptly alerted to a resource overcommitment, so
they can quickly identify which Pod is guilty of overcommitment and determine how resource
allocations and usage priorities can be tweaked to ensure performance does not suffer! Additionally,
administrators may also want to track resource usage across containers on a node, so they can
proactively isolate a potential resource contention and instantly initiate pre-emptive action. The
Kube Cluster Nodes test does all this andmore!

The test auto-discovers the nodes in a Kubernetes cluster and clearly distinguishes between the
master nodes and the workers. The test then monitors the condition of each node and points
administrators to those nodes whose condition is 'unhealthy' or have been marked as
'unschedulable'. Additionally, the test reports the total CPU and memory capacity of every node,
tracks the sum of resource requests/limits of the containers on each node, and accurately pinpoints
those nodes where containers have oversubscribed to the node's capacity. Detailed diagnostics of
the test lead administrators to the exact Pods that have oversubscribed to the node's resources.
With the help of this information, administrators may decide to resize containers or reset resource
usage priorities of containers, so that cluster performance is not compromised. Furthermore, the test
reveals the percentage of a node's resources that are being utilized by the containers, thereby
warning administrators of a probable contention for resources on a node.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each node in the Kubernetes cluster beingmonitored



Chapter 3: Moni toring the Kubernetes Cluster

69

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure
2.3). The steps for managing the cluster using the eG admin interface are discussed
elaborately inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

70

Parameter Description

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, when
manually adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy
server to connect to the Kubernetes cluster, and that proxy server
requires authentication. In this case, provide a valid user name and password
against theProxy Username andProxy Password parameters, respectively. Then,
confirm the password by retyping it in theCONFIRM PASSWORD text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:1. This indicates that, by default, detailedmeasures will be
generated every third time this test runs, and also every time the test detects a
problem. You canmodify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:



Chapter 3: Moni toring the Kubernetes Cluster

71

Parameter Description

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Status Indicates whether/not
this node is running.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Running 1

Not running 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the state of a node. In the graph of this
measure however, the state is indicated
using the numeric equivalents only.

In the event that this measure reports the
valueNot running orUnknown for a node,
then you can use the detailed diagnosis of
this measure to know the reason for the
abnormal status.

Is node
unschedulable?

Indicates whether/not
this node is
unschedulable.

By default, healthy nodes with aReady
status aremarked as schedulable, meaning
that new pods are allowed for placement on
the node. Manually marking a node as
unschedulable blocks any new pods from
being scheduled on the node. Typically,
nodes from which Pods need to be
migrated/evacuated are candidates for

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

72

Measurement Description Measurement
Unit Interpretation

beingmarked as 'unschedulable' status.
Sometimes, nodes that have been
unhealthy for a long time are also set as
'unschedulable'.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node has beenmanually set
as unschedulable. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Maintenancemode Indicates whether/not
this node is in the
maintenancemode.

By putting a node intomaintenancemode,
all existing workloads will be restarted on
other nodes to ensure availability, and no
new workloads will be started on the node.
Maintenancemode allows you to perform
operations such as security updates or
rebootingmachines without the loss of
availability.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Enabled 1

Disabled 0



Chapter 3: Moni toring the Kubernetes Cluster

73

Measurement Description Measurement
Unit Interpretation

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node is in themaintenance
mode. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

Age Indicates how old this
node is.

The value of this measure is expressed in
number of days, hours, andminutes.

Use the detailed diagnosis of this measure
to know more about a particular node.

Is node network
available?

Indicates whether/not
the network of this node
is correctly configured.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the availability of a node's network. In the
graph of this measure however, the same is
indicated using the numeric equivalents
only.

If this measure reports the valueYes for a
node - i.e., if the network of a node is
indeed unavailable - then you can use the
detailed diagnosis of this measure to figure
out the reason for the unavailability.

Is node out of disk? Indicates whether/not
there is insufficient free
disk space on this node

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:



Chapter 3: Moni toring the Kubernetes Cluster

74

Measurement Description Measurement
Unit Interpretation

for adding new Pods. Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node has run out of disk
space. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the valueYes for a
node - i.e., if a node has indeed run out of
free disk space - then you can use the
detailed diagnosis of this measure to figure
out the reason for the anomaly.

Does node have
memory pressure?

Indicates whether/not
this node is running low
onmemory.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node has sufficient memory.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the valueYes for a
node - i.e., if a node is running out of



Chapter 3: Moni toring the Kubernetes Cluster

75

Measurement Description Measurement
Unit Interpretation

memory - then you can use the detailed
diagnosis of this measure to figure out the
reason for the anomaly.

Does node have
disk pressure?

Indicates whether/not
this node's disk
capacity is low.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node is low on disk capacity.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the valueYes for a
node - i.e., if a node is low on disk capacity
- then you can use the detailed diagnosis of
this measure to figure out the reason for the
anomaly.

Is node under
PID pressure?

Indicates whether/not
toomany processes
are running on the node.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure



Chapter 3: Moni toring the Kubernetes Cluster

76

Measurement Description Measurement
Unit Interpretation

Values listed in the table above to indicate
whether/not a node is under PID pressure.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the valueYes for a
node - i.e., if toomany processes are
running on a node - then you can use the
detailed diagnosis of this measure to figure
out the reason for the anomaly.

Is node ready? Indicates whether/not a
node is healthy and
ready to accept Pods.

This measure reports the valueYes, if a
node is healthy and is ready to accept
Pods. The valueNo is reported if a node is
not healthy and is not accepting Pods. The
valueUnknown is reported if the node
controller has not heard from the node in the
last node-monitor-grace-period (default
is 40 seconds).

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node is under PID pressure.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

If this measure reports the valueNo or
Unknown for a node, then you can use the



Chapter 3: Moni toring the Kubernetes Cluster

77

Measurement Description Measurement
Unit Interpretation

detailed diagnosis of this measure to figure
out the reason for the anomaly.

Total CPUs Indicates the total CPU
capacity of this node, in
terms of the number of
CPU cores it supports.

Number

Memory capacity Indicates the total
memory capacity of
this node.

GB

Pods capacity Indicates themaximum
number of Pods that
can be scheduled on
this node.

Number

Running pods Indicates the number of
Pods currently running
on this node.

Number If the value of this measure for a node is
equal to or is growing closer to the value of
the Pods capacity measure, it indicates
that that node has or is about to exhaust its
Pod capacity.

You can use the detailed diagnosis of this
measure to know which Pods are running
on the node and which containers are
running within each Pod.

Pods percent Indicates the
percentage of the Pod
capacity of this node
that is currently being
utilized.

Percent The formula used to compute the value of
this measure is as follows:

(Running pods/Pods capacity)*100

A value equal to or close to 100% indicates
that the node has or is about to exhaust its
Pod capacity. In such circumstances, you
may want to consider increasing the Pod
capacity of the node or freeing the node of
unused/inactive Pods.

Total containers Indicates the total
number of containers
running on this node.

Number To know which containers are running on
the node, use the detailed diagnosis of this
measure.

CPU capacity Indicates the CPU Millicpu



Chapter 3: Moni toring the Kubernetes Cluster

78

Measurement Description Measurement
Unit Interpretation

capacity of this node.

CPU limits Indicates the total
amount of CPU
resources that
containers on this node
are allowed to use.

Millicpu The value of this measure is the sum of
CPU limits set for the individual containers
across all the Pods running on this node.

If the value of this measure is greater than
the value of theCPU capacitymeasure, it
could mean that one/more Pods have
oversubscribed to the node's CPU
capacity.

CPU requests Indicates theminimum
amount of CPU
resources guaranteed
to all the containers on
this node.

Millicpu The value of this measure is the sum of
CPU requests configured for the individual
containers across all the Pods running on
this node.

Memory limits Indicates the total
amount of memory
resources that
containers on this node
are allowed to use.

GB The value of this measure is the sum of
memory limits set for the individual
containers across all the Pods running on
this node.

If the value of this measure is greater than
the value of theMemory capacity
measure, it could mean that one/more Pods
have oversubscribed to the node's memory
capacity.

Memory requests Indicates theminimum
amount of memory
resources guaranteed
to all the containers on
this node.

GB The value of this measure is the sum of
memory requests configured for the
individual containers across all the Pods
running on this node.

CPU limits
allocation

Indicates what
percentage of the
capacity of this node is
allocated as CPU limits
to containers. In other
words, this is the
percentage of a node's
CPU capacity that the
containers on that node

Percent The formula used for computing this
measure is as follows:

(CPU limits/CPU capacity)*100

If the value of this measure exceeds 100%,
it means that the node is overcommitted. In
other words, it means that the Pods on the
node have been allowed to usemore
resources than the node's capacity. In such



Chapter 3: Moni toring the Kubernetes Cluster

79

Measurement Description Measurement
Unit Interpretation

are allowed to use. a situation, youmay want to look up the
detailed diagnostics of this measure to
identify the Pods that are contributing to the
overcommitment.

Memory limits
allocation

Indicates what
percentage of the
memory capacity of
this node is allocated
as memory limits to
containers. In other
words, this is the
percentage of a node's
memory capacity that
the containers on that
node are allowed to
use.

Percent The formula used for computing this
measure is as follows:

(Memory limits/Memory capacity)*100

If the value of this measure exceeds 100%,
it means that the node is overcommitted. In
other words, it means that the Pods on the
node have been allowed to usemore
resources than the node's capacity. In such
a situation, youmay want to look up the
detailed diagnostics of this measure to
identify the Pods that are contributing to the
overcommitment.

CPU requests
allocation

Indicates what
percentage of the total
CPU capacity of this
node is set as CPU
requests for the
containers on that
node. In other words,
this is the percentage of
a node's CPU capacity
that the containers on
that node are
guaranteed to receive.

Percent The formula used for computing this
measure is as follows:

(CPU requests/CPU capacity)*100

Compare the value of this measure across
nodes to know which node has been
guaranteed themaximum CPU resources.
You can even use the detailed diagnosis of
this measure to identify the specific Pods in
that node with themaximum CPU
requests.

Memory requests
allocation

Indicates what
percentage of the total
memory capacity of
this node is set as
memory requests for
the containers on that
node. In other words,
this is the percentage of
a node's memory

Percent The formula used for computing this
measure is as follows:

(Memory requests/Memory
capacity)*100

Compare the value of this measure across
nodes to know which node has been
guaranteed themaximummemory
resources. You can even use the detailed
diagnosis of this measure to identify the



Chapter 3: Moni toring the Kubernetes Cluster

80

Measurement Description Measurement
Unit Interpretation

capacity that the
containers on that node
are guaranteed to
receive.

specific Pods in that node with the
maximummemory requests.

CPU allocation
overcommited

Indicates whether/not
this node is
overcommitted in terms
of CPU resources.

If the CPU limits allocationmeasure
reports a value greater than 100% for a
node, then this measure will report the
value True for that node. This implies that
the node's CPU resources are
overcommitted. On the other hand, if the
CPU limits allocationmeasure of a node
reports a value lesser than 100%, then this
measure will report the value False for that
node. This implies that the node's CPU
resources are not overcommitted.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

True 1

False 0

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node's CPU resources are
overcommitted. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

In an overcommitted environment, it is
possible that the Pods on the node will
attempt to usemore compute resource than
is available at any given point in time. To
know which Pods are usingmore resources
than the node's capacity, use the detailed
diagnosis of this measure.



Chapter 3: Moni toring the Kubernetes Cluster

81

Measurement Description Measurement
Unit Interpretation

When an overcommitment occurs, the
nodemust give priority to one Pod over
another. The facility used tomake this
decision is referred to as aQuality of
Service (QoS) Class. By assigning a
QOS class to each container,
administrators canmake sure that the
performance of mission-critical applications
does not suffer owing to insufficient
resources.

For each compute resource, a container is
divided into one of three QoS classes with
decreasing order of priority:

l Priority 1 (highest) - Guaranteed - If

limits and optionally requests are set

(not equal to 0) for all resources and they

are equal, then the container is classified

as Guaranteed. Guaranteed containers

are considered top priority, and are

guaranteed to only be terminated if they

exceed their limits, or if the system is

under resource pressure and there are no

lower priority containers that can be

evicted.

l Priority 2 - Burstable - If requests and

optionally limits are set (not equal to 0)

for all resources, and they are not equal,

then the container is classified as

Burstable. Burstable containers under

resource pressure aremore likely to be

terminated once they exceed their

requests and no other BestEffort

containers exist.



Chapter 3: Moni toring the Kubernetes Cluster

82

Measurement Description Measurement
Unit Interpretation

l Priority 3 (lowest) - BestEffort - If

requests and limits are not set for any of

the resources, then the container is

classified as BestEffort. BestEffort

containers are treated with the lowest

priority. Processes in these containers

are first to be terminated if the system

runs out of resources.

Administrators can also control the level of
overcommit andmanage container density
on nodes. For this, masters can be
configured to override the ratio between
request and limit set on developer
containers. In conjunction with a per-project
LimitRange specifying limits and defaults,
this adjusts the container limit and request
to achieve the desired level of overcommit.

Memory allocation
overcommitted

Indicates whether/not
this node is
overcommitted in terms
of memory resources.

If theMemory limits allocationmeasure
reports a value greater than 100% for a
node, then this measure will report the
value True for that node. This implies that
the node's memory resources are
overcommitted. On the other hand, if the
Memory limits allocationmeasure of a
node reports a value lesser than 100%,
then this measure will report the value
False for that node. This implies that the
node's memory resources are not
overcommitted.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value



Chapter 3: Moni toring the Kubernetes Cluster

83

Measurement Description Measurement
Unit Interpretation

True 1

False 0

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a node's memory resources
are overcommitted. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

In an overcommitted environment, it is
possible that the Pods on the node will
attempt to usemore compute resource than
is available at any given point in time. To
know which Pods may attempt to usemore
resources than the node's capacity, use the
detailed diagnosis of this measure.

When an overcommitment occurs, the
nodemust give priority to one pod over
another. The facility used tomake this
decision is referred to as aQuality of
Service (QoS) Class. By assigning a
QOS class to each container,
administrators canmake sure that the
performance of mission-critical applications
does not suffer owing to insufficient
resources.

For each compute resource, a container is
divided into one of three QoS classes with
decreasing order of priority:

l Priority 1 (highest) - Guaranteed - If

limits and optionally requests are set

(not equal to 0) for all resources and they

are equal, then the container is classified

as Guaranteed. Guaranteed containers



Chapter 3: Moni toring the Kubernetes Cluster

84

Measurement Description Measurement
Unit Interpretation

are considered top priority, and are

guaranteed to only be terminated if they

exceed their limits, or if the system is

under resource pressure and there are no

lower priority containers that can be

evicted.

l Priority 2 - Burstable - If requests and

optionally limits are set (not equal to 0)

for all resources, and they are not equal,

then the container is classified as

Burstable. Burstable containers under

resource pressure aremore likely to be

terminated once they exceed their

requests and no other BestEffort

containers exist.

l Priority 3 (lowest) - BestEffort - If

requests and limits are not set for any of

the resources, then the container is

classified as BestEffort. BestEffort

containers are treated with the lowest

priority. Processes in these containers

are first to be terminated if the system

runs out of resources.

Administrators can also control the level of
overcommit andmanage container density
on nodes. For this, masters can be
configured to override the ratio between
request and limit set on developer
containers. In conjunction with a per-project
LimitRange specifying limits and defaults,
this adjusts the container limit and request
to achieve the desired level of overcommit.



Chapter 3: Moni toring the Kubernetes Cluster

85

Measurement Description Measurement
Unit Interpretation

Total images Indicates the total
number of images on
this node.

Number Use the detailed diagnosis of this measure
to know which images are on the node.

Used images Indicates the total
number of images
currently used by the
containers on this node.

Number To view the used images, use the detailed
diagnosis of this measure.

Not used images Indicates the number of
images still to be used
by the containers on
this node.

Number To view the unused images, use the
detailed diagnosis of this measure.

Images size Indicates the total size
of images on this node.

GB

Node type Indicates the node
type.

A node can be aMaster node or aWorker
node in a cluster. A cluster has at least one
worker node and at least onemaster
node.The worker node(s) host the pods that
are the components of the application. The
master node(s) manages the worker nodes
and the pods in the cluster. Multiple master
nodes are used to provide a cluster with
failover and high availability.

If a node is themaster node in a cluster,
then this measure will report the value
Master. For a worker node, this measure
will report the valueWorker.

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Master 1

Worker 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate



Chapter 3: Moni toring the Kubernetes Cluster

86

Measurement Description Measurement
Unit Interpretation

the node type. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

CPU usage Indicates the amount of
CPU resources used
by this node.

Millicpu Ideally, the value of this measure should be
much lesser than the value of theCPU
capacitymeasure. If the value of this
measure is equal to or is rapidly
approaching the value of theCPU capacity
measure, it means that the node is running
out of CPU resources.

CPU utilization Indicates the
percentage of CPU
resources utilized by
this node.

Percent A value close to 100% is indicative of
excessive CPU usage by a node, and hints
at a potential CPU contention on the node.

A value greater than 100% implies that
one/more Pods have probably over-
subscribed to the node's capacity.

To know which Pod on the node is
contributing to the
contention/overcommitment, use the
detailed diagnosis of this measure.

Memory usage Indicates the amount of
memory resources
used by this node.

Millicpu Ideally, the value of this measure should be
much lesser than the value of theMemory
capacitymeasure. If the value of this
measure is equal to or is rapidly
approaching the value of theMemory
capacitymeasure, it means that the node
is running out of memory resources.

Memory utilization Indicates the
percentage of memory
resources utilized by
this node.

Percent A value close to 100% is indicative of
excessivememory usage by a node, and
signals a potential memory contention on
the node.

A value greater than 100% implies that
one/more Pods have probably over-
subscribed to the node's capacity.

To know which Pod on the node is
contributing to the



Chapter 3: Moni toring the Kubernetes Cluster

87

Measurement Description Measurement
Unit Interpretation

contention/overcommitment, use the
detailed diagnosis of this measure.

The detailed diagnosis of theRunning podsmeasure reveals which Pods are running on the node
and which containers are running within each Pod.

Figure 3.13: The detailed diagnosis of the Running pods measure

The detailed diagnosis of the Total containersmeasure reveals the names of containers running on
a node, the Pod to which each container belongs, and the namespace to which the Pod belongs.

Figure 3.14: The detailed diagnosis of the Total containers measure

If the CPU limits allocation measure reports a value over 100%, it indicates an overcommitment of
CPU resources on the node. In such a situation, you can use the detailed diagnostics of this
measure to identify the Pods that are contributing to the overcommitment.

Figure 3.15: The detailed diagnosis of the CPU limits allocationmeasure



Chapter 3: Moni toring the Kubernetes Cluster

88

Using the detailed diagnosis of the CPU requests allocation measure, you can quickly identify the
specific Pods on the node with themaximumCPU requests. In the event of a CPU contention on the
node, this information will lead you to the exact Pod that is hogging CPU resources.

Figure 3.16: The detailed diagnosis of the CPU requests allocationmeasure

If the Memory limits allocation measure reports a value over 100%, it indicates an overcommitment
of memory resources on the node. In such a situation, you can use the detailed diagnostics of this
measure to identify the Pods that are contributing to the overcommitment.

Figure 3.17: The detailed diagnosis of theMemory limits allocationmeasure

Using the detailed diagnosis of theMemory requests allocationmeasure, you can quickly identify the
specific Pods on the node with the maximummemory requests. In the event of a memory contention
on the node, this information will lead you to the exact Pod that is hoggingmemory resources.

Figure 3.18: The detailed diagnosis of theMemory requests allocationmeasure

3.1.7 Kube Cluster Overview Test

A Kubernetes cluster is a set of machines, called nodes, that run containerized applications
managed by Kubernetes. A cluster has at least one worker node and at least onemaster node.

The worker node(s) host the pods that are the components of the application. The master node(s)
manages the worker nodes and the pods in the cluster. Multiple master nodes are used to provide a
cluster with failover and high availability.



Chapter 3: Moni toring the Kubernetes Cluster

89

The kube-scheduler schedules Pods to a node, based on the resource capacity of the node and the
resource requirements of the containers in the Pods. To ensure that no Pod hogs the node's
resources, resource requests and limits can be set per container.

At any given point in time, an administrator needs to have a macro view of the composition of
their Kubernetes cluster - i.e., the number of nodes and Pods in the cluster - and the operational
state of the nodes and Pods. This will help them quickly spot nodes and Pods that have failed - i.e., it
will help them quickly detect a mismatch between the actual state of the cluster and its desired state.
By taking appropriate action on suchmismatches, administrators can prevent any adverse impact on
the availability and performance of containerized applications. Additionally, administrators also need
to track how the Pods are utilizing the cluster's compute resources. This way, they can proactively
detect probable resource contentions / over-subscriptions, and rapidly initiate measures to right-size
the cluster components (i.e., Pods and containers), so that application performance is not affected
by resource crunches. Administrators also require an overview of Deployments across the cluster,
so that they can easily locate problem areas. The Kube Cluster Overview test provides
administrators with all these useful high-level insights!

This test monitors a Kubernetes cluster, reports the total count of nodes in the cluster, and also
precisely pinpoints the master and worker nodes of the cluster. The test also tracks the Pod capacity
of the cluster alongside Pod allocations, and additionally highlights Pods and nodes in an abnormal
state. This enables administrators to rapidly detect any glaring mismatch between the desired state
and actual state of the cluster and initiate appropriate remedial measures. Furthermore, the test
reveals how the Pods in the cluster are utilizing the cluster's compute resource capacity. In the
process, the test brings to light irregularities such as resource over- subscription and
current/potential resource contention. Detailed diagnostics provided by the test lead administrators
to the exact Pods that are hogging cluster resources, or have been poorly sized. This way, the test
points administrators to those Pods for which resource allocations need to be fine-tuned to ensure
optimal cluster performance. In addition, the test helps administrators easily compare the desired
state of Deployments with the actual state, so that they can instantly capture and resolve
discrepancies (if any).

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for the Kubernetes cluster beingmonitored



Chapter 3: Moni toring the Kubernetes Cluster

90

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

91

Parameter Description

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:



Chapter 3: Moni toring the Kubernetes Cluster

92

Parameter Description

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Total nodes Indicates the total
number of nodes in the
cluster.

Number

Master nodes Indicates the count of
master nodes in the
cluster.

Number Use the detailed diagnosis of this
measure to know which are themaster
nodes in the cluster.

Worker nodes Indicates the number of
worker nodes in the
cluster.

Number Use the detailed diagnosis of this
measure to know which are the worker
nodes in the cluster.

Nodes added to
cluster

Indicates the number of
nodes that were added
to the cluster since the
last measurement
period.

Number Use the detailed diagnosis of this
measure to know which nodes were
recently added to the cluster.

Nodes removed
from cluster

Indicates the number of
nodes that were
removed from the cluster
since the last
measurement period.

Number Use the detailed diagnosis of this
measure to know which nodes were
recently removed from the cluster.

Running nodes Indicates the number of
nodes in the cluster that
are currently running.

Number

Not running nodes Indicates the number of
nodes in the cluster that
are not running
presently.

Number Use the detailed diagnosis of this
measure to know which nodes are not
running and why.

Unknown nodes Indicates the number of
nodes in the cluster that

Number Use the detailed diagnosis of this
measure to know which nodes are in an

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

93

Measurement Description Measurement
Unit Interpretation

are in the Unknown
presently.

Unknown state and why.

Pods capacity Indicates themaximum
number of Pods that can
be created on the nodes
in the cluster.

Number

Allocated pods Indicates the number of
Pods that have been
scheduled to nodes in
the cluster.

Number If the value of this measure is equal to or
close to the value of thePods capacity
measure, it indicates that the cluster has
or is about to exhaust its capacity. In
such a situation, youmay want to add
more nodes to your cluster or increase
the Pod capacity of your cluster.

Running pods Indicates the number of
Pods in the cluster that
are in the Running state
currently.

Number If a Pod is in the Running state, it means
that the Pod has been bound to a node,
and all of the Containers have been
created. At least one Container is still
running, or is in the process of starting or
restarting.

Use the detailed diagnosis of this
measure to know which Pods are in the
Running state.

Pending pods Indicates the number of
Pods in the cluster that
are in the Pending state
currently.

Number If a Pod is in the Pending state, it means
that the Pod has been accepted by the
Kubernetes system, but one or more of
the Container images has not been
created. This includes time before being
scheduled as well as time spent
downloading images over the network,
which could take a while.

If a pod is stuck in Pending it means that
it can not be scheduled onto a node.
Generally this is because there are
insufficient resources of one type or
another that prevent scheduling. If this is
the case, do the following:



Chapter 3: Moni toring the Kubernetes Cluster

94

Measurement Description Measurement
Unit Interpretation

l Addmore nodes to the cluster.

l Terminate unneeded pods tomake

room for pending pods.

l Check that the pod is not larger than

your nodes. For example, if all nodes

have a capacity of cpu:1, then a pod

with a request of cpu: 1.1 will never

be scheduled.

Use the detailed diagnosis of this
measure to know which Pods are in the
Pending state.

Succeeded pods Indicates the number of
Pods in the cluster that
are in the Succeeded
state currently.

Number If a Pod is in the Succeeded state, it
means that all Containers in the Pod
have terminated in success, and will not
be restarted.

Failed pods Indicates the number of
Pods in the cluster that
are in the Failed state
currently.

Number If a Pod is in the Failed state, it means
that all Containers in the Pod have
terminated, and at least one Container
has terminated in failure. That is, the
Container either exited with non-zero
status or was terminated by the system.

Use the detailed diagnosis of this
measure to know which Pods are in the
Failed state.

Ideally, the value of this measure should
be 0.

Unknown pods Indicates the number of
Pods in the cluster that
are in the Unknown state
currently.

Number If a Pod is in the Unknown state, it
means that the state of the Pod could
not be obtained, probably due to an error
in communicating with the host of the
Pod.

Ideally, the value of this measure should
be 0.



Chapter 3: Moni toring the Kubernetes Cluster

95

Measurement Description Measurement
Unit Interpretation

Running pods
utilization

Indicates the percentage
of Pods in the cluster
that are in a Running
state currently.

Percent The formula used for computing this
measure is as follows:

[Running pods/Pods capacity]*100

Ideally, the value of this measure should
be high.

Total CPUs Indicates the total
number of CPU cores
supported by the cluster.

Number

CPU capacity Indicates the total CPU
capacity of the cluster.

Millicpu

CPU requests Indicates theminimum
CPU resources
guaranteed to the Pods
in the cluster.

Millicpu This is the sum of CPU requests
configured for all containers in all Pods
across nodes in the cluster.

A request is the amount of that resource
that the system will guarantee to a Pod.

CPU limits Indicates that maximum
amount of CPU
resources that the Pods
in the cluster can use.

Millicpu This is the sum of CPU limits set for all
containers in all Pods across nodes in
the cluster.

A limit is themaximum amount that the
system will allow the Pod to use.

CPU limits
allocation

Indicates what
percentage of the CPU
capacity of the cluster is
allocated as CPU limits
to containers. In other
words, this is the
percentage of a cluster's
CPU capacity that the
containers are allowed to
use.

Percent The formula used for computing this
measure is as follows:

(CPU limits/CPU capacity)*100

If the value of this measure exceeds
100%, it means that one/more Pods are
probably over-subscribing to the
capacity of one/more nodes.

CPU requests
allocation

Indicates what
percentage of the total
CPU capacity of the
cluster is set as CPU
requests for the

Percent The formula used for computing this
measure is as follows:

(CPU requests/CPU capacity )*100

If the value of this measure is unusually



Chapter 3: Moni toring the Kubernetes Cluster

96

Measurement Description Measurement
Unit Interpretation

containers in the cluster.
In other words, this is
the percentage of a
cluster's CPU capacity
that the containers on
the cluster are
guaranteed to receive.

high, then you can use the detailed
diagnosis of this measure to review the
CPU requests configured for each Pod
in the cluster. In the process, you can
accurately identify the Pod for which the
maximum amount of CPU resources in
the cluster is guaranteed - i.e., the Pod
that is hogging the CPU capacity of the
cluster.

Memory capacity Indicates the total
memory capacity of the
cluster.

GB

Memory requests Indicates theminimum
memory resources
guaranteed to the Pods
in the cluster.

GB This is the sum of memory requests
configured for all containers in all Pods
across nodes in the cluster.

A request is the amount of that resource
that the system will guarantee to the
Pod.

Memory limits Indicates themaximum
amount of memory
resources that the Pods
in the cluster can use.

GB This is the sum of memory limits set for
all containers in all Pods across nodes in
the cluster.

A limit is themaximum amount that the
system will allow the Pod to use.

Memory limits
allocation

Indicates what
percentage of the
memory capacity of the
cluster is allocated as
memory limits to
containers in the cluster.
In other words, this is
the percentage of a
cluster's memory
capacity that the
containers on the cluster
are allowed to use.

Percent The formula used for computing this
measure is as follows:

(Memory limits/Memory
capacity)*100

If the value of this measure exceeds
100%, it means that one/more Pods are
probably over-subscribing to the
capacity of one/more nodes in the
cluster.

Memory requests
allocation

Indicates what Percent The formula used for computing this
measure is as follows:



Chapter 3: Moni toring the Kubernetes Cluster

97

Measurement Description Measurement
Unit Interpretation

percentage of the total
memory capacity of the
cluster is set as memory
requests for the
containers in the cluster.
In other words, this is
the percentage of a
cluster's memory
capacity that the
containers in the cluster
are guaranteed to
receive.

(Memory requests/Memory
capacity)*100

If the value of this measure is unusually
high, then you can use the detailed
diagnosis of this measure to review the
memory requests configured for each
Pod in the cluster. In the process, you
can accurately identify the Pod for which
themaximum amount of memory
resources in the cluster is guaranteed -
i.e., the Pod that is hogging thememory
capacity of the cluster.

Total pods with
updated deployment

Indicates the total
number of non-
terminated Pod replicas
in the cluster that have
been updated with
changes (if any) made to
Pod template
specifications.

Number Typically, whenever changes aremade
to a Deplopyment's Pod template - say,
labels or container images of the
template are changed - then a
Deployment rollout is triggered. A new
ReplicaSet is created and the
Deployment manages moving the Pods
from the old ReplicaSet to the new one
at a controlled rate.

Ideally, the value of this measure should
be the same as the value of the Total
pods with deploymentmeasure. If not,
then it means that the desired number of
Pod replicas are not yet fully updated
with the changes to the Pod template.

Ready pods with
deployment

Indicates the number of
ready Pods created in
the cluster across
Deployments.

Number

Total available pods
with deployment

Indicates the number of
available Pods created
in the cluster across
Deployments.

Number A Pod is said to be Available, if it is
ready without any containers crashing
for at least the duration configured
against minReadySeconds in the Pod
specification.

Ideally, the value of this measure should



Chapter 3: Moni toring the Kubernetes Cluster

98

Measurement Description Measurement
Unit Interpretation

be the same as the value of the Total
pods with deploymentmeasure. This
means that the desired state of the
Deployments is not the same as their
actual state.

Total unavailable
pods with
deployment

Indicates the total
number of unavailable
Pods created in the
cluster across
Deployments.

Number Any Pod that is not ready, or is ready but
has containers crashing for a period of
time beyond theminReadySeconds
duration, is automatically considered
Unavailable.

Ideally, the value of this measure should
be 0. If this measure reports a non-zero
value or a value equal to or close to the
value of the Total pods with
deploymentmeasure, it means that the
desired state of the Deployments is not
the same as their actual state.

Use the detailed diagnosis of theMaster nodesmeasure to know which are themaster nodes in the
cluster.

Figure 3.19: The detailed diagnosis of theMaster nodes measure

Use the detailed diagnosis of theWorker nodesmeasure to know which are the worker nodes in the
cluster.

Figure 3.20: The detailed diagnosis of theWorker nodes measure



Chapter 3: Moni toring the Kubernetes Cluster

99

Use the detailed diagnosis of theNodes added to clustermeasure to know which nodeswere
recently added to the cluster.

Figure 3.21: The detailed diagnosis of the Nodes added to cluster measure

Use the detailed diagnosis of theNodes removed from clustermeasure to know which nodeswere
recently removed from the cluster.

Figure 3.22: The detailed diagnosis of the Nodes removed from cluster measure

Use the detailed diagnosis of theNodes not runningmeasure to know which nodes are not running
and why.

Figure 3.23: The detailed diagnosis of the Nodes not runningmeasure

Use the detailed diagnosis of theUnknown nodesmeasure to know which nodes are in an Unknown
state and why.

Figure 3.24: The detailed diagnosis of the Unknown nodes measure



Chapter 3: Moni toring the Kubernetes Cluster

100

Use the detailed diagnosis of theRunning podsmeasure to know which Pods are in the Running
state and which node each running Pod is scheduled to.

Figure 3.25: The detailed diagnosis of the Running pods measure reported by the Kube Cluster Overview test

Use the detailed diagnosis of thePending podsmeasure to know which Pods are in the Pending
state and which node each pending Pod is scheduled to.

Figure 3.26: The detailed diagnosis of the Pending pods measure reported by the Kube Cluster Overview test

If the value of theCPU requests allocationmeasure is unusually high, then you can use the detailed
diagnosis of thismeasure to review the CPU requests configured for each Pod in the cluster. In the
process, you can accurately identify the Pod that is guaranteed to receive themaximumamount of
CPU resources in the cluster - i.e., the Pod that is hogging the CPU capacity of the cluster.



Chapter 3: Moni toring the Kubernetes Cluster

101

Figure 3.27: The detailed diagnosis of the CPU requests allocationmeasure reported by the Kube Cluster
Overview test

If the value of theMemory requests allocationmeasure is unusually high, then you can use the
detailed diagnosis of thismeasure to review thememory requests configured each Pod in the
cluster. In the process, you can accurately identify the Pod that is guaranteed to receive the
maximumamount of memory resources in the cluster - i.e., the Pod that is hogging thememory
capacity of the cluster.

Figure 3.28: The detailed diagnosis of theMemory request allocationmeasure reported by the Kube Cluster
Overview test

3.1.8 Kube Namespaces Test

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual
clusters are called namespaces.

Namespaces are intended for use in environments with many users spread across multiple teams,
or projects. Namespaces are a way to divide cluster resources between multiple users (via resource
quota). A resource quota, defined by a ResourceQuota object, provides constraints that limit
aggregate resource consumption per namespace. It can limit the API resources - i.e., the quantity of
objects (eg., pods, services, deployments etc.) that can be created in a namespace , as well as the



Chapter 3: Moni toring the Kubernetes Cluster

102

total amount of compute resources - i.e., CPU and memory - that may be consumed by the API
resources in that namespace.

If quota is enabled in a namespace for compute resources like CPU andmemory, usersmust specify
requests and/or limits for those values. A request is the amount of that resource that the system will
guarantee to the namespace, and a limit is the maximum amount that the system will allow the
namespace to use. Typically, within a namespace, a Pod or Container can consume as much CPU
and memory as defined by the namespace’s resource quota. You can also define compute resource
usage limits for individual containers, during their creation. However, to ensure that no single
pod/container in a namespace hogs the resources of that namespace, you can define a Limit Range.
Limit Range is a policy to constrain resource by Pod or Container in a namespace. A limit range
provides constraints that can:

l Enforce minimum and maximum compute resources usage per Pod or Container in a
namespace.

l Enforceminimumandmaximum storage request per PersistentVolumeClaim in a namespace.

l Enforce a ratio between request and limit for a resource in a namespace.

l Set default request/limit for compute resources in a namespace and automatically inject them to
Containers at runtime. The default requests/limits will apply to those containers for which requests
and/or limits have not been specifically defined.

If creating or updating an API resource in a namespace violates a quota constraint / limit range, then
that create/update request will fail. For instance, say a namespace is configured with a resource
quota that restricts the number of Pods that can be created in that namespace to 2. In this case, if the
creation of a third Pod is attempted within that namespace, then the pod creation will fail. Likewise, if
you are attempting to create a container with a memory limit of 2Gi within a namespace that has a
resource quota constraint of 1Gi, then Kuberneteswill not allow the container to be created. This can
eventually result in a mismatch between the cluster's desired state and its actual state. To avoid this,
administrators must first be well- aware of the resource request/limit that has been set per
namespace and also for the pods and containers in each namespace. Then, administrators should
track how the containers in each namespace are using the allocated compute resources, and
determine whether any namespace is likely to violate its quota, well before an actual violation
happens. The Kube Namespaces enables administrators to pre-empt any adverse impact to cluster
health bymonitoring namespaces, their quota definitions, and their resource usage! 

This test auto-discovers the namespaces configured in a Kubernetes cluster, and reports the current
state of each namespace, thus bringing inactive/terminating namespaces to light. Additionally, the
test also reports the request/limit settings for each namespace and the requests/limits that apply to
the pods and the containers in every namespace. Furthermore, the test also measures how much of



Chapter 3: Moni toring the Kubernetes Cluster

103

the allowed / guaranteed compute resources each namespace is currently utilizing, thus enabling
administrators to accurately identify the namespaces that are currently experiencing or may
potentially experience a contention for resources. The resource quota of such namespaces may
require rework. This way, the test proactively alerts administrators to problem conditions that may be
caused by poor resource quota definitions, and prompts them to initiate preventive action.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each namespace configured in the Kubernetes cluster
beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

104

Parameter Description

in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.



Chapter 3: Moni toring the Kubernetes Cluster

105

Parameter Description

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:1. This indicates that, by default, detailedmeasures will be
generated every third time this test runs, and also every time the test detects a
problem. You canmodify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Status Indicates the current
status of this
namespace

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Active 1

Terminating 0

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the state of a namespace. In the graph of
this measure however, the state is
indicated using the numeric equivalents
only.

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

106

Measurement Description Measurement
Unit Interpretation

Use the detailed diagnosis of this measure
to view the labels that have been configured
for the objects in an namespace. Labels are
key/value pairs that are attached to objects,
such as pods. Labels are intended to be
used to specify identifying attributes of
objects that aremeaningful and relevant to
users, but do not directly imply semantics
to the core system. Labels can be used to
organize and to select subsets of objects.
Labels can be attached to objects at
creation time and subsequently added and
modified at any time. Each object can have
a set of key/value labels defined. Example
of labels: "release" : "stable", "release" :
"canary"

Age Indicates how old the
namespace is

The value of this measure is expressed in
number of days, hours, andminutes.

Total pods Indicates the number of
pods in this
namespace.

Number A Pod is the basic execution unit of a
Kubernetes application–the smallest and
simplest unit in the Kubernetes object
model that you create or deploy. A Pod
encapsulates an application’s container (or,
in some cases, multiple containers),
storage resources, a unique network IP,
and options that govern how the container
(s) should run. A Pod represents a unit of
deployment: a single instance of an
application in Kubernetes, whichmight
consist of either a single container or a
small number of containers that are tightly
coupled and that share resources.

To know which are the pods in a
namespace, use the detailed diagnosis of
this measure.

If the resource quota enforced on a



Chapter 3: Moni toring the Kubernetes Cluster

107

Measurement Description Measurement
Unit Interpretation

namespace restricts the number of pods
you can create in a namespace, then you
can use this measure to ascertain how
much of that quota is being used currently,
and how many more pods you can create
before the quota is fully exhausted. If the
node on which the existing pods are running
has the resource capacity to support more
pods, youmay want to change your quota
accordingly.

Total services Indicates the number of
services in this
namespace.

Number In Kubernetes, a Service is an abstraction
which defines a logical set of Pods and a
policy by which to access them
(sometimes this pattern is called amicro-
service).

To know which services are in a
namespace, use the detailed diagnosis of
this measure.

If the resource quota enforced on a
namespace restricts the number of
services you can create in a namespace,
then you can use this measure to ascertain
how much of that quota is being used
currently, and how many more services you
can create before the quota is fully
exhausted.

Maximum CPU
limits in container

Indicates the
CPU resource limit set
in the Limit Range for
containers in this
namespace.

Millicpu These measures will be reported
only if a Limit Range has been
configured and enabled for the
containers in a namespace, and
CPU limits/requests have been
configured in that Limit Range.

Typically, to limit consumption by individual
containers in a namespace, a Limit Range
specification is used.

If a Limit Range is enforced on the
containers in a namespace, then the



Chapter 3: Moni toring the Kubernetes Cluster

108

Measurement Description Measurement
Unit Interpretation

resource consuming capacity of each
container in that namespace will be
determined by themin/max limits defined
within that Limit Range. In this case
therefore, themax andmin limit settings in
the Limit Range will be reported as values
of thesemeasures, respectively.

Moreover, in this case, Kubernetes will
automatically foil any attempt to
create/update a container, if that operation
ends up violating the limit set in the Limit
Range. For instance, say that the Limit
Range specification enforced on a
namespace rules that no single container in
that namespace should consumeCPU over
800m (max limit) or lesser than 100m (min
limit). In this case, if an attempt is made to
create a single container with a CPU limit of
900m, then Kubernetes will automatically
foil that attempt. This is because, that
container violates themax limit of 800m
that is set per container in the enforced
Limit Range. The container creation fails,
even if that container does not violate the
total CPU consumption limit set in the
resource quota of that namespace.

Minimum
CPU requests in
container

Indicates theminimum
CPU request limit set in
the Limit Range for
containers in this
namespace.

Millicpu

Default CPU limits
in container

Indicates the default
CPU limit defined in the
Limit Range for
containers in this
namespace.

Millicpu These measures will be reported
only if a if default CPU
requests/limits are set in the Limit
Range for the containers in a
namespace.

Default CPU requests and limits can be set
for the containers in a pod, using the Limit
Range specification. These default settings
apply only whenminimum and/or maximum
CPU limits are not defined at the individual
container-level (during container creation).



Chapter 3: Moni toring the Kubernetes Cluster

109

Measurement Description Measurement
Unit Interpretation

For instance, if a container being created is
not configured with a CPU limit, but is
configured with a CPU request, then the
default CPU limit configured in the Limit
Range will apply to that container. If a
container being created is not configured
with a CPU request, but is configured with
a CPU limit instead, then Kubernetes does
not automatically apply the default CPU
request configured in the Limit Range to
that container. Instead, the limits set for
that container during creation are
automatically set as its requests. On the
other hand, if a container is being created
with neither CPU limits nor CPU requests
defined, then the default CPU limit and
request defined in the Limit Range will
automatically apply.

Default CPU
requests in
container

Indicates the default
CPU request setting
defined in the Limit
Range for containers in
this namespace.

Millicpu

Maximummemory
limits in container

Indicates the
memory resource limit
set in the Limit Range
for containers in this
namespace,

MB These measures will be reported
only if a Limit Range has been
configured and enabled for the
containers in a namespace, and
memory limits/requests have been
configured in that Limit Range.

Typically, to limit consumption by individual
containers in a namespace, a Limit Range
specification is used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each container in that
namespace will be determined by the
min/max limits defined within that Limit
Range. In this case therefore, themax and
minmemory limit settings in the Limit
Range will be reported as values of these
measures, respectively. Moreover, in this
case, Kubernetes will automatically foil any
attempt to create/update a container that



Chapter 3: Moni toring the Kubernetes Cluster

110

Measurement Description Measurement
Unit Interpretation

violates the limit set in the Limit Range. For
instance, say that the Limit Range
specification enforced on a namespace
rules that no single container in that
namespace should consumememory over
500MB (max limit) or lesser than 100MB
(min limit). In this case, if an attempt is
made to create a single container with a
memory limit of 800MB, then Kubernetes
will automatically foil that attempt. This is
because, that container violates themax
limit of 500MB that is set per container in
the enforced Limit Range. The container
creation fails, even if that operation does
not violate the total memory consumption
limit set in the resource quota of that
namespace.

If the value of theMaximum memory
limits in container measure reports the
value 0, it means that the containers in the
namespace have no upper bound on the
amount of memory they use. In such
situations, the Container could use all of the
memory available on the Node where it is
running which in turn could invoke the OOM
Killer. Further, in case of anOOM Kill, a
container with no resource limits will have a
greater chance of being killed.

Minimummemory
requests in
container

Indicates theminimum
memory request limit
set in the Limit Range
for containers in this
namespace.

MB

Default memory
limits in container

Indicates the default
memory limit defined in
the Limit Range for
containers in this
namespace.

MB These measures will be reported
only if a if default memory
requests/limits are set in the Limit
Range enforced for the containers
in a namespace.

Default memory requests and limits can be
set for the containers in a pod, using the
Limit Range specification. These default
settings apply only whenminimum and/or
maximummemory limits are not defined at
the individual container-level (during



Chapter 3: Moni toring the Kubernetes Cluster

111

Measurement Description Measurement
Unit Interpretation

container creation).

For instance, if a container being created is
not configured with amemory limit, but is
configured with amemory request, then the
default memory limit configured in the Limit
Range will apply to that container. If a
container being created is not configured
with amemory request, but is configured
with amemory limit instead, then
Kubernetes does not automatically apply
the default memory request configured in
the Limit Range to that container. Instead,
the limits set for that container during
creation are automatically set as its
requests. On the other hand, if a container
is being created with neither memory limits
nor memory requests defined, then the
default memory limit and request defined in
the Limit Range will automatically apply.

Default memory
requests in
container

Indicates the default
memory request setting
defined in the Limit
Range for containers in
this namespace.

MB

CPU limit Indicates the total
amount of CPU
resources that
containers in this
namespace are allowed
to use, as per the
resource quota.

Millicpu Resource requests/limits set using the
ResourceQuota object govern the
aggregate resource consumption of a
namespace - i.e., the total resources that
can be consumed/requested across all
pods/containers in a namespace.

A resource quota is violated only when the
total consumption of a resource, across
pods/containers in the namespace,
exceeds the limits defined in the resource
quota.

For instance, say that the resource quota of
a namespace enforces a CPU usage limit
of 2 cores and amemory usage limit of
500Gi. In this case, Kubernetes will allow
you to create 2 containers with a CPU core
each and 100Gi of memory each. However,



Chapter 3: Moni toring the Kubernetes Cluster

112

Measurement Description Measurement
Unit Interpretation

if an attempt is made to create another
container configured with 1 CPU core and
200Gi of memory, then such an addition
operation will fail. This is because, the
addition increases the total CPU usage of
the namespace to 3 CPU cores, which
violates the 2 core limit set by the resource
quota.

CPU requests Indicates theminimum
amount of CPU
resources that is
guaranteed to the
containers in this
namespace, as per the
resource quota.

Millicpu

Memory limit Indicates the total
amount of memory
resources that
containers in this
namespace are allowed
to use, as per the
resource quota.

MB

Memory requests Indicates theminimum
amount of memory
resources that is
guaranteed to the
containers in this
namespace, as per the
resource quota.

MB

Used CPU limits Indicates the sum of the
CPU limits configured
for the containers in this
namespace.

Millicpu If a resource quota is enabled for a
namespace , youmay want to compare the
value of this measure with that of the
CPU limits for that namespace. If this
comparison reveals that the value of this
measure is equal to or close to that of the
CPU limitsmeasure, it implies that that
namespace has or is about to exhaust its
quota of CPU resources. If the node on
which the containers are running is
resource-thick, youmay want to
reconfigure the resource quota and increase
the aggregate CPU consumption capacity
of the namespace, so as to prevent a
resource quota violation and consequent
throttling of creation/updation operations on



Chapter 3: Moni toring the Kubernetes Cluster

113

Measurement Description Measurement
Unit Interpretation

the namespace.

Usedmemory
limits

Indicates the sum of the
memory limits
configured for the
containers in this
namespace.

MB If a resource quota is enabled for a
namespace, youmay want to compare the
value of this measure with that of the
Memory limitsmeasure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of theMemory limits
measure, it implies that that namespace
has or is about to exhaust its quota of
memory resources. If the node on which the
containers are running is resource-thick,
youmay want to reconfigure the resource
quota and increase the aggregatememory
consumption capacity of the namespace,
so as to prevent a resource quota violation
and consequent throttling of
creation/updation operations on the
namespace.

Used requests
CPU

Indicates the sum of the
CPU requests
configured for the
containers in this
namespace.

Millicpu If a resource quota is enabled for a
namespace, youmay want to compare the
value of this measure with that of the
CPU requestsmeasure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of the CPU requests
measure, it implies that that namespace is
rapidly utilizing the CPU resources
guaranteed to it. If the node on which the
containers are running is resource-thick,
youmay want to reconfigure the resource
quota and increase the aggregate requests
for the namespace, so as to prevent a
resource quota violation and consequent
throttling of creation/updation operations on
the namespace.



Chapter 3: Moni toring the Kubernetes Cluster

114

Measurement Description Measurement
Unit Interpretation

Used requests
memory

Indicates the sum of the
memory requests
configured for the
containers in this
namespace.

MB If a resource quota is enabled for a
namespace , youmay want to compare the
value of this measure with that of
th Memory requestsmeasure for that
namespace. If this comparison reveals that
the value of this measure is equal to or
close to that of theMemory requests
measure, it implies that that namespace is
rapidly utilizing thememory resources
guaranteed to it. If the node on which the
containers are running is resource-thick,
youmay want to reconfigure the resource
quota and increase the aggregatememory
requests for the namespace, so as to
prevent a resource quota violation and
consequent throttling of creation/updation
operations on the namespace.

Maximum
CPU limits in pod

Indicates themaximum
CPU usage limit set in
the Limit Range for
pods in this
namespace.

Millicpu These measures will be reported
only if a Limit Range has been
configured and enabled for the
pods in a namespace, and CPU
limits/requests have been
configured in that Limit Range.

Typically, to limit consumption by individual
pods in a namespace, a Limit Range
specification is used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each pod in that namespace will
be determined by themin/max limits
defined within that Limit Range. In this case
therefore, themax andmin limit settings in
the Limit Range will be reported as values
of thesemeasures, respectively. Moreover,
in this case, Kubernetes will automatically
foil any attempt to create/update a
container, if that operation ends up violating
the limit set in the Limit Range for pods in



Chapter 3: Moni toring the Kubernetes Cluster

115

Measurement Description Measurement
Unit Interpretation

the namespace. For instance, say that the
Limit Range specification enforced on a
namespace rules that no single pod in that
namespace should consumeCPU over
800m (max limit) or lesser than 100m (min
limit). In this case, if an attempt is made to
create a single pod containing containers
with a total CPU limit of 900m, then
Kubernetes will automatically foil that
attempt. This is because, that pods violates
themax limit of 800m that is set per pod in
the enforced Limit Range. The pod creation
fails, even if that pod does not violate the
total CPU consumption limit set in the
resource quota of that namespace.

Minimum CPU
requests in pod

Indicates theminimum
amount of CPU
resources guaranteed to
the pods in this
namespace.

Millicpu

Maximummemory
limits in pod

Indicates themaximum
memory usage limit set
in the Limit Range for
pods in this
namespace.

MB These measures will be reported
only if a Limit Range has been
configured and enabled for the
pods in a namespace, and memory
limits/requests have been
configured in that Limit Range.

To limit consumption by individual pods in a
namespace, a Limit Range specification is
used.

If a Limit Range is enforced on a
namespace, then the resource consuming
capacity of each pod in that namespace will
be determined by themin/max limits
defined within that Limit Range. In this case
therefore, themax andminmemory limit
settings in the Limit Range will be reported
as values of thesemeasures, respectively.
Moreover, in this case, Kubernetes will
automatically foil any attempt to
create/update a pod, if that operationmay
potentially violate the limit set in the Limit
Range. For instance, say that the Limit
Range specification enforced on a



Chapter 3: Moni toring the Kubernetes Cluster

116

Measurement Description Measurement
Unit Interpretation

namespace rules that no single pod in that
namespace should consumememory over
500MB (max limit) or lesser than 100MB
(min limit). In this case, if an attempt is
made to create a single pod containing
containers with a total memory limit of 800
MB, then Kubernetes will automatically foil
that attempt. This is because, that pod
violates themax limit of 500MB that is set
per pod in the enforced Limit Range. The
pod creation fails, even if that operation
does not violate the total
memory consumption limit set in the
resource quota of that namespace.

If the value of theMaximum memory
limits in podmeasure reports the value 0, it
means that the pods in the namespace
have no upper bound on the amount of
memory they use. In such situations, the
pods could use all of thememory available
on the Node where it is running which in
turn could invoke the OOM Killer. Further, in
case of anOOM Kill, a pod with no resource
limits will have a greater chance of being
killed.

Minimummemory
requests in
container

Indicates theminimum
amount of memory
resources guaranteed to
the containers in this
namespace.

MB

The detailed diagnosis of the Total pods measure reveals the names of the pods in the namespace,
the IP address of the pods, and the node on which each pod is running.

Figure 3.29: The detailed diagnosis of the Total Pods measure

The detailed diagnosis of the Total services measure reveals the names of the services in the
namespace.



Chapter 3: Moni toring the Kubernetes Cluster

117

Figure 3.30: The detailed diagnosis of the Total services measure

3.1.9 Kube Persistent Volumes Test

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned using Storage Classes. It is a resource in the cluster just
like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle
independent of any individual pod that uses the PV.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a pod. Pods
consume node resources and PVCs consume PV resources. Pods can request specific levels of
resources (CPU and Memory). Claims can request specific size and access modes (e.g., can be
mounted once read/write or many times read-only).

Typically, a user creates a PersistentVolumeClaim with a specific amount of storage requested and
with certain access modes. A control loop in the master watches for new PVCs, checks if any static
PV (a PV manually created by the administrator) matches the new PVC, and binds them together.
When none of the static PVs the administrator created matches a user’s PVC, the cluster may try to
dynamically provision a volume specially for the PVC. If a PV was dynamically provisioned for a new
PVC, the loop will always bind that PV to the PVC. Claims will remain unbound indefinitely if a
matching volume does not exist. Claims will be bound as matching volumes become available. For
example, a cluster provisioned with many 50Gi PVs would not match a PVC requesting 100Gi. The
PVC can be bound when a 100Gi PV is added to the cluster.

When a user is done with their volume, they can delete the PVC objects from the API which allows
reclamation of the resource.

If there are many unfulfilled PVCs, an administrator may quickly want to check the status of the
existing PVs to determine why they could not be bound to any of the PVCs - is it because the PVs
are already bound? is it because the PVs have been released, but cannot be reclaimed? or has
reclamation failed for many PVs? The Kube Persistent Volumes test provides answers to these
questions!



Chapter 3: Moni toring the Kubernetes Cluster

118

This test auto-discovers PVs and reports the bind status of each PV, thereby pointing administrators
to those PVs that are unbound, bound, or released, and those that could not be reclaimed. This way,
administrators can figure out if the bind/relcamation status of a PV is why it could not be bound to a
PVC. Also, if there are one/more available/unbound PVs, then administrators can use this test to
verify the configuration - i.e., the access mode and storage capacity - of such PVs. This will reveal if
those PVs are unbound because their configuration does not match any open PVC.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Persistent Volume in the Kubernetes cluster being
monitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

119

Parameter Description

in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.



Chapter 3: Moni toring the Kubernetes Cluster

120

Parameter Description

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Status Indicates the current
status of this PV.

This measure can report any of the
following values:

l Available: A free resource that is yet

bound to a claim

l Bound: The volume is bound to a claim

l Released: The claim has been deleted,

but the resource is not reclaimed by the

cluster. This depends upon the reclaim

policy of the PV. For instance, if the

reclaim policy is Retain, then the

cluster will not automatically reclaim

the resource once it is released; it can

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

121

Measurement Description Measurement
Unit Interpretation

only bemanually reclaimed.

l Failed: The volume has failed its

automatic reclamation.

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Available 1

Bound 2

Released 3

Failed 4

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the state of a PV. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Using the detailed diagnosis of this
measure, you can determine the
namespace to which a PV belongs, the
PVC that binds the PV (in case the PV is
Bound), the reclaim policy configured for
the PV, and the storage class (in case the
PV is dynamically provisioned).

Age Indicates how old this
PV is.

The value of this measure is expressed in
number of days, hours, andminutes.

Access modes Indicates the access
modes configured for
this PV.

A PersistentVolume can bemounted on a
host in any way supported by the resource
provider. As shown in the table below,
providers will have different capabilities
and each PV’s access modes are set to
the specific modes supported by that
particular volume. For example, NFS can



Chapter 3: Moni toring the Kubernetes Cluster

122

Measurement Description Measurement
Unit Interpretation

support multiple read/write clients, but a
specific NFS PV might be exported on the
server as read-only. Each PV gets its own
set of access modes describing that
specific PV’s capabilities.

The access modes are:

l ReadWriteOnce – the volume can be

mounted as read-write by a single node

l ReadOnlyMany – the volume can be

mounted read-only by many nodes

l ReadWriteMany – the volume can be

mounted as read-write by many nodes

The aforesaid access modes also
represent the values that this measure
can report. The numeric values that
correspond to thesemeasure values are
as follows:

Measure Value Numeric Value

ReadOnlyMany 1

ReadWriteMany 2

ReadWriteOnce 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the access mode of a PV. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.

Storage Indicates the storage
capacity configured for
this PV.

GB



Chapter 3: Moni toring the Kubernetes Cluster

123

The detailed diagnosis of the Statusmeasure reveals the namespace to which a PV belongs, the
PVC that binds the PV (in case the PV is Bound), the reclaim policy configured for the PV, and the
storage class (in case the PV is dynamically provisioned). If a PV is in the Released (but not
reclaimed) state or in the Failed state, then you can use the detailed diagnosis to identify what
reclaim policy applies to that PV, so you can easily troubleshoot the failure.

Figure 3.31: The detailed diagnosis of the Status measure reported by the Kube Persistent Volumes test

3.1.10 The KubeWorkloads Layer

With the help of the testsmapped to this layer, you can:

l Pinpoint Pods that are in a Failed or Pending state, and those that are over-subscribing to a
node's capacity;

l Spot Deployments where the actual state does not match the desired state;

l Identify Daemonsets that are running where they should not be and those that are not running
where they should be;

l Promptly detect scaling issues experienced by a Horizonal Pod Autoscaler;

l Quickly capture failed jobs;



Chapter 3: Moni toring the Kubernetes Cluster

124

Figure 3.32: The tests mapped to the KubeWorkloads layer

3.1.11 Pods by Namespace Test

Pods are the smallest deployable uni ts of computing that can be created and managed in
Kubernetes. A Pod (as in a pod of whales or pea pod) is a group of one or more containers (such as
Docker containers), with shared storage/network, and a specification for how to run the containers.
A Pod’s contents are always co-located and co-scheduled, and run in a shared context.

Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until
termination (according to restart policy) or deletion. If a Node dies, the Pods scheduled to that node
are scheduled for deletion, after a timeout period. At any given point in time, an administrator needs
to know at which phase a Pod is in its life cycle, so they can promptly detect Pod failures or undue
slowness in Pod creation and rapidly initiate investigations into the same. This is necessary because,
if a Pod fails, then the cluster's actual statemay go out of syncwith its desired state.

Once a Pod is assigned to a node by scheduler, kubelet starts creating containers using container
runtime. Alongside status of Pods, an administrator also needs to keep track of the status of
containers at all times, as container failures impact the availability and performance of the
containerized applications. This way, administrators can detect and resolve issues in containerized
applications before end-users notice.



Chapter 3: Moni toring the Kubernetes Cluster

125

Typically, when Pods run containers, they use the CPU andmemory resources on the node to which
they are scheduled. By default, a Pod in Kuberneteswill run with no limits on CPU andmemory. This
means that a single Pod can end up hogging the resources of the node! To avoid this, administrators
can control the amount of CPU and memory resources each container in a Pod can use by setting
resource requests and limits in the Pod configuration file. A Pod can use as much compute
resources as represented by the sum of requests and limits of all containers in that Pod. This means
that if the per container limits are not prudently set, then you could have Pods that over-subscribe to
the node's capacity. Also, if containers are not sized according to their actual usage, then it can
adversely impact the performance of the containerized applications. This is why, it is imperative that
administrators track the actual resource usage of Pods, proactively detect potential resource
contentions, and tweak usage limits and/or priorities to prevent such contentions. The Pods by
Namespace test helps administrators perform all of the above!

This test auto-discovers the Pods in each Namespace, and reports the status of each Pod and that
of the containers in every Pod. This leads administrators to Pods and containers in an abnormal
state. Additionally, the test reports the resource requests and limits for each Pod, the resource
capacity of the Node to which each Pod is scheduled, and actual resource utilization. In the process,
the test accurately pinpoints those Pods that are over-subscribing to the node's capacity and those
Pods that may potentially cause a contention for resources on the node. Since the test also reveals
the QoS priority setting of each Pod, administrators can also figure out if a change in priority can help
prevent probable resource contentions/overcommitment.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Pod in every namespace in the Kubernetes cluster
beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

126

Parameter Description

the IP address of themaster node.

l If the target cluster consists of more than one master node, then you need to
configure the eG agent with the IP address of the load balancer that is
managing the cluster. In this case, the load balancer will route the eG agent's
connection request to any available master node in the cluster, thus enabling
the agent to connect with the API server on that node, run API commands on
it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter only accessing the API and pullingmetrics. If for any reason,
you generate a new authentication token for the target cluster at a later point in time,
thenmake sure you update this parameter with the change. For that, copy the new
token and paste it against this parameter.



Chapter 3: Moni toring the Kubernetes Cluster

127

Parameter Description

Report System
Namespace

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespacemay not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace frommonitoring. Accordingly, this flag is set toNo by
default.

If required, you can set this flag toYes, and enablemonitoring of the kube-system
namespace.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability



Chapter 3: Moni toring the Kubernetes Cluster

128

Parameter Description

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Status Indicates where this
Pod is in its lifecycle.

A Pod can be in one of the following phases
in its lifecycle:

l Pending: The Pod has been accepted by

the Kubernetes system, but one or more

of the Container images has not been

created. This includes time before being

scheduled as well as time spent

downloading images over the network,

which could take a while.

l Running: The Pod has been bound to a

node, and all of the Containers have

been created. At least one Container is

still running, or is in the process of

starting or restarting.

l Succeeded: All Containers in the Pod

have terminated in success, and will not

be restarted.

l Failed: All Containers in the Pod have

terminated, and at least one Container

has terminated in failure. That is, the

Container either exited with non-zero

status or was terminated by the system.

l Unknown: For some reason the state of

the Pod could not be obtained, typically

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

129

Measurement Description Measurement
Unit Interpretation

due to an error in communicating with the

host of the Pod.

l CrashLoopBackoff: A Pod is starting,

crashing, starting again, and then

crashing again.

The numeric values that correspond to this
are detailed in the table below:

Measure Value Numeric Value

Running 1

Succeeded 2

Completed 3

Failed 4

Pending 5

CrashLoopBackOff 6

Unknown 7

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the state of a Pod. In the graph of this
measure however, the state is indicated
using the numeric equivalents only.

Use the detailed diagnosis of this measure
to know which containers are in the Pod,
the images used by the containers, and the
reason for the status.

Age Indicates how old this
Pod is.

The value of this measure is expressed in
number of days, hours, andminutes.

Use the detailed diagnosis of this measure
to know which node a Pod is scheduled to,
the IP address of the Pod, and the images
used by the containers in the Pod.



Chapter 3: Moni toring the Kubernetes Cluster

130

Measurement Description Measurement
Unit Interpretation

Termination grace
period

Shows the optional
duration in seconds the
Pod needs to terminate
gracefully.

Seconds Because Pods represent running processes
on nodes in the cluster, it is important to
allow those processes to gracefully
terminate when they are no longer needed
(vs being violently killed with a KILL signal
and having no chance to clean up). Users
should be able to request deletion and know
when processes terminate, but also be able
to ensure that deletes eventually complete.
When a user requests deletion of a Pod, the
system records the intended grace period
before the Pod is allowed to be forcefully
killed, and a TERM signal is sent to the
main process in each container. Once the
grace period has expired, the KILL signal is
sent to those processes, and the Pod is
then deleted from the API server. The
default grace period is 30 seconds.

The kubectl delete command supports the
--grace-period=<seconds> option which
allows a user to override the default and
specify their own value. The value 0 force
deletes the Pod. Youmust specify an
additional flag --force along with --grace-
period=0 in order to perform force
deletions.

Quality of service Indicates the Quality of
Service (QOS)
classification assigned
to this Pod based on
resource requirement.

Kubernetes provides different levels of
Quality of Service to pods depending on
what they request and what limits are set
for them. Pods that need to stay up and
consistently good can request guaranteed
resources, while pods with less exacting
requirements can use resources with
less/no guarantee.

For each resource, Kubernetes divide Pods
into 3 QoS classes: Guaranteed, Burstable,
and Best-Effort, in decreasing order of
priority.



Chapter 3: Moni toring the Kubernetes Cluster

131

Measurement Description Measurement
Unit Interpretation

l Guaranteed: Pods are considered top-

priority and are guaranteed to not be

killed until they exceed their limits. If

limits and optionally requests (not equal

to 0) are set for all resources across all

containers and they are equal, then the

pod is classified as Guaranteed.

l Burstable: Pods have some form of

minimal resource guarantee, but can use

more resources when available. Under

systemmemory pressure, these

containers aremore likely to be killed

once they exceed their requests and no

Best-Effort pods exist. If requests and

optionally limits are set (not equal to 0)

for one or more resources across one or

more containers, and they are not equal,

then the pod is classified as Burstable.

l Best-Effort: Pods will be treated as

lowest priority. Processes in these pods

are the first to get killed if the system

runs out of memory. These containers

can use any amount of freememory in

the node though. If requests and limits

are not set for all of the resources,

across all containers, then the pod is

classified as Best-Effort.

This test reports one of the above 3
QOS classes as the value of this measure.
The numeric values that correspond to
thesemeasure values are as follows:



Chapter 3: Moni toring the Kubernetes Cluster

132

Measurement Description Measurement
Unit Interpretation

Measure Value Numeric Value

Guaranteed 1

Burstable 2

Best Effort 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the QOS class of a Pod. In the graph of this
measure however, the same is indicated
using the numeric equivalents only.

Restart policy Indicates the restart
policy of all containers
within this Pod.

This measure reports one of the following
values:

l Always: This means that the container

will be restarted even if it exited with a

zero exit code (i.e. successfully). This is

useful when you do not care why the

container exited, you just want to make

sure that it is always running (e.g. a web

server). This is the default.

l OnFailure: This means that the container

will only be restarted if it exited with a

non-zero exit code (i.e. something went

wrong). This is useful when you want

accomplish a certain task with the pod,

and ensure that it completes

successfully - if it does not it will be

restarted until it does.

l Never: This means that the container will

not be restarted regardless of why it

exited.



Chapter 3: Moni toring the Kubernetes Cluster

133

Measurement Description Measurement
Unit Interpretation

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Always 1

OnFailure 2

Never 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the restart policy of the containers in a Pod.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

Are all init
containers
initialized?

Indicates whether/not
the init containers (if
any) in this Pod have
started successfully.

Init containers are specialized containers
that run before app containers in a Pod. Init
containers can contain utilities or setup
scripts not present in an app image.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the status of Init containers. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.



Chapter 3: Moni toring the Kubernetes Cluster

134

Measurement Description Measurement
Unit Interpretation

If this measure reports the valueNo or
Unknown for a Pod, then you can use the
detailed diagnosis of this measure to figure
out the reason for the same.

Is Pod ready? Indicates whether/not
this Pod is ready.

If a Pod is in the Ready state, it means that
the Pod is able to serve requests and
should be added to the load balancing pools
of all matching Services.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the Ready state of a Pod. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.

Are all containers
ready?

Indicates whether/not
all containers in this
Pod are ready.

If a container is in the Ready state, it
means that the container is ready to service
requests.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2



Chapter 3: Moni toring the Kubernetes Cluster

135

Measurement Description Measurement
Unit Interpretation

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not the containers in a Pod are
ready. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

Is pod scheduled? Indicates whether/not
this Pod has been
scheduled to a node.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a Pod has been scheduled to a
node. In the graph of this measure however,
the same is indicated using the numeric
equivalents only.

If this measure reports the valueNo for a
Pod - i.e., if a Pod is not scheduled to a
node - then you can use the detailed
diagnosis of this measure to figure out the
reason for the anomaly.

Total containers Indicates the count of
containers in this Pod.

Number

Volumes mounted Indicates the count of
volumes mounted in
this Pod.

Number

Init containers Indicates the total
number of init

Number Init containers are specialized containers
that run before app containers in a Pod. Init



Chapter 3: Moni toring the Kubernetes Cluster

136

Measurement Description Measurement
Unit Interpretation

containers (if any) in
this Pod.

containers can contain utilities or setup
scripts not present in an app image.

Priority Indicates the priority
class assigned to this
Pod.

You can assign pods a priority class, which
is a non-namespaced object that defines a
mapping from a name to the integer value of
the priority. The higher the value, the higher
the priority.

A priority class object can take any 32-bit
integer value smaller than or equal to
1000000000 (one billion). Reserve numbers
larger than one billion for critical pods that
should not be preempted or evicted.

There are two reserved priority classes for
for critical system pods to have guaranteed
scheduling.

l System-node-critical: This priority class

has a value of 2000001000 and is used

for all pods that should never be evicted

from a node.

l System-cluster-critical: This priority

class has a value of 2000000000 (two

billion) and is used with pods that are

important for the cluster. Pods with this

priority class can be evicted from a node

in certain circumstances. For example,

pods configured with the system-node-

critical priority class can take priority.

However, this priority class does ensure

guaranteed scheduling.

This test reports one of the above two
priority classes as the value of this
measure. The numeric values that
correspond to thesemeasure values are as



Chapter 3: Moni toring the Kubernetes Cluster

137

Measurement Description Measurement
Unit Interpretation

follows:

Measure Value Numeric Value

System-cluster-critical 1

System-node-critical 2

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the priority class assigned to a Pod. In the
graph of this measure however, the same is
indicated using the numeric equivalents
only.

Running
containers

Indicates the count of
running containers in
this Pod.

Number If a container is in the Running state, it
indicates that the container is executing
without any issues.

Use the detailed diagnosis of this measure
to know which containers in a Pod are in the
Running state.

Terminated
containers

Indicates the count of
containers in this Pod
that are in a Terminated
state.

Number If a container is in the Terminated state, it
means that the container completed its
execution and has stopped running. A
container enters into this when it has
successfully completed execution or when
it has failed for some reason.

If the containers in a Pod entered this state
because they have failed, then use the
detailed diagnosis of this measure to know
which are those containers, why the failure
occurred, and the exit code.

Waiting containers Indicates the count of
containers in this Pod
that are in aWaiting
state.

Number Waiting state is the default state of a
container. If container is not in either
Running or Terminated state, it is inWaiting
state. A container inWaiting state still runs
its required operations, like pulling images,
applying Secrets, etc.



Chapter 3: Moni toring the Kubernetes Cluster

138

Measurement Description Measurement
Unit Interpretation

Use the detailed diagnosis of this measure
to know which containers are in theWaiting
state and why.

Uptime of pods Indicates the total time
for which the
containers in this Pod
were up and running.

Seconds

Number of times
container has been
restarted

Indicates the number of
times the containers in
this Pod have been
restarted.

Number Use the detailed diagnosis of this measure
to identify the containers that were
restarted and to determine the number of
times each container was restarted.
Frequently restarted containers can thus be
isolated.

CPU requests Indicates theminimum
CPU resources
guaranteed to this Pod.

Millicpu This is the sum of CPU requests configured
for all containers in a Pod.

A request is the amount of that resource
that the system will guarantee to the Pod.

CPU limits Indicates that
maximum amount of
CPU resources that
this Pod can use.

Millicpu This is the sum of CPU limits set for all
containers in a Pod.

A limit is themaximum amount that the
system will allow the Pod to use.

Total CPUs on
node

Indicates the total
number of CPU cores
available to the node to
which this Pod is
scheduled.

Number

CPU capacity on
node

Indicates the
CPU capacity of the
node to which this Pod
is scheduled.

Millicpu

CPU limits
allocation

Indicates what
percentage of the
capacity of the node is
allocated as CPU limits
to containers in this
Pod. In other words,

Percent The formula used for computing this
measure is as follows:

(CPU limits/CPU capacity on node)*100

If the value of this measure exceeds 100%,
it means that the Pod is oversubscribing to



Chapter 3: Moni toring the Kubernetes Cluster

139

Measurement Description Measurement
Unit Interpretation

this is the percentage
of a node's
CPU capacity that the
containers on this Pod
are allowed to use.

the node's capacity. In other words, it
means that the Pod has been allowed to
usemore resources than the node's
capacity.

CPU requests
allocation

Indicates what
percentage of the total
CPU capacity of the
node is set as CPU
requests for the
containers on this Pod.
In other words, this is
the percentage of a
node's CPU capacity
that the containers on
this Pod are guaranteed
to receive.

Percent The formula used for computing this
measure is as follows:

(CPU requests/CPU capacity on
node)*100

Compare the value of this measure across
Pods to know which Pod has been
guaranteed themaximum CPU resources.

CPU usage Indicates the amount of
CPU resources used
by this Pod.

Millicpu Ideally, the value of this measure should be
much lesser than the value of theCPU
capacity on nodemeasure. If the value of
this measure is equal to or is rapidly
approaching the value of theCPU capacity
on nodemeasure, it means that the Pod is
over-utilizing the CPU resources of the
node.

CPU utilization Indicates the
percentage of CPU
resources utilized by
this Pod.

Percent A value close to 100% is indicative of
excessive CPU usage by a Pod, and hints
at a potential CPU contention on the node.

A value greater than 100% implies that the
Pod has probably over-subscribed to the
node's capacity.

Containers without
CPU limits set

Indicates the number of
containers in this Pod
for which CPU limits
are not set.

Number If limit is not set, then if defaults to 0
(unbounded)

Containers without
CPU requests set

Indicates the number of
containers in this Pod

Number In the case that request is not set for a
container, it defaults to limit.



Chapter 3: Moni toring the Kubernetes Cluster

140

Measurement Description Measurement
Unit Interpretation

for which CPU
requests are not set.

Memory requests Indicates theminimum
memory resources
guaranteed to this Pod.

GB This is the sum of memory requests
configured for all containers in a Pod.

A request is the amount of that resource
that the system will guarantee to the Pod.

Memory limits Indicates themaximum
amount of memory
resources that this Pod
can use.

GB This is the sum of memory limits set for all
containers in a Pod.

A limit is themaximum amount that the
system will allow the Pod to use.

Memory capacity
on node

Indicates the
memory capacity of the
node to which this Pod
is scheduled.

GB

Memory limits
allocation

Indicates what
percentage of the
memory capacity of the
node is allocated as
memory limits to
containers in this Pod.
In other words, this is
the percentage of a
node's memory
capacity that the
containers on this Pod
are allowed to use.

Percent The formula used for computing this
measure is as follows:

(Memory limits/Memory capacity on
node)*100

If the value of this measure exceeds 100%,
it means that the Pod is oversubscribing to
the node's capacity. In other words, it
means that the Pod has been allowed to
usemore resources than the node's
capacity.

Memory requests
allocation

Indicates what
percentage of the total
memory capacity of the
node is set as memory
requests for the
containers on this Pod.
In other words, this is
the percentage of a
node's memory
capacity that the

Percent The formula used for computing this
measure is as follows:

(Memory requests/Memory capacity on
node)*100

Compare the value of this measure across
Pods to know which Pod has been
guaranteed themaximummemory
resources.



Chapter 3: Moni toring the Kubernetes Cluster

141

Measurement Description Measurement
Unit Interpretation

containers on this Pod
are guaranteed to
receive.

Memory usage Indicates the amount of
memory resources
used by this Pod.

GB Ideally, the value of this measure should be
much lesser than the value of theMemory
capacity on nodemeasure. If the value of
this measure is equal to or is rapidly
approaching the value of theMemory
capacity on nodemeasure, it means that
the Pod is over-utilizing thememory
resources of the node.

Memory utilization Indicates the
percentage of memory
resources utilized by
this Pod.

Percent A value close to 100% is indicative of
excessivememory usage by a Pod, and
hints at a potential memory contention on
the node.

A value greater than 100% implies that the
Pod has probably over-subscribed to the
node's capacity.

Containers without
memory limits set

Indicates the number of
containers in this Pod
for whichmemory
limits are not set.

Number If limit is not set, then it defaults to 0
(unbounded)

Containers without
memory requests
set

Indicates the number of
containers in this Pod
for whichmemory
requests are not set.

Number In the case that request is not set for a
container, it defaults to limit.

The detailed diagnosis of theStatusmeasure reveals which containers are in the Pod, the images
used by the containers, and the reason for the status.

Figure 3.33: The detailed diagnosis of the Status measure reported by the Pods by Namespace test



Chapter 3: Moni toring the Kubernetes Cluster

142

The detailed diagnosis of the Age measure reveals which node a Pod is scheduled to, the IP
address of the Pod, and the images used by the containers in the Pod.

Figure 3.34: The detailed diagnosis of the Agemeasure reported by the Pods by Namespace test

If the Are all init containers initialized?measure reports the value Yes or Unknown, then you can use
the detailed diagnosis of this measure to figure out the reason why the init containers failed to
initialize.

Figure 3.35: The detailed diagnosis of the Are all init containers initialized?measure

If the containers in a Pod entered the Terminated state, then use the detailed diagnosis of the
Terminated containersmeasure to know which are those containers, why the failure occurred, and
the exit code.

Figure 3.36: The detailed diagnosis of the Terminated containers measure

Use the detailed diagnosis of the Waiting containers measure to know which containers are in the
Waiting state and why.

Figure 3.37: The detailed diagnosis of theWaiting containers measure

3.1.12 Deployments by Namespace Test

A Deployment provides declarative updates for Pods and ReplicaSets. While a Pod encapsulates
an application’s container (or, in some cases, multiple containers), storage resources, a unique



Chapter 3: Moni toring the Kubernetes Cluster

143

network IP, and options that govern how the container (s) should run, a ReplicaSet is used to
maintain a stable set of replica (identical) Pods running at any given time.

Using a Deployment, you can easily:

l Deploy a ReplicaSet

l Update Pods (PodTemplateSpec)

l Rollback to older Deployment versions

l Scale Deployment up or down

l Pause and resume the Deployment

l Determine state of replicas

l Clean up older ReplicaSets

l Canary Deployment

Whenever a Deployment is used to perform such operations, it is only natural that administrators
want to know the status of the deployment - whether it is paused or progressing. Most importantly,
administrators will want to be alerted if the Deployment was unable to deliver the intended/desired
result of the operation. For instance, an administrator would want to be alerted if any deployment
fails to create the desired number of available replicas in a ReplicaSet, fails to update one/more
replicas with changes to a Pod template, or does not have the adequate number of Pods to reach full
capacity. This is because, such failures may result in a mismatch between the cluster's desired state
and its actual state, which in turn may affect the availability and performance of the containerized
applications that overlay the cluster. This is where the Deployments byNamespace test helps!

This test auto-discovers Deployments in a Namespace, and for each Deployment, reports the
overall status of the deployment - i.e., whether the desired state of the Deployment is the same as its
actual state. If the state of the Deployment is Unhealthy, then you can use this test to figure out what
could have caused the anomaly - is it because of a replica failure? is it because of unavailable Pods?
or is it because of the Pods that are not yet up-to-date with changesmade to the Pod template?

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Deployment in every namespace configured in the
Kubernetes cluster beingmonitored

First-level Descriptor: Namespace

Second-level Descriptor: Deployment



Chapter 3: Moni toring the Kubernetes Cluster

144

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

145

Parameter Description

eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Report System
Namespace

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespacemay not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace frommonitoring. Accordingly, this flag is set toNo by
default.

If required, you can set this flag toYes, and enablemonitoring of the kube-system
namespace.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the



Chapter 3: Moni toring the Kubernetes Cluster

146

Parameter Description

detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Status Indicates whether/not
the desired state of this
deployment is the same
as its actual state.

This measure reports the valueHealthy if
the desired state of the Deployment is the
same as its actual state. In other words, if
the value of the Total pods with
deploymentmeasure is the same as the
value of Total available podswith
deployment measure, then this measure
will report the valueHealthy. If not, this
measure will report the valueUnhealthy.
For instance, if the Deployment seeks to
deploy a ReplicaSet with 3 replica (Pods)
in it, and succeeds in creating such a
ReplicaSet, then the value of this measure
will beHealthy. On the other hand, if the
Deployment created a ReplicaSet with
only two available replica Pods, then the
value of this measure will beUnhealthy.

The numeric values that correspond to
thesemeasure values are as follows:

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

147

Measurement Description Measurement
Unit Interpretation

Measure Value Numeric Value

Healthy 1

Unhealthy 0

Note:

By default, this test reports the Measure
Values listed in the table above to indicate
the state of a Deployment. In the graph of
this measure however, the same is
indicated using the numeric equivalents
only.

Is deployment
paused?

Indicates whether/not
this Deployment has
been paused.

You can pause a Deployment before
triggering one or more updates and then
resume it. This allows you to apply
multiple fixes in between pausing and
resuming without triggering unnecessary
rollouts.

The values that this measure can report
and their corresponding numeric values
are listed in the table below:

Measure Value Numeric Value

Yes 1

No 0

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the whether/not a Deployment has been
paused. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

Age Indicates how old this
Deployment is.

The value of this measure is expressed in
number of days, hours, andminutes.

You can use the detailed diagnosis of this



Chapter 3: Moni toring the Kubernetes Cluster

148

Measurement Description Measurement
Unit Interpretation

measure to know the images that a
Deployment pulled from the Container
Registry to create containers on replica
Pods.

Is progressing? Indicates whether/not
this Deployment is in
progress.

A Deployment enters various states during
its lifecycle.

Kubernetes marks a Deployment as
progressing when one of the following
tasks is performed:

l The Deployment creates a new

ReplicaSet.

l The Deployment is scaling up its

newest ReplicaSet.

l The Deployment is scaling down its

older ReplicaSet(s).

l New Pods become ready or available

(ready for at least

MinReadySeconds).

Kubernetes marks a Deployment as
complete when it has the following
characteristics:

l The Deployment has minimum
availability. Minimum availability means
that the Deployment's number of
available replicas equals or exceeds the
number required by the Deployment
strategy.

l All of the replicas associated with the
Deployment have been updated to the
latest version you have specified,
meaning any updates you've requested
have been completed.



Chapter 3: Moni toring the Kubernetes Cluster

149

Measurement Description Measurement
Unit Interpretation

l No old pods for the Deployment are
running.

Your Deployment may get stuck trying to
deploy its newest ReplicaSet without ever
completing. This can occur due to some of
the following factors:

l Insufficient quota

l Readiness probe failures

l Image pull errors

l Insufficient permissions

l Limit ranges

l Application runtimemisconfiguration

Typically, a Deployment is considered to
have Failed, if it is making progress for a
duration beyond the
progressDeadlineSeconds configuration.

This measure reports the valueYes for a
Deployment, if it is in the progressing or
complete state. The valueNo is reported,
if the Deployment is in fail to progress
state. The valueUnknown is reported if
the Deployment is not in any of the above-
mentioned states - i.e., if the state cannot
be determined.

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2



Chapter 3: Moni toring the Kubernetes Cluster

150

Measurement Description Measurement
Unit Interpretation

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not a Deployment is progressing.
In the graph of this measure however, the
same is indicated using the numeric
equivalents only.

Is available? Indicates whether/not
this Deployment is
available.

Number A deployment is said to beAvailable, if it
has minimum availability. Minimum
availability is dictated by the parameters
specified in the deployment strategy. For
instance, if the default Rolling Update
strategy is used, then theMax
Unavailable parameter of the strategy
indicates theMinimum Availability during
an upgrade. For example, if theMax
Unavailable is set to 25% , then it means
that aminimum of 75% of Pods should be
available in the Deployment when an
update is in progress.

If the Deployment is Available, then the
value of this measure is Yes. If the
Deployment is unavailable - i.e., if the
Minimum Availability criteria is not met -
then, the value of this measure is No. If
the availability of the Deployment cannot
be determined, then the value of this
measure will beUnknown.

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:



Chapter 3: Moni toring the Kubernetes Cluster

151

Measurement Description Measurement
Unit Interpretation

By default, this test reports theMeasure
Values listed in the table above to
indicate whether/not a Deployment is
Available. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If the value of this measure for any
Deployment is No, then you can use the
detailed diagnosis of this measure to
identify the unavailable Pods in the
Deployment, and the reason for their
unavailability. A Pod is said to be
Available, if it is ready without any
containers crashing for at least the
duration configured against
minReadySeconds in the Pod
specification. Any Pod that is not ready, or
is ready but has containers crashing for a
period of time beyond the
minReadySeconds duration, is
automatically consideredUnavailable.

Is replica failure? Indicates whether/not
any replica in this
Deployment has failed.

The valueYes for this measure, indicates
that one/more replicas in the Deployment
could not be created. The valueNo
indicates that all replicas were created.
The value Unknown implies that the state
of the replicas could not be determined.

The numeric values that correspond to
thesemeasure values are as follows:

Measure Value Numeric Value

Yes 1

No 0

Unknown 2

Note:

By default, this test reports theMeasure



Chapter 3: Moni toring the Kubernetes Cluster

152

Measurement Description Measurement
Unit Interpretation

Values listed in the table above to
indicate whether/not any replicas in the
Deployment could not be created. In the
graph of this measure however, the same
is indicated using the numeric equivalents
only.

If the failure of one/more replicas causes a
amismatch between the desired state and
actual state of the Deployment, then the
value of theStatusmeasure of that
Deployment will change to Unhealthy.

Observed
generation

Indicates the generation
observed after this
Deployment.

Number A generation is a sequence number
representing a specific generation of the
desired state.

If the value of this measure for a
Deployment matches with the desired
generation sequence number of that
Deployment, it implies that the
Deployment is complete.

If it does not match, then it means that a
Deployment is progressing or has
failed. In other words, if the value of the Is
progressing?measure for a Deployment
is Yes orNo, then it means that the
desired generation sequence number and
the observed generation sequence number
of that Deployment is not the same.

Total pods with
deployment

Indicates the desired
number of non-
terminated Pod replicas
targeted by this
Deployment.

Number

Total pods with
updated
deployment

Indicates the total
number of non-
terminated Pod replicas
that have been updated
by this Deployment with

Number Typically, whenever changes aremade to
a Deployment's Pod template - say, labels
or container images of the template are
changed - then a Deployment rollout is
triggered. A new ReplicaSet is created and



Chapter 3: Moni toring the Kubernetes Cluster

153

Measurement Description Measurement
Unit Interpretation

changes (if any) made
to the Pod template
specification.

the Deployment manages moving the
Pods from the old ReplicaSet to the new
one at a controlled rate.

Ideally, the value of this measure should
be the same as the value of the Total
pods with deploymentmeasure. If not,
then it means that the desired number of
Pod replicas are not yet fully updated with
the changes to the Pod template.

Ready pods with
deployment

Indicates the number of
ready Pods created by
this Deployment.

Number

Total available pods
with deployment

Indicates the number of
available Pods created
by this Deployment.

Number A Pod is said to be Available, if it is ready
without any containers crashing for at
least the duration configured against
minReadySeconds in the Pod
specification.

Ideally, the value of this measure should
be the same as the value of the Total
pods with deploymentmeasure. If not,
then theStatusmeasure of this test will
report the value Unhealthy. This means
that the desired state of the Deployment is
not the same as its actual state.

Total unavailable
pods with
deployment

Indicates the total
number of unavailable
Pods created by this
Deployment.

Number Any Pod that is not ready, or is ready but
has containers crashing for a period of
time beyond theminReadySeconds
duration, is automatically considered
Unavailable.

Ideally, the value of this measure should
be 0. If this measure reports a non-zero
value or a value equal to or close to the
value of the Total pods with deployment
measure, then theStatusmeasure of this
test will report the valueUnhealthy. This
means that the desired state of the
Deployment is not the same as its actual



Chapter 3: Moni toring the Kubernetes Cluster

154

Measurement Description Measurement
Unit Interpretation

state.

In the event that this measure reports a
non-zero value, then use the detailed
diagnosis of this measure to identify the
unavailable Pod replicas in the
Deployment.

Collision count
Indicates the count of
hash collisions for this
deployment.

Number The Deployment controller uses this field
as a collision avoidancemechanism when
it needs to create the name for the newest
ReplicaSet.

Pods created by
this deployment

Indicates the number of
Pods created by this
Deployment that are
currently running.

Number To know which Pods created by this
Deployment are currently running, use the
detailed diagnosis of this measure.

Retain old replica
count Indicates the number of

old Replica Sets that
this Deployment should
retain to allow rollback.

Number A Deployment’s revision history is stored
in the ReplicaSets it controls.

When configuring a Deployment, you can
optionally specify
.spec.revisionHistoryLimit, where you
can indicate the number of old
ReplicaSets to retain to allow rollback.
This value is reported as the value of this
measure.

Old ReplicaSets consume resources in
etcd and crowd the output of kubectl get
rs. The configuration of each Deployment
revision is stored in its ReplicaSets;
therefore, once an old ReplicaSet is
deleted, you lose the ability to rollback to
that revision of Deployment. By default, 10
old ReplicaSets will be kept, however its
ideal value depends on the frequency and
stability of new Deployments.

More specifically, setting this field to zero
means that all old ReplicaSets with 0
replicas will be cleaned up. In this case, a
new Deployment rollout cannot be undone,
since its revision history is cleaned up.



Chapter 3: Moni toring the Kubernetes Cluster

155

You can use the detailed diagnosis of the Agemeasure to know the images that a Deployment
pulled from the Container Registry to create containers on replica Pods.

Figure 3.38: The detailed diagnosis of the Agemeasure of the Deployments by Namespace test

If the value of the Is available? measure for any Deployment is No, then you can use the detailed
diagnosis of this measure to identify the unavailable Pods in the Deployment, and the reason for
their unavailability. A Pod is said to be Available, if it is ready without any containers crashing for at
least the duration configured againstminReadySeconds in the Pod specification. Any Pod that is not
ready, or is ready but has containers crashing for a period of time beyond the minReadySeconds
duration, is automatically consideredUnavailable.

Figure 3.39: The detailed diagnosis of the Is available?measure reported by the Deployments by Namespace
test

In the event that the Total unavailable podswith deploymentmeasure reports a non-zero value, then
use the detailed diagnosis of thismeasure to identify the unavailable Pod replicas in the Deployment.
You can also use the detailed diagnostics to figure what could have rendered a Pod unavailable.
This information aids troubleshooting.

Figure 3.40: The detailed diagnosis of the Total unavailable pods with deployment measure

3.1.13 Daemonset by Namespace

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the
cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are garbage
collected. Deleting a DaemonSet will clean up the Pods it created.

Some typical uses of a DaemonSet are:



Chapter 3: Moni toring the Kubernetes Cluster

156

l running a cluster storage daemon, such as glusterd, ceph, on each node.

l running a logs collection daemon on every node, such as fluentd or logstash.

l running a nodemonitoring daemon on every node

Daemon pods are typically scheduled using one of the following:

l Daemonset Controller: Normally, the machine that a Pod runs on is selected by the Kubernetes
scheduler. However, Pods created by the DaemonSet controller have the machine already
selected .

l Default scheduler: You can also schedule DaemonSets using the default scheduler instead of the
DaemonSet controller, by adding the NodeAffinity term to the DaemonSet pods, instead of the
.spec.nodeName term. The default scheduler is then used to bind the pod to the target host.

Regardless of which scheduler (Daemonset Controller or default scheduler) schedules Daemon
Pods, taints and tolerations are used to ensure that Daemon pods are not scheduled onto
inappropriate nodes. One or more taints are applied to a node; this marks that the node should not
accept any pods that do not tolerate the taints. Tolerations are applied to pods, and allow (but do not
require) the pods to schedule onto nodeswith matching taints.

Sometimes, a Daemon Pod may be 'misscheduled' on to a node where it does not belong. In other
words, a Daemon Pod could be scheduled on to a node without 'matching taints'. This can cause
certain cluster operations to run on nodes they should not run on, hampering cluster performance in
the process. At some other times, a Daemon Pod may not run on the desired set of nodes. For
instance, an anti-virus daemon, which should typically run on all nodes in a cluster/namespace, may
run only on a few nodes. This is also detrimental to cluster performance. To ensure peak cluster
performance, administrators should rapidly identify misscheduled DaemonSets and those that are
not running on the desired nodes, and figure out what could have triggerred these anomalies. This is
where the DaemonSet byNamespace test helps!

This test auto-discovers the DaemonSets in each namespace, and for each DaemonSet, reports the
count of nodes scheduled to run that DaemonSet, the count of nodes on which it should run, and the
count of nodes on which it should not. This way, the test promptly alerts administrators to incorrect
scheduling of DaemonSets. Detailed diagnostics reveal which Daemon Pods are running on which
node, thereby enabling administrators to quickly identify those nodes running Daemon Pods they
should not be running. Additionally, the test also alerts administrators if a DaemonSet is updated.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent



Chapter 3: Moni toring the Kubernetes Cluster

157

Outputs of the test : One set of results for each DaemonSet in every namespace configured in the
Kubernetes cluster beingmonitored

First-level Descriptor: Namespace

Second-level Descriptor: DaemonSet

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

158

Parameter Description

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 3:1. This indicates that, by default, detailedmeasures will be
generated every third time this test runs, and also every time the test detects a
problem. You canmodify this frequency, if you so desire. Also, if you intend to disable
the detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an



Chapter 3: Moni toring the Kubernetes Cluster

159

Parameter Description

optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Age Indicates how old this
DaemonSet is.

The value of this measure is expressed in
number of days, hours, andminutes.

You can use the detailed diagnosis of this
measure to know the labels and images
used by the daemons run by the
DaemonSet.

DaemonSet
currently scheduled
on nodes

Indicates the number of
nodes (in this
namespace) that are
currently running this
DaemonSet and are
supposed to run this
DaemonSet.

Number Use the detailed diagnosis of this
measure to know which Daemon Pods
are running on which nodes in the
namespace.

DaemonSets
misscheduled on
nodes

Indicates the number of
nodes in this
namespace, that are
running this
DaemonSet, but are not
supposed to run this
DaemonSet.

Number Ideally, the value of this measure should
be 0.

DaemonSet to run
on nodes

Indicates the number of
nodes (in this

Number The value of this measure also includes
the count of nodes that are already

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

160

Measurement Description Measurement
Unit Interpretation

namespace) that should
be running this
DaemonSet.

running the DaemonSet.

Ideally therefore, this value of this
measure should be the same as the value
of theDaemonSet currently scheduled
on nodesmeasure. Any mismatch
implies issues in scheduling, which in turn
may impact cluster performance.

DaemonSet running
on nodes

Indicates the number of
nodes (in this
namespace) that should
be running this
DaemonSet and have
one or more of the
Daemon Pods already
running and ready.

Number

DaemonSet
updated on nodes

Indicates the number of
nodes (in this
namespace) that run the
updated daemon pod
spec.

Number Updating a DaemonSet may involve:

l Changing node labels: If node labels

are changed, the DaemonSet will

promptly add Pods to newly matching

nodes and delete Pods from newly not-

matching nodes.

l Changing a Daemon Pod:You can

modify the Pods that a DaemonSet

creates. However, Pods do not allow

all fields to be updated. Also, the

DaemonSet controller will use the

original template the next time a node

(even with the same name) is created.

l Deleting a DaemonSet:When

deleting a DaemonSet, you can

choose to leave the Daemon Pods on



Chapter 3: Moni toring the Kubernetes Cluster

161

Measurement Description Measurement
Unit Interpretation

the nodes. In this case, if you

subsequently create a new

DaemonSet with the same selector,

the new DaemonSet adopts the

existing Pods. If any Pods need

replacing the DaemonSet replaces

them according to its updateStrategy.

l Performing a rolling update on a
DaemonSet:WithRollingUpdate

update strategy, after you update a

DaemonSet template, old DaemonSet

pods will be killed, and new

DaemonSet pods will be created

automatically, in a controlled fashion.

DaemonSet
available on nodes

Indicates the number of
nodes (in this
namespace) that should
be running this
DaemonSet and have
one or more of the
Daemon Pods running
and available.

Number A Daemon Pod is considered to be
'available' if it is ready without any of its
containers crashing for at least the
duration specified against
spec.minReadySeconds in the
DaemonSet configuration (YAML) file.

DaemonSet
unavailable on
nodes

Indicates the number of
nodes (in this
namespace) that should
be running this
DaemonSet, but does
not have it running and
available.

Number A Daemon Pod is considered to be
'unavailable' if it is not ready without any
of its containers crashing for even the
minimum duration specified against
spec.minReadySeconds in the
DaemonSet configuration (YAML) file.

Ideally, the value of this measure should
be 0.

Using the detailed diagnosis of theAgemeasure you can determine the label that has been
assigned to a particular DaemonSet, and the images that the containers on the Daemon Pods are
pulling from the Container Registry.



Chapter 3: Moni toring the Kubernetes Cluster

162

Figure 3.41: The detailed diagnosis of the Agemeasure of the DaemonSet by Namespace test

To know the Daemon Pods running a DaemonSet and the nodes on which these Pods are running,
use the detailed diagnosis of the DaemonSet currently scheduled on nodes measure. Using this
information, you can figure out if the DaemonSet is running on a node it is not supposed to run on
and if it is not running on any node it should actually run on.

Figure 3.42: The detailed diagnosis of the DaemonSet currently scheduled on nodes measure

3.1.14 Horizontal Pod Autoscaler by Namespaces Test

Horizontal Pod Autoscaling allows you to define rules that will scale the numbers of replicas up or
down in deployments, replica sets, or replication controllers, based on CPU utilization and optionally
external and custom metrics. For instance, if you have a containerized application that uses up a lot
of CPU under load, then you can configure a Horizonal Pod Autoscaler to automatically scale up the
Deployment, so that additional replicas of this application (Pod) are automatically created to provide
extra capacity when CPU utilization exceeds a target level. Likewise, you can configure the
Horizonal Pod Autoscaler to scale down a Deployment, so that replica Pods are automatically
terminated to release CPU resourceswhen actual CPU utilization drops below a target level.

Typically, when creating a horizontal autoscaler, you can specify the target utilization value of the
metric - this can be a raw value or an average value. Optionally, you can also specify the following:

l Themaximumnumber of replicas the autoscaler can scale up to;

l Theminimumnumber of replicas the autoscaler can scale down to

Whenever the autoscaler runs, the controller manager obtains the actual metrics from the resource
metrics API (for per-pod resource metrics), or the custom metrics API (for metrics other than CPU
and memory that are associated with a Pod), or the external metrics API (for metrics that are not
associated with any object in the Kubernetes system - eg., an external queuing system, such as the
AWS SQS service), as the casemay be. Then, it does the following:



Chapter 3: Moni toring the Kubernetes Cluster

163

l For per-pod resource metrics (like CPU), the controller fetches the metrics from the resource
metrics API for each Pod targeted by the HorizontalPodAutoscaler. Then, if a target utilization
value is set, the controller calculates the utilization value as a percentage of the equivalent
resource request on the containers in each pod. If a target raw value is set, the raw metric values
are used directly. The controller then takes the mean of the utilization or the raw value (depending
on the type of target specified) across all targeted pods, and produces a ratio, which will be used
to scale the number of desired replicas.

l For per-pod custom metrics, the controller functions similarly to per-pod resource metrics, except
that it works with raw values, not utilization values.

l For object metrics and external metrics, a single metric is fetched, which describes the object in
question. Thismetric is compared to the target value, to produce a ratio as above.

If actual resource usage exceeds the targeted value, then the autoscaler uses the ratio it computes
to scale up the replicas. On the other hand, if the actual resource usage falls below the targeted
value, then the autoscaler uses the ratio it computes to scale down.

The efficiency of the autoscaler therefore relies on the successful computation of scales by the
autoscaler, and how prudently you set the scaling limits (i.e., the minimum and maximum replica
count for the autoscaler) and the target utilization values. Sometimes, the autoscaler may fail to
compute scales. At some other times, user errors may restrict scalability or environmental issues
may prevent scaling from even happening. At such times, the success of scaling hinges on the
administrator's ability to promptly detect, diagnose, and fix the bottlenecks to scaling. With the
Horizonal Pod Autoscaler byNamespaces test, administrators have the ability to achieve the above! 

The test auto-discovers the Horizonal Pod autoscalers defined in each namespace. For each
autoscaler in a namespace, the test then reports whether/not that autoscaler can actually perform
scaling, reveals if its scalability is constricted by its configuration, and alerts administrators if the
autoscaler is unable to compute the scales. This way, the test enables administrators promptly
capture problems impeding efficient autoscaling. If minimum and maximum replica counts were
specified as part of the autoscaler definition, then the test also reports these numbers, so
administrators can quickly figure out if changing these values can enhance scalability. Moreover, by
enabling administrators to track current CPU utilization levels alongside the target utilization levels,
the test not only helps them compute the scaling ratio themselves, but also helps them figure out if
the target needs to be reset. Furthermore, by reporting the desired and current replica counts, the
test reveals to administrators whether/not the autoscaler has successfully scaled up the replica
count to the desired level.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent



Chapter 3: Moni toring the Kubernetes Cluster

164

Outputs of the test : One set of results for each autoscaler in each namespace of the Kubernetes
cluster beingmonitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent,
by default, connects to the Kubernetes API via an HTTPS connection. Accord-
ingly, this flag is set to Yes by default.
If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

165

Parameter Description

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.



Chapter 3: Moni toring the Kubernetes Cluster

166

Parameter Description

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Age Indicates the age of
this autoscaler.

The value of this measure is expressed in
number of days, hours, andminutes.

Is able to scale? Indicates whether/not
this autoscaler is
allowed to scale.

This measure reports the valueYes if the
autoscaler is able to fetch and update
scales. The valueNo is reported if backoff
conditions - eg., a CrashLoopBackOff that is
causing a Pod to start and crashing in a loop
- are preventing scaling. The value
Unknown is reported if the state cannot be
determined.

The numeric values that correspond to these
measure values are as follows:

Measure Value Numeric Value

Yes 1

No 2

Unknown 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not an autoscaler is allowed to
scale. In the graph of this measure however,
the same is indicated using the numeric
equivalents only.

If this measure reports the valueNo or

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

167

Measurement Description Measurement
Unit Interpretation

Unknown, then use the detailed diagnosis
of this measure to know what prevented the
autoscaler from performing scaling.

Is scaling active? Indicates whether/not
this autoscaler is
enabled and is able to
calculate the desired
scales.

This measure reports the valueYes if the
autoscaler is able to fetchmetrics and
compute the scales. The valueNo is
reported if there are problems with fetching
metrics. The valueUnknown is reported if
the state cannot be determined.

The numeric values that correspond to these
measure values are as follows:

Measure Value Numeric Value

Yes 1

No 2

Unknown 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not an autoscaler is able to fetch
metrics. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the valueNo or
Unknown, then use the detailed diagnosis
of this measure to know why the autoscaler
could not fetchmetrics.

Is scaling limited? Indicates whether/not
this autoscaler's
ability to scale is
restricted by a
maximum / minimum
replica count
specification.

This measure reports the valueYes if you
have to raise or lower theminimum or
maximum replica count for the autoscaler to
perform scaling. The valueNo is reported if
the requested scaling is allowed. The value
Unknown is reported if the state cannot be
determined.



Chapter 3: Moni toring the Kubernetes Cluster

168

Measurement Description Measurement
Unit Interpretation

The numeric values that correspond to these
measure values are as follows:

Measure Value Numeric Value

Yes 1

No 2

Unknown 3

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
whether/not an autoscaler is restricted by its
minimum/maximum replica count
specification. In the graph of this measure
however, the same is indicated using the
numeric equivalents only.

If this measure reports the valueNo or
Unknown, then use the detailed diagnosis
of this measure to know why the autoscaler
could not scale.

Minimum replicas Shows the lower limit
for the number of
Pods that can be set
by this autoscaler.
(Default: 1)

Number If the value of this measure is the same as
that of theCurrent replicasmeasure, then
the autoscaler will not be able to scale down
until theminimum replica count is decreased
in the autoscaler definition. Under such
circumstances, you will find that the Is
scaling limited?measure reports the value
Yes.

Maximum replicas Shows the upper limit
for the number of pods
that can be set by this
autoscaler.

Number The value of this measure cannot be lesser
than the value of theMinimum replicas
measure.

If the value of this measure is the same as
that of theCurrent replicasmeasure, then
the autoscaler will not be able to scale up
until themaximum replica count is increased



Chapter 3: Moni toring the Kubernetes Cluster

169

Measurement Description Measurement
Unit Interpretation

in the autoscaler definition. Under such
circumstances, you will find that the Is
scaling limited?measure reports the value
Yes

Target CPU
utilization

Indicates the target
average CPU
utilization
(represented as a
percentage of
requested CPU) set
for this autoscaler.

Percent If a target utilization is not set in the
autoscaler's definition, then the default
autoscaling policy will be used.

Current
CPU utilization

Indicates the actual
average CPU
utilization across all
Pods targeted by this
autoscaler.

Percent If the value of this measure is greater than
that of the Target CPU utilization
measure, the autoscaler will automatically
scale up the replica Pod count to the desired
level or up to themaximum replica count
(whichever limit is reached first).

If the value of this measure is lesser than
that of the Target CPU utilization
measure, the autoscaler will automatically
scale down the replica pod count to the
desired level or up to theminimum replica
count (whichever limit is reached first).

Desired replicas Indicates the number
of replicas up to which
this autoscaler can
scale up or scale
down.

Number

Current replicas Indicates the number
of replicas currently
managed by this
autoscaler.

Number If the value of this measure is not equal to
that of theDesired replicasmeasure, it
could mean one of the following:

l Autoscaling has failed;

l Theminimum / maximum replica count

specification in the autoscaler definition



Chapter 3: Moni toring the Kubernetes Cluster

170

Measurement Description Measurement
Unit Interpretation

are restricting scalability.

In the case of the former, you will have to
investigate the reasons for the failure. In the
case of the latter, check the value of the
Minimum replicas andMaximum replicas
measures and see if changing them will
improve scalability of the autoscaler.

If the Is scaling active?measure reports the value No or Unknown, then use the detailed diagnosis of
thismeasure to know why the autoscaler could not fetchmetrics.

Figure 3.43: The detailed diagnosis of the Is scaling active?measure

3.1.15 Jobs by Namespaces Test

A Job creates one or more Pods and ensures that a specified number of them successfully
terminate. As pods successfully terminate, the Job tracks how many Pods completed their tasks
successfully. When a specified number of successful completions is reached, the task (ie, Job) is
complete.

Jobs are useful for large computation and batch-oriented tasks. Jobs can be used to support parallel
execution of Pods. You can use a Job to run independent but related work items in parallel: sending
emails, rendering frames, transcoding files, scanning database keys, etc.

In the real world, failure of such tasks can degrade the performance of business-critical applications
managed by the Kubnernetes system. Likewise, delays in Job execution can also significantly delay
the delivery of key business services that overlay the Kubernetes cluster. To ensure peak
application/service performance at all times, it is imperative that administrators track the status and
duration of each Job that is run on Kubernetes, promptly capture Job failures and slowness, rapidly
determine the reason why a Job failed, and swiftly fix it. This is where the Jobs by Namespaces test
helps!

This test auto- discovers the namespaces configured in the Kubernetes system, and for each
namespace, reports the count of Jobs in different operational states. In the process, the test brings
failed and slow Jobs to light. Detailed diagnostics of the test describes the failed and slow Jobs and



Chapter 3: Moni toring the Kubernetes Cluster

171

also provides the reason why Jobs failed. Administrators can use this information to effectively
troubleshoot the failure. Additionally, the test reports the status of Pods created by the Jobs, and
alerts administrators if any Job resulted in Pod failures.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each namespace in the Kubernetes cluster being
monitored

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is
6443.

Load Balancer / Master Node IP To run this test and report metrics, the eG agent needs to connect to the
Kubernetes API on themaster node and run API commands. To enable
this connection, the eG agent has to be configured with either of the
following:

l If only a single master node exists in the cluster, then configure the

eG agent with the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you

need to configure the eG agent with the IP address of the load balancer

that is managing the cluster. In this case, the load balancer will route

the eG agent's connection request to any available master node in the

cluster, thus enabling the agent to connect with the API server on that

node, run API commands on it, and pull metrics.

By default, this parameter will display the Load Balancer / Master Node
IP that you configured whenmanually adding the Kubernetes cluster for
monitoring, using theKubernetes Cluster Preferences page in the
eG admin interface (see Figure 2.3). The steps for managing the cluster
using the eG admin interface are discussed elaborately inHow to
Monitor the KubernetesCluster Using eGEnterprise?

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

172

Parameter Description

Whenever the eG agent runs this test, it uses the IP address that is
displayed (by default) against this parameter to connect to the Kubernetes
API. If there is any change in this IP address at a later point in time, then
make sure that you update this parameter with it, by overriding its default
setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG
agent, by default, connects to the Kubernetes API via an
HTTPS connection. Accordingly, this flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag to
No.

Authentication Token The eG agent requires an authentication bearer token to access the
Kubernetes API, run API commands on the cluster, and pull metrics of
interest. The steps for generating this token have been detailed in Section
1.1

Typically, once you generate the token, you can associate that token with
the target Kubernetes cluster, whenmanually adding that cluster for
monitoring using the eG admin interface. The steps for managing the
cluster using the eG admin interface are discussed elaborately in Section
Chapter 2

By default, this parameter will display theAuthentication Token that you
provided in theKubernetes Cluster Preferences page of the eG
admin interface, whenmanually adding the cluster for monitoring (see
Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed
(by default) against this parameter for accessing the API and pulling
metrics. If for any reason, you generate a new authentication token for the
target cluster at a later point in time, thenmake sure you update this
parameter with the change. For that, copy the new token and paste it
against this parameter.

Job Age In Seconds By default, this parameter is set to 300 seconds. This means that, by
default, this test will count any Job that runs for a duration over 300
seconds as a Longest running Job. You can override this default setting
by specifying a different duration (in seconds) value here.

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a
proxy server, then provide the IP address of the proxy server here. If no
proxy is used, then the default setting -none - of this parameter, need not



Chapter 3: Moni toring the Kubernetes Cluster

173

Parameter Description

be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a
proxy server, then provide the port number at which that proxy server
listens here. If no proxy is used, then the default setting -none - of this
parameter, need not be changed,

Proxy Username, Proxy
Password, Confirm Password

These parameters are applicable only if the eG agent uses a
proxy server to connect to the Kubernetes cluster, and that
proxy server requires authentication. In this case, provide a valid
user name and password against the PROXY USERNAME and PROXY
PASSWORD parameters, respectively. Then, confirm the password by
retyping it in theCONFIRM PASSWORD text box.

If no proxy server is used, or if the proxy server used does not require
authentication, then the default setting - none - of these parameters, need
not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default,
detailedmeasures will be generated every time this test runs, and also
every time the test detects a problem. You canmodify this frequency, if
you so desire. Also, if you intend to disable the detailed diagnosis
capability for this test, you can do so by specifying none against DD
frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the
eG agents can be configured to run detailed, more elaborate tests as and
when specific problems are detected. To enable the detailed diagnosis
capability of this test for a particular server, choose theOn option. To
disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability
will be available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed

diagnosis measures should not be 0.



Chapter 3: Moni toring the Kubernetes Cluster

174

Measurement Description Measurement
Unit Interpretation

Completed jobs Indicates the number
of Jobs in this
namespace that have
completed execution.

Number A non-parallel Job is one that creates only
one Pod. Such a Job is said to have
completed if that Pod terminates
successfully. On the other hand, a parallel
Job is one that creates multiple Pods. In
the case of such Jobs, you need to specify
the desired number of completions using
the completions field in your Job
specification. A parallel Job is said to have
completed only if the desired number of
Pods terminate successfully.

A high value is desired for this measure.

Failed jobs Indicates the number
of Jobs in this
namespace that failed.

Number A Job is said to have failed if the specified
number of Pods could not complete the
tasks.

By default, a Job will run uninterrupted
unless a Pod fails (restartPolicy=Never) or
a Container exits in error
(restartPolicy=OnFailure). At which point,
the Job will retry Pod creation. However,
there are situations where you want to fail a
Job after some amount of retries due to a
logical error in configuration etc. To do so,
set .spec.backoffLimit to specify the
number of retries before considering a Job
as failed. The back-off limit is set by default
to 6. Once .spec.backoffLimit has been
reached the Job will bemarked as failed
and any running Pods will be terminated.

Another way to fail a Job is by setting an
active deadline. Do this by setting the
.spec.activeDeadlineSeconds field of
the Job to a number of seconds. The
activeDeadlineSeconds applies to the
duration of the Job, nomatter how many

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

175

Measurement Description Measurement
Unit Interpretation

Pods are created. Once a Job reaches
activeDeadlineSeconds, all of its running
Pods are terminated and the Job status will
become type: Failed with reason:
DeadlineExceeded.

Note that a Job’s
.spec.activeDeadlineSeconds takes
precedence over its .spec.backoffLimit.
Therefore, a Job that is retrying one or more
failed Pods will not deploy additional Pods
once it reaches the time limit specified by
activeDeadlineSeconds, even if the
backoffLimit is not yet reached.

Ideally, the value of this measure should be
0. If themeasure reports a non-zero value,
then you can use the detailed diagnosis of
this measure to know which Jobs failed and
why.

Running pods Indicates the number
of Pods created by
Jobs in this
namespace, which are
currently in the
Running state.

Number If a Pod is in the Running state, it means
that the Pod has been bound to a node, and
all of the Containers have been created. At
least one Container is still running, or is in
the process of starting or restarting.

Failed pods Indicates the number
of Pods created by
Jobs in this
namespace, which are
currently in the Failed
state.

Number If a Pod is in the Failed state, it means that
all Containers in the Pod have terminated,
and at least one Container has terminated
in failure. That is, the Container either
exited with non-zero status or was
terminated by the system.

Succeeded pods Indicates the number
of Pods created by
Jobs in this
namespace, which are
currently in the
Succeeded state.

Number If a Pod is in the Succeeded state, it means
that all Containers in the Pod have
terminated in success, and will not be
restarted.



Chapter 3: Moni toring the Kubernetes Cluster

176

Measurement Description Measurement
Unit Interpretation

Longest running
jobs

Indicates the number
of Jobs in this
namespace that have
been running for a
duration greater than
the value of the JOB
AGE SECONDS
parameter.

Number Ideally, the value of this measure should be
0.

If this measure reports a non-zero value,
then use the detailed diagnosis of this
measure to know which Jobs are executing
for a long time.

Active cron jobs Indicates the number
of cron Jobs that are
currently active in this
namespace.

Number A Cron Job creates Jobs on a time-based
schedule.

One CronJob object is like one line of a
crontab (cron table) file. It runs a Job
periodically on a given schedule, written in
Cron format.

To know which Jobs in a namespace have been running for a long time, use the detailed diagnosis of
the Longest running jobsmeasure.

Figure 3.44: The detailed diagnosis of the Longest running jobs measure

3.1.16 The Kube Application Services Layer

The tests mapped to this layer help you monitor Services, and quickly detect those Services that are
not running currently.



Chapter 3: Moni toring the Kubernetes Cluster

177

Figure 3.45: The tests mapped to the Kube Application Services layer

3.1.17 Services by Namespace Test

In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a policy by which
to access them (sometimes this pattern is called a micro-service). Services enable a loose coupling
between dependent Pods.

A Service is required because, Pods are mortal - they are born, and they die. In a deployment
therefore, the set of Pods running in one moment in time could be different from the set of Pods
running that application a moment later. This leads to a problem: if some set of Pods (call them
“backends”) provides functionality to other Pods (call them “frontends”) inside your cluster, how do
the frontends find out and keep track of which IP address to connect to, so that the frontend can use
the backend part of the workload? This is where Services help! By associating a Service with a set of
dependent pods, you canmake sure that Kubernetes automatically reconciles changes among pods
so that your applications continue to function.

A Service is defined using YAML (preferred) or JSON, like all Kubernetes objects. The set of Pods
targeted by a Service is usually determined by a LabelSelector.

Although each Pod has a unique IP address, those IPs are not exposed outside the cluster without a
Service. In fact, using Services, you can allow your applications to receive traffic from outside the
cluster. By default however, a Service is accessible from within the cluster only. You can override
this default setting using the ServiceType specification in the service definition. With the help of this
specification, you can indicate where the Service should be exposed and what type of traffic (internal
or external) it can receive. This means that if a Service is not up and running, then, depending upon
the ServiceType, the unavailability of the Service can deny external users access to the application
and can even hamper internal application operations. To assure users of continued access to their
applications running in the Kubernetes cluster and to ensure peak application performance at all



Chapter 3: Moni toring the Kubernetes Cluster

178

times, administrators should not only be able to promptly detect the non-availability of a Service, but
should also be able to rapidly tell what type of Service it is and why it is not up. This is where the
Services byNamespace test helps!

This test auto-discovers the Services defined within each namespace, and reports the current state,
type, and age of each Service. This way, the test promptly alerts administrators if any Service is not
up and running. Detailed diagnostics of the test also reveal the reason why the Service is so.
Additionally, the test also reports the number and names of Pods that each Service targets and the
LabelSelector used by each Service to identify the Pods. These details help in troubleshooting the
abnormal state of a Service.

Target of the test : A KubernetesCluster

Agent deploying the test : A remote agent

Outputs of the test : One set of results for each Service in every namespace configured in the
Kubernetes cluster beingmonitored

First-level Descriptor: Namespace

Second-level Descriptor: Service

Parameter Description

Test Period How often should the test be executed.

Host The IP address of the host for which this test is to be configured.

Port Specify the port at which the specified Host listens. By default, this is 6443.

Load Balancer /
Master Node IP

To run this test and report metrics, the eG agent needs to connect to the Kubernetes
API on themaster node and run API commands. To enable this connection, the eG
agent has to be configured with either of the following:

l If only a single master node exists in the cluster, then configure the eG agent with

the IP address of themaster node.

l If the target cluster consists of more than onemaster node, then you need to

configure the eG agent with the IP address of the load balancer that is managing the

cluster. In this case, the load balancer will route the eG agent's connection request

to any available master node in the cluster, thus enabling the agent to connect with

the API server on that node, run API commands on it, and pull metrics.

Configurable parameters for the test



Chapter 3: Moni toring the Kubernetes Cluster

179

Parameter Description

By default, this parameter will display the Load Balancer / Master Node IP that you
configured whenmanually adding the Kubernetes cluster for monitoring, using the
Kubernetes Cluster Preferences page in the eG admin interface (see Figure 2.3). The
steps for managing the cluster using the eG admin interface are discussed elaborately
inHow toMonitor the KubernetesCluster Using eGEnterprise?

Whenever the eG agent runs this test, it uses the IP address that is displayed (by
default) against this parameter to connect to the Kubernetes API. If there is any change
in this IP address at a later point in time, thenmake sure that you update this parameter
with it, by overriding its default setting.

SSL By default, the Kubernetes cluster is SSL-enabled. This is why, the eG agent, by
default, connects to the Kubernetes API via an HTTPS connection. Accordingly, this
flag is set toYes by default.

If the cluster is not SSL-enabled in your environment, then set this flag toNo.

Authentication
Token

The eG agent requires an authentication bearer token to access the Kubernetes API,
run API commands on the cluster, and pull metrics of interest. The steps for generating
this token have been detailed in Section 1.1

Typically, once you generate the token, you can associate that token with the target
Kubernetes cluster, whenmanually adding that cluster for monitoring using the
eG admin interface. The steps for managing the cluster using the eG admin interface
are discussed elaborately in SectionChapter 2

By default, this parameter will display theAuthentication Token that you provided in
theKubernetes Cluster Preferences page of the eG admin interface, whenmanually
adding the cluster for monitoring (see Figure 2.3).

Whenever the eG agent runs this test, it uses the token that is displayed (by default)
against this parameter for accessing the API and pullingmetrics. If for any reason, you
generate a new authentication token for the target cluster at a later point in time, then
make sure you update this parameter with the change. For that, copy the new token
and paste it against this parameter.

Report System
Namespace

The kube-system namespace consists of all objects created by the Kubernetes
system. Monitoring such a namespacemay not only increase the eG agent's
processing overheads, but may also clutter the eG database. Therefore, to optimize
agent performance and to conserve database space, this test, by default, excludes the
kube-system namespace frommonitoring. Accordingly, this flag is set toNo by
default.

If required, you can set this flag toYes, and enablemonitoring of the kube-system
namespace.



Chapter 3: Moni toring the Kubernetes Cluster

180

Parameter Description

Proxy Host If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the IP address of the proxy server here. If no proxy is used, then the
default setting -none - of this parameter, need not be changed,

Proxy Port If the eG agent connects to the Kubernetes API on themaster node via a proxy server,
then provide the port number at which that proxy server listens here. If no proxy is
used, then the default setting -none - of this parameter, need not be changed,

Proxy Username,
Proxy Password,
Confirm Password

These parameters are applicable only if the eG agent uses a proxy server to
connect to the Kubernetes cluster, and that proxy server requires
authentication. In this case, provide a valid user name and password against the
Proxy Username andProxy Password parameters, respectively. Then, confirm the
password by retyping it in theConfirm Password text box.

If no proxy server is used, or if the proxy server used does not require authentication,
then the default setting - none - of these parameters, need not be changed.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Service Type Indicates the type of The values that this measure reports and

Measurements made by the test



Chapter 3: Moni toring the Kubernetes Cluster

181

Measurement Description Measurement
Unit Interpretation

this Service. their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

ClusterIP 1

NodePort 2

ExternalName 3

LoadBalancer 4

Each of these types have been briefly
described below:

l ClusterIP: Exposes the Service on an

internal IP in the cluster. This typemakes

the Service only reachable from within the

cluster.

l NodePort: Exposes the Service on the

same port of each selected Node in the

cluster using NAT. Makes a Service

accessible from outside the cluster using

<NodeIP>:<NodePort>. Superset of

ClusterIP.

l ExternalName: Exposes the Service

using an arbitrary name (specified by

externalName in the spec) by returning a

CNAME record with the name. No proxy

is used. This type requires v1.7 or higher

of kube-dns.

l LoadBalancer: Creates an external load

balancer in the current cloud (if supported)

and assigns a fixed, external IP to the

Service. Superset of NodePort.



Chapter 3: Moni toring the Kubernetes Cluster

182

Measurement Description Measurement
Unit Interpretation

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the Service type. In the graph of this
measure however, the type is indicated
using the numeric equivalents only.

Age Indicates how old this
Service is.

The value of this measure is expressed in
number of days, hours, andminutes.

You can use the detailed diagnosis of this
measure to know the Cluster IP on which
the Service has been exposed, the
LabelSelector using which the Service
identifies the Pods, and the internal and
external endpoints associated with the
Service.

Total pods Indicates the number
of pods that this
Service targets.

Number Use the detailed diagnosis of this measure
to know which Pods are targeted by the
Service and which Node each Pod is running
on.

Status Indicates the current
status of this Service.

The values that this measure reports and
their corresponding numeric values are
detailed in the table below:

Measure Value Numeric Value

Running 1

Pending 0

If the value of this measure is Pending, then
you can use the detailed diagnosis of this
measure to understand why the Service is in
a Pending state.

Note:

By default, this test reports theMeasure
Values listed in the table above to indicate
the Service status. In the graph of this
measure however, the status is indicated
using the numeric equivalents only.



Chapter 3: Moni toring the Kubernetes Cluster

183

The detailed diagnosis of the Agemeasure reports the service type, the cluster IP address on which
the service is exposed, the internal and external endpoints of the service, and the label selector.

Figure 3.46: The detailed diagnosis of the Agemeasure of the Services by Namespace test



About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2019 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.


	Chapter 1: Introduction to Monitoring the Kubernetes Cluster
	1.1 How Does eG Enterprise Monitor a Kubernetes Cluster?
	1.1.1 Configuring the eG Agent to Connect to the Master Node
	1.1.2 Configuring the eG Agent with an Authentication Bearer Token


	Chapter 2: How to Monitor the Kubernetes Cluster Using eG Enterprise?
	Chapter 3:
	Chapter 3: Monitoring the Kubernetes Cluster
	3.1 The Kube Control Plane Layer
	3.1.1 Kube Events Test
	3.1.2 API Server Connectivity Test
	3.1.3 Kube Garbage Collection Test
	3.1.4 Kube Master Services Test
	3.1.5 The Kube Cluster Layer
	3.1.6 Kube Cluster Nodes Test
	3.1.7 Kube Cluster Overview Test
	3.1.8 Kube Namespaces Test
	3.1.9 Kube Persistent Volumes Test
	3.1.10 The Kube Workloads Layer
	3.1.11 Pods by Namespace Test
	3.1.12 Deployments by Namespace Test
	3.1.13 Daemonset by Namespace
	3.1.14 Horizontal Pod Autoscaler by Namespaces Test
	3.1.15 Jobs by Namespaces Test
	3.1.16 The Kube Application Services Layer
	3.1.17 Services by Namespace Test


	About eG Innovations

