
Monitoring Java Applications

eG Innovations Product Documentation

www.eginnovations.com



Table of Contents
CHAPTER 1: INTRODUCTION 1

CHAPTER 2: PRE-REQUISITES FOR MONITORING JAVA APPLICATIONS 2

2.1 Enabling JMX Support for JRE 2

2.1.1 Securing the ‘jmxremote.password’ file 6

2.1.2 Configuring the eG Agent to Support JMX Authentication 12

2.2 Enabling SNMP Support for JRE 17

2.3Managing the Java Application 24

CHAPTER 3: MONITORINGA JAVA APPLICATION 26

3.1 The Java Transactions Layer 27

3.1.1 Java Business Transactions Test 27

3.2 The JVM Internals Layer 28

3.2.1 JMX Connection to JVM 29

3.2.2 JVM File Descriptors Test 31

3.2.3 Java Classes Test 33

3.2.4 JVM Garbage Collections Test 37

3.2.5 JVM Memory Pool Garbage Collections Test 40

3.2.6 JVM Threads Test 46

3.3 The JVM Engine Layer 59

3.3.1 JVM CPU Usage Test 60

3.3.2 JVM Memory Usage Test 66

3.3.3 JVM Uptime Test 78

3.3.4 JVM Leak Suspects Test 83

3.4What the eG Enterprise JavaMonitor Reveals? 94

3.4.1 Identifying and Diagnosing a CPU Issue in the JVM 94

3.4.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM 99

3.4.3 Identifying and Diagnosing a Thread Waiting Situation in the JVM 105

3.4.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM 108

3.4.5 Identifying and Diagnosing Memory Issues in the JVM 114

ABOUT EG INNOVATIONS 117



Table of Figures
Figure 2.1: Selecting the Properties option 7

Figure 2.2: The Properties dialog box 7

Figure 2.3: Deselecting the ‘Use simple file sharing’ option 8

Figure 2.4: Clicking the Advanced button 9

Figure 2.5: Verfying whether the Owner of the file is the same as the application Owner 9

Figure 2.6: Disinheriting permissions borrowed from a parent directory 10

Figure 2.7: Copying the inherited permissions 11

Figure 2.8: Granting full control to the file owner 12

Figure 2.9: Scrolling down the jmxremote.password file to view 2 commented entries 13

Figure 2.10: The jmxremote.access file 14

Figure 2.11: Uncommenting the ‘controlRole’ line 14

Figure 2.12: Editing the java.policy file 15

Figure 2.13: Appending a new username password pair 16

Figure 2.14: Assigning rights to the new user in the jmxremote.access file 16

Figure 2.15: Editing the java.policy file to grant john full access to javax.management.MBeanPermission 17

Figure 2.16: The snmp.acl file 19

Figure 2.17: The snmp.acl file revealing the SNMP ACL example 20

Figure 2.18: Uncommenting the code block 20

Figure 2.19: The edited block 22

Figure 2.20: Adding a Java Application 24

Figure 2.21: List of Unconfigured tests for the Java Application 25

Figure 3.1: Layer model of the Java Application 26

Figure 3.2: The tests associated with the JVM Internals layer 29

Figure 3.3: Editing the startup script file of a sample Java application 46

Figure 3.4: The STACK TRACE link 56

Figure 3.5: Stack trace of a resource-intensive thread 57

Figure 3.6: Thread diagnosis of live threads 58

Figure 3.7: The tests associated with the JVM Engine layer 60

Figure 3.8: The detailed diagnosis of the CPU utilization of JVM measure 66

Figure 3.9: The detailed diagnosis of the Used memory measure 76

Figure 3.10: A sample code 84

Figure 3.11: The detailed diagnosis of the Leak suspect classes measure 93

Figure 3.12: The detailed diagnosis of the Number of objects measure 94

Figure 3.13: The Java application being monitored functioning normally 95

Figure 3.14: The High cpu threads measure indicating that a single thread is consuming CPU excessively 96

Figure 3.15: The detailed diagnosis of the  High cpu threads measure 96

Figure 3.16: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure 97



Figure 3.17: Stack trace of the CPU-intensive thread 97

Figure 3.18: The LogicBuilder.java file 98

Figure 3.19: The High CPU threads measure reporting a 0 value 99

Figure 3.20: The value of the Blocked threads measure being incremented by 1 100

Figure 3.21: Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the
blocked thread 100

Figure 3.22: The Stack Trace of the blocked thread 101

Figure 3.23: The DbConnection.java program file 102

Figure 3.24: The lines of code preceding line 126 of the DbConnection.java program file 102

Figure 3.25: Viewing the stack trace of the ObjectManagerThread 103

Figure 3.26: The lines of code in the ObjectManager.java source file 103

Figure 3.27: Comparing the ObjectManager and DbConnection classes 104

Figure 3.28: The Waiting threads 105

Figure 3.29: The detailed diagnosis of the Waiting threads measure 106

Figure 3.30: Viewing the stack trace of the waiting thread 106

Figure 3.31: The Thread Diagnosis window for Waiting threads 107

Figure 3.32: The stack trace for the SessionController thread 107

Figure 3.33: The UserSession.java file 108

Figure 3.34: The JVM Threads test reporting 0 Deadlock threads 109

Figure 3.35: The Deadlock threads measure value increasing in the event of a deadlock situation 109

Figure 3.36: The detailed diagnosis page revealing the deadlocked threads 110

Figure 3.37: Viewing the stack trace of the dadlocked threads in the detailed diagnosis page 110

Figure 3.38: The stack trace for the ResourceDataOne thread 111

Figure 3.39: The stack trace for the ResourceDataTwo thread 112

Figure 3.40: The lines of code executed by the ResourceDataOne thread 112

Figure 3.41: The lines of code executed by the ResourceDataTwo thread 113

Figure 3.42: The Used memory measure indicating the amount of pool memory being utilized 114

Figure 3.43: The detailed diagnosis of the Used memory measure 115

Figure 3.44: Choosing a different Sory By option and Measurement Time 115

Figure 3.45: The method that is invoking the SapBusinessObject 116



Chapter 1: Introduction

1

Chapter 1: Introduction

Java applications are predominantly used in enterprises today owing to their multi-platform nature.
Once written, a Java application can be run on heterogeneous platforms with no additional
configuration. This is why, the Java technology is widely used in the design and delivery of many
critical web and non-web-based applications.

The prime concern of the administrators of these applications is knowing how well the application is
functioning, and how to troubleshoot issues (if any) in the performance of these applications. Most
web application server vendors prescribe custom APIs for monitoring – for instance, WebSphere
and WebLogic allow administrators to use their built- in APIs for performance monitoring and
problem detection. The details of these APIs and how eG Enterprise uses them to monitor the
application server in question are discussed elaborately in this document.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

2

Chapter 2: Pre-requisites for Monitoring Java Applications

The Java Application model that eGEnterprise prescribes provides both agentless and agent-based
monitoring support to Java applications. The eG agent, deployed either on the application host or on
a remote Windows host in the environment (depending upon the monitoring approach – whether
agent-based or agentless), can be configured to connect to the JRE used by the application and pull
out metrics of interest, using either of the followingmethodologies:

l JMX (JavaManagement Extensions)

l SNMP (Simple NetworkManagement Protocol)

Note:
The eGagent uses the specifications prescribed by JSR 174 to perform JVMmonitoring.

This is why, each test mapped to the top 2 layers of Figure 1 provides administrators with the option
to pick a monitoring MODE - i.e., either JMX or SNMP. The remaining test configuration depends
upon themode chosen.

Since both JMX and SNMP support are available for JRE 1.5 and above only, the Java Application
model can be used to monitor only those applications that are running JRE 1.5 and above.
The supported JVMs are as follows:

l Sun JVM1.5 or higher

l JRockit JVM 5.0 R27.1 or higher

l IBM JRE 1.5 or higher

l OpenJDK 1.5 or higher

l Azul Zing JVM1.6 or higher

The sections to come discuss how to enable JMX and SNMP for JRE.

2.1 Enabling JMX Support for JRE
In older versions of Java (i.e., JDK/JRE 1.1, 1.2, and 1.3), very little instrumentation was built in, and
custom-developed byte-code instrumentation had to be used to performmonitoring. From JRE/JDK
1.5 and above however, support for Java Management Extensions (JMX) were pre- built into
JRE/JDK. JMX enables external programs like the eG agent to connect to the JRE of an application
and pull out metrics in real-time.

Note:



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

3

This section discusses the procedure for enabling JMX support for the JRE of any generic Java
application that may be monitored using eG Enterprise. To know how to enable JMX support for the
JRE of key application servers monitored out-of-the-box by eG Enterprise, refer to the relevant
chapters of the Configuring andMonitoring Application Servers document.

By default, JMX requires no authentication or security (SSL). In this case therefore, to use JMX for
pulling out metrics from a target application, the following will have to be done:

1. Login to the application host.

2. The <JAVA_HOME>\jre\lib\management folder used by the target application will typically
contain the following files:

l management.properties

l jmxremote.access

l jmxremote.password.template

l snmp.acl.template

3. Edit themanagerment.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false com.sun.management.jmxremote.authenticate=false

For instance, if the JMX listens on port 9005, then the first line of the above specification would
be:

com.sun.management.jmxremote.port=9005

4. Then, save the file.

5. Next, edit the start-up script of the target application, and add the following line to it:

-Dcom.sun.management.config.file=<management.properties_file_path>

-Djava.rmi.server.hostname=<IP Address>

6. For instance, on aWindows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>
specification will be as follows: /usr/jdk1.5.0_
05/jre/lib/management/management.properties



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

4

8. In the second line, set the <IP Address> to the IP address using which the Java application has
been managed in the eG Enterprise system. Alternatively, you can add the following line to the
startup script: -Djava.rmi.server.hostname=localhost

9. Save this script file too.

10. Next, during test configuration, do the following:

l Set JMX as themode;

l Set the port that you defined in step 3 above (in the management.properties file) as the jmx
remote port;

l Set the user and password parameters to none.

l Update the test configuration.

On the other hand, if JMX requires only authentication (and no security), then the following steps will
apply:

1. Login to the application host. If the application is executing on a Windows host, then, login to the
host as a local/domain administrator.

2. As stated earlier, the <java_home>\jre\lib\management folder used by the target application will
typically contain the following files:

l management.properties

l jmxremote.access

l jmxremote.password.template

l snmp.acl.template

3. First, copy the jmxremote.password.template file to any other location on the host, rename it as
as jmxremote.password, and then, copy it back to the <JAVA_HOME>\jre\lib\management
folder.

4. Next, edit the jmxremote.password file and the jmxremote.access file to create a user with read-
write access to the JMX. To know how to create such a user, refer to Section 2.1.2.

5. Then, proceed tomake the jmxremote.password file secure by granting a single user “full access”
to that file. For monitoring applications executing onWindows in particular, only the Owner of the
jmxremote.password file should have full control of that file. To know how to grant this privilege to
the Owner of the file, refer to Section 2.1.1.

6. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

5

granted full access to the jmxremote.password file, by following the steps below:

l Login to the host as the user who is to be granted full control of the jmxremote.password file.

l Issue the following command:

chmod 600 jmxremote.password

l This will automatically grant the login user full access to the jmxremote.password file.

7. Next, edit themanagement.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false

com.sun.management.jmxremote.authenticate=true

com.sun.management.jmxremote.access.file=<Path of jmxremote.access>

com.sun.management.jmxremote.password.file=<Path of jmxremote.password>

For instance, assume that the JMX remote port is 9005, and the jmxremote.access and
jmxremote.password files exist in the following directory on aWindows host: D:\bea\jrockit_150_
11\jre\lib\management. The specification above will then read as follows:

com.sun.management.jmxremote.port=9005

com.sun.management.jmxremote.access.file=D:\\bea\\jrockit_ 150_

11\\jre\\lib\\management\\jmxremote.access

com.sun.management.jmxremote.password.file=D:\\bea\\jrockit_ 150_

11\\jre\\lib\\management\\jmxremote.password

8. If the application in question is executing on a Unix/Solaris/Linux host, and the jmxremote.access
and jmxremote.password files reside in the /usr/jdk1.5.0_05/jre/lib/management folder of the
host, then the last 2 lines of the specification will be:

com.sun.management.jmxremote.access.file=/usr/jdk1.5.0_

05/jre/lib/management/jmxremote.access

com.sun.management.jmxremote.password.file=/usr/jdk1.5.0_

05/jre/lib/management/jmxremote.password

9. Finally, save the file.

10. Then, edit the start-up script of the target web application server, include the following line in it,
and save the file:

-Dcom.sun.management.config.file=<management.properties_file_path>

-Djava.rmi.server.hostname=<IP Address>



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

6

For instance, on aWindows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties. On other hand, on a
Linux/Solaris host, a sample<management.properties_file_path> specification will be as follows:
/usr/jdk1.5.0_05/jre/lib/management/management.properties

11. In the second line, set the <IP Address> to the IP address using which the Java application has
been managed in the eG Enterprise system. Alternatively, you can add the following line to the
startup script of the target web application server: -Djava.rmi.server.hostname=localhost

12. Next, during test configuration, do the following:

l Set JMX as themode;

l Ensure that the port number configured in the management.properties file at step 5 above is
set as the jmx remote port;

l Make sure that the user and password parameters of the test are that of a user with readwrite
rights to JMX. To know how to create a new user and assign the required rights to him/her,
refer to Section 2.1.2.

Note:

eG Enterprise cannot use JMX that requires both authentication and security (SSL), for
monitoring the target Java application.

2.1.1 Securing the ‘jmxremote.password’ file

To enable the eG agent to use JMX (that requires authentication only) for monitoring a Windows-
based Java application, you need to ensure that the jmxremote.password file in the <JAVA_
HOME>\jre\lib\management folder used by the target application is accessible only by the Owner
of that file. To achieve this, do the following:

1. Login to theWindows host as a local/domain administrator.

2. Browse to the location of the jmxremote.password file usingWindowsExplorer.

3. Next, right-click on the jmxremote.password file and select the Properties option (see Figure
2.1).



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

7

Figure 2.1: Selecting the Properties option

4. FromFigure 2.2 that appears next, select theSecurity tab.

Figure 2.2: The Properties dialog box



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

8

However, if you are onWindows XP and the computer is not part of a domain, then the Security
tabmay bemissing. To reveal theSecurity tab, do the following:

l OpenWindowsExplorer, and choose Folder Options from the Tools menu.

l Select the View tab, scroll to the bottom of the Advanced Settings section, and clear the
check box next toUse Simple File Sharing.

Figure 2.3: Deselecting the ‘Use simple file sharing’ option

l ClickOK to apply the change

l When you restart WindowsExplorer, theSecurity tab would be visible.

5. Next, select theAdvanced button in theSecurity tab of Figure 2.4.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

9

Figure 2.4: Clicking the Advanced button

6. Select theOwner tab to see who the owner of the file is.

Figure 2.5: Verfying whether the Owner of the file is the same as the application Owner

7. Then, proceed to select the Permissions tab in Figure 2.5 to set the permissions. If the



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

10

jmxremote.password file has inherited its permissions from a parent directory that allows users or
groups other than the Owner to access the file, then clear the Inherit from parent the
permission entries that apply to child objects check box in Figure 2.6.

Figure 2.6: Disinheriting permissions borrowed from a parent directory

8. At this point, you will be prompted to confirm whether the inherited permissions should be copied
from the parent or removed. Press theCopy button in Figure 2.7. 



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

11

Figure 2.7: Copying the inherited permissions

9. Next, remove all permission entries that allow the jmxremote.password file to be accessed by
users or groups other than the fileOwner. For this, click the user or group and press theRemove
button in Figure 2.8. At the end of this exercise, only a single permission entry granting Full
Control to the owner should remain in Figure 2.8.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

12

Figure 2.8: Granting full control to the file owner

10. Finally, click theApply andOK buttons to register the changes. The password file is now secure,
and can only be accessed by the file owner.

Note:

If you are trying to enable JMX on a Linux host, you might encounter issues with the way hostnames
are resolved.

To solve it you might have to set the -Djava.rmi.server.hostname=<hostname or localhost or
ip> property in the startup script of the target web application server.

If you are in local, simply try with - Djava.rmi.server.hostname=localhost or -
Djava.rmi.server.hostname=127.0.0.1.

2.1.2 Configuring the eG Agent to Support JMXAuthentication

If the eG agent needs to use JMX for monitoring a Java application, and this JMX requires
authentication only (and not security), then every test to be executed by such an eG agent should
be configured with the credentials of a valid user to JMX, with read-write rights. The steps for
creating such a user are detailed below:



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

13

1. Login to the application host. If the application being monitored is on a Windows host, then login
as a local/domain administrator to the host.

2. Go to the <JAVA_HOME>\jre\lib\management folder used by the target application to view the
following files:

l management.properties

l jmxremote.access

l jmxremote.password.template

l snmp.acl.template

3. Copy the jmxremote.password.template file to a different location, rename it as
jmxremote.password, and copy it back to the <JAVA_HOME>\jre\lib\management folder.

4. Open the jmxremote.password file and scroll down  to the end of the file. By default, you will find
the commented entries indicated by Figure 2.9 below:

Figure 2.9: Scrolling down the jmxremote.password file to view 2 commented entries

5. The two entries indicated by Figure 2.9 are sample username password pairs with access to
JMX. For instance, in the first sample entry of Figure 2.9 monitorRole is the username and QED
is the password corresponding to monitorRole. Likewise, in the second line, the controlRole user
takes the password R&D.

6. If you want to use one of these pre-defined username password pairs during test configuration,
then simply uncomment the corresponding entry by removing the # symbol preceding that entry.
However, prior to that, you need to determine what privileges have been granted to both these
users. For that, open the jmxremote.access file in the editor.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

14

Figure 2.10: The jmxremote.access file

7. Scrolling down the file (as indicated by Figure 2.10) will reveal 2 lines, each corresponding to the
sample username available in the jmxremote.password file. Each line denotes the access rights
of the corresponding user. As is evident from Figure 2.10 , the user monitorRole has only
readonly rights, while user controlRole has readwrite rights. Since the eG agent requires
readwrite rights to be able to pull out key JVM-related statistics using JMX, we will have to
configure the test with the credentials of the user controlRole.

8. For that, first, edit the jmxremote.password file and uncomment the controlRole <password> line
as depicted by Figure 2.11.

Figure 2.11: Uncommenting the ‘controlRole’ line

9. Then, save the file.

10. If a security manager is enabled for the target Java application, then you also need to make sure
that the controlRole is allowed full access to the javax.management.MBeanPermission. To grant
full access to the controlRole, do the following:



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

15

l Edit the java.policy file in the <JAVA_HOME>\jre\lib\security directory of the target Java
application.

l Insert the following entry at the top of the file's contents (see Figure 2.12):

grant principal javax.management.remote.JMXPrincipal "controlRole" {

permission javax.management.MBeanPermission "*", "*";

};

Figure 2.12: Editing the java.policy file

l Then, save the file.

If this is not done, then a java.security.AccessControlException will occur, when the eG
agent attempts to connect to the JRE using JMX.

11. You can now proceed to configure the tests with the user name controlRole and password R&D.

12. Alternatively, instead of going with these default credentials, you can create a new username
password pair in the jmxremote.password file, assign readwrite rights to this user in the
jmxremote.access file, and then configure the eG tests with the credentials of this new user. For
instance, let us create a user john with password john and assign readwrite rights to john.

13. For this purpose, first, edit the jmxremote.password file, and append the following line (see
Figure 2.13) to it:



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

16

john   john

Figure 2.13: Appending a new username password pair

14. Save the jmxremote.password file.

15. Then, edit the jmxremote.access file, and append the following line (see Figure 2.14) to it:

john   readwrite

Figure 2.14: Assigning rights to the new user in the jmxremote.access file

16. Then, save the jmxremote.access file.

17. Next, if a security manager object is enabled for your Java application, then insert the following
entry at the top of the contents of the java.policy file (in the <JAVA_HOME>\jre\lib\security folder
(see Figure 2.15).



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

17

Figure 2.15: Editing the java.policy file to grant john full access to javax.management.MBeanPermission

18. Finally, proceed to configure the tests with the user name and password, john and john,
respectively.

2.2 Enabling SNMP Support for JRE
Instead of JMX, you can configure the eG agent to monitor a Java application using SNMP-based
access to the Java runtimeMIB statistics.

In some environments, SNMP access might have to be authenticated by an ACL (Access Control
List), and in some other cases, it might not require an ACL.

If SNMP access does not require ACL authentication, then follow the steps below to enable
SNMP support:

1. Login to the application host.

2. Ensure that the SNMP service and the SNMP Trap Service are running on the host.

3. Next, edit the management.properties file in the <JAVA_HOME>\jre\lib\management folder
used by the target application.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

18

4. Append the following lines to the file:

com.sun.management.snmp.port=<Port No>

com.sun.management.snmp.interface=0.0.0.0

com.sun.management.snmp.acl=false

For instance, if the SNMP port is 1166, then the first line of the above specification will be:

com.sun.management.snmp.port=1166

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept
SNMP requests from any host in the environment. To ensure that the JRE services only those
SNMP requests that are received from the eG agent, set the second line of the specification to
the IP address of the agent host. For instance, if the eG agent to monitor the Java application is
executing on 192.168.10.152, then the second line of the specification will be:

com.sun.management.snmp.interface=192.168.10.152

5. Next, edit the start-up script of the target application, include the following line it, and save the
script file.

-Dcom.sun.management.config.file=<management.properties_file_path>

6. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties.

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification
will be as follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties.

On the contrary, if SNMP access requires ACL authentication , then follow the steps below to
enable SNMP support for the JRE:

1. Login to the application host. If the target application is executing on a Windows host, login as a
local/domain administrator.

2. Ensure that the SNMP service and SNMP Trap Service are running on the host.

3. Copy the snmp.acl.template file in the <JAVA_HOME>\jre\lib\management folder to another
location on the local host. Rename the snmap.acl.template file as snmp.acl, and copy the
snmp.acl file back to the <JAVA_HOME>\jre\lib\management folder.

4. Next, edit the snmp.acl file, and set rules for SNMP access in the file.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

19

Figure 2.16: The snmp.acl file

5. For that, first scroll down the file to view the sample code block revealed by Figure 2.17.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

20

Figure 2.17: The snmp.acl file revealing the SNMP ACL example

6. Uncomment the code block by removing the # symbol preceding each line of the block as
indicated by Figure 2.18.

Figure 2.18: Uncommenting the code block



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

21

7. Next, edit the code block to suit your environment.

8. The acl block expects the following parameters:

l communities : Provide a comma-separated list of community strings, which an SNMP request
should carry for it to be serviced by this JRE; in the example illustrated by Figure 17, the
community strings recognized by this JRE are public and private. You can add more to this list,
or remove a community string from this list, if need be.

l access : Indicate the access rights that SNMP requests containing the defined communities
will have; in Figure 2.18, SNMP requests containing the community string public or private, will
have only read-only access to the MIB statistics. To grant full access, you can specify rea-write
instead.

l managers : Specify a comma-separated list of SNMP managers or hosts from which SNMP
requests will be accepted by this JRE; in the example illustrated by Figure 2.18, all SNMP
requests from the localhost will be serviced by this JRE. Typically, since the SNMP requests
originate from an eG agent, the IP of the eG agent should be configured against the managers
parameter. For instance, if the IP address of the agent host is 192.16.10.160, then, to ensure
that the JRE accepts requests from the eG agent alone, set managers to 192.168.10.160,
instead of localhost.

9. Every acl block in the snmp.acl file should have a corresponding trap block. This trap block should
be configured with the following values:

l trap-community: Provide a comma-separated list of community strings that can be used by
SNMP traps sent by the Java application to the managers specified in the acl block. In the
example of Figure 2.18, all SNMP traps sent by the Java application being monitored should
use the community string public only.

l hosts: Specify a comma-separated list of IP addresses / host names of hosts from which
SNMP traps can be sent. In the case of Figure 2.18, traps can be sent by the localhost only. If a
single snmp.acl file is being centrally used by multiple applications/devices executing on
multiple hosts, then to ensure that all such applications are able to send traps to the configured
SNMP managers (in the acl block), you can provide the IP address/hostname of these
applications as a comma-separated list against hosts.

10. Figure 2.19 depicts how the acl and trap blocks can be slightly changed to suit the monitoring needs of an
application.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

22

Figure 2.19: The edited block

11. Then, proceed to make the snmp.acl file secure by granting a single user “full access” to that file.
For monitoring applications executing on Windows in particular, only the Owner of the snmp,.acl
file should have full control of that file. To know how to grant this privilege to the Owner of a file,
refer to Section 2.1.1 . This section actually details the procedure for making the
jmxremote.password file on Windows, secure. Use the same procedure for making the snmp.acl
file on Windows secure, but make sure that you select the snmp.acl file and not the
jmxremote.password file.

12. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be
granted full access to the snmp.acl file, by following the steps below:

l Login to the host as the user who is to be granted full control of the snmp.acl file.

l Issue the following command:

chmod 600 snmp.acl

l This will automatically grant the login user full access to the jmxremote.password file.

13. Next, edit the management.properties file in the <JAVA_HOME>\jre\lib\management folder
used by the target application.

14. Append the following lines to the file:



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

23

com.sun.management.snmp.port=<PortNo>

com.sun.management.snmp.interface=0.0.0.0

com.sun.management.snmp.acl=true 

com.sun.management.snmp.acl.file=<Path_of_snmp.acl>

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept SNMP
requests from any host in the environment. To ensure that the JRE services only those SNMP requests
that are received from the eG agent, set the second line of the specification to the IP address of the agent
host.

For example, if the Java application being monitored listens for SNMP requests at port number
1166, the eG agent monitoring the Java application is deployed on 192.168.10.152, and these
SNMP requests need to be authenticated using the snmp.acl file in the D:\bea\jrockit_150_
11\jre\lib directory, then the above specification will read as follows:

com.sun.management.snmp.port=1166

com.sun.management.snmp.interface=192.168.10.152

com.sun.management.snmp.acl=true com.sun.management.snmp.acl.file=D:\\bea\\jrockit_

150_11\\jre\\lib\\management\\snmp.acl

15. However, if the application in question is executing on a Unix/Solaris/Linux host, and the
snmp.acl file is in the /usr/jdk1.5.0_05/jre/lib/management folder of the host, then the last line
of the specification will be:

com.sun.management.snmp.acl.file =/usr/jdk1.5.0_05/jre/lib/management/snmp.acl

16. Next, edit the start-up script of the target application, include the following line in it, and save the
script file.

-Dcom.sun.management.config.file=<management.properties_file_path>

17. For instance, on aWindows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties.

18. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>
specification will be as follows: /usr/jdk1.5.0_
05/jre/lib/management/management.properties.

The sections to come discuss the top 2 layers of Figure 3.1, as the remaining layers have already
been discussed at length in theMonitoring Unix andWindowsServers document.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

24

2.3 Managing the Java Application
The eG Enterprise cannot automatically discover a Java Application. This implies that you need to
manually add the component for monitoring. To manage a Java Application component, do the
following:

1. Log into the eGadministrative interface.

2. eG Enterprise cannot automatically discover Java Application server. You need to manually add
the server using theCOMPONENTS page (see Figure 2.20) that appears when the Infrastructure
- > Components - > Add/Modify menu sequence is followed. Remember that components
manually added aremanaged automatically.

Figure 2.20: Adding a Java Application

3. When you attempt to sign out, a list of unconfigured tests appears.



Chapter 2: Pre-requi s i tes for Moni toring Java Appl i cations

25

Figure 2.21: List of Unconfigured tests for the Java Application

4. Click on the Java Classes test to configure it. This test reports the number of classes
loaded/unloaded from thememory. To know how to configure the test, refer to Section 3.2.3.

5. Finally, signout of the eGadministrative interface.



Chapter 3: Moni toring a Java Appl i cation

26

Chapter 3: Monitoring a Java Application

The prime concern of administrators of Java applications is knowing how well the application is
functioning, and how to troubleshoot issues (if any) in the performance of these applications. Most
web application server vendors prescribe custom APIs for monitoring – for instance, WebSphere
and WebLogic allow administrators to use their built- in APIs for performance monitoring and
problem detection.

Besides such applications, you might have stand-alone Java applications that do not provide any
APIs for monitoring. To enable users to monitor the overall health of such stand-alone Java
applications, eGEnterprise offers a genericmonitoringmodel called the Java Application.

Figure 3.1: Layer model of the Java Application

Each layer of Figure 3.1 above ismapped to a series of tests that report critical statistics pertaining to
the Java application being monitored. Using these statistics, administrators can figure out the
following:

l Has the Java heap been sized properly?

l How effective is garbage collection? Is it impacting application performance?

l Often, Java programs use threads. A single program may involve multiple concurrent threads
running in parallel. Is there excessive blocking between threads due to synchronization issues
during application design?



Chapter 3: Moni toring a Java Appl i cation

27

l Are there runaway threads, which are taking too many CPU cycles? If such threads exist, which
portions of code are responsible for spawning such threads?

l Is the JVMmanaging itsmemory resources efficiently or is the freememory on the JVM very less?
Which type of memory is being utilized by the JVM increasingly?

l Has a scheduled JVM restart occurred? If so, when?

3.1 The Java Transactions Layer
By default, this layer will not be available for any monitored Java Application. This is because, the
Java Business Transactions test mapped to this layer is disabled by default. To enable the test,
follow the Agents -> Tests -> Enable/Disable menu sequence, select Java Application as the
Component type, Performance as the Test type, and then select Java Business Transactions
from the DISABLED TESTS list. Click the Enable button to enable the selected test, and click the
Update button to save the changes.

3.1.1 Java Business Transactions Test

The responsiveness of a transaction is the key determinant of user experience with that transaction;
if response time increases, user experience deteriorates. To make users happy, a Java business
transaction should be rapidly processed by each of the JVM nodes in its path. Processing
bottlenecks on a single JVM node can slowdown/stall an entire business transaction or can cause
serious transaction errors. This in turn can badly scar the experience of users. To avoid this,
administrators should promptly identify slow/stalled/errored transactions, isolate the JVM node on
which the slowness/error occurred, and uncover what caused the aberration on that node – is it
owing to SQL queries executed by the node? Or is it because of external calls – eg., async calls,
SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business Transactions test
helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests
received by that JVM, and groups requests based on user-configured pattern specifications. For
each transaction pattern, the test then computes and reports the average time taken by that JVM
node to respond to the transaction requests of that pattern. In the process, the test identifies the
slow/stalled transactions of that pattern, and reports the count of such transactions and their
responsiveness. Detailed diagnostics provided by the test accurately pinpoint the exact transaction
URLs that are slow/stalled, the total round-trip time of each transaction, and also indicate when such
transaction requests were received by that node. The slowest transaction in the group can thus be
identified.



Chapter 3: Moni toring a Java Appl i cation

28

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in
SQL query processing, the test also reports the average time the transactions of each pattern took to
execute SQL queries. If a majority of the queries are slow, then the test will instantly capture the
same and notify administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know
which are the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node,
highlights transactions that are under-performing, and takes administrators close to the root-cause
of poor transaction performance.

For this test to run and report metrics, you first need to install and configure the eG Java BTM 
(Business Transaction Monitor) on the target Java application / J2EE container. To know
how, refer to the Java Business TransactionMonitoring document.

After BTM-enabling the target, configure this test. Instructions for configuring this test and
interpreting the metrics it reports are available in the 'Java Business Transactions Test'
topic in the Java Business Transaction Monitoring document.

3.2 The JVM Internals Layer
The tests associated with this layer measure the internal health of the Java Virtual Machine (JVM),
and enables administrators to find accurate answers to the following performance queries:

l How many classes have been loaded/unloaded frommemory?

l Did garbage collection take too long to complete? If so, which memory pools spent too much
time in garbage collection?

l Are toomany threads in waiting state in the JVM?

l Which threads are consuming CPU?



Chapter 3: Moni toring a Java Appl i cation

29

Figure 3.2: The tests associated with the JVM Internals layer

3.2.1 JMXConnection to JVM

This test reports the availability of the target Java application, and also indicates whether JMX is
enabled on the application or not. In addition, the test promptly alerts you to slowdowns experienced
by the application, and also reveals whether the application was recently restarted or not.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application beingmonitored

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

30

Parameter Description

<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

Measurement Description Measurement
Unit Interpretation

JMX availability Indicates whether the
target application is
available or not and
whether JMX is enabled
or not on the application.

Percent If the value of this measure is
100%, it indicates that the Java
application is available with JMX
enabled. The value 0 on the other
hand, could indicate one/both the
following:

l The Java application is unavailable;

l The Java application is available,

but JMX is not enabled;

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

31

Measurement Description Measurement
Unit Interpretation

JMX response time Indicates the time taken
to connect to the JMX
agent of the Java
application.

Secs A high value could indicate a
connection bottleneck.

Has the PID
changed?

Indicates whether/not
the process ID that
corresponds to the Java
application has
changed.

This measure will report the value
Yes if the PID of the target
application has changed; such a
change is indicative of an
application restart. If the application
has not restarted - i.e., if the PID
has not changed - then this
measure will return the value No.

3.2.2 JVM File Descriptors Test

This test reports useful statistics pertaining to file descriptors.

Note:

This test will work only if the target Java application uses the JDK/JRE offered by one of the following
vendors only: Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application beingmonitored

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

32

Parameter Description

the same port that you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

Measurement Description Measurement
Unit Interpretation

Open file
descriptors in JVM

Indicates the number of
file descriptors currently
open for the application.

Number

Maximum file
descriptors in JVM

Indicates the maximum
number of file
descriptors allowed for
the application.

Number

File descriptor
usage by JVM

Indicates the file
descriptor usage in
percentage.

Percent

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

33

3.2.3 Java Classes Test

This test reports the number of classes loaded/unloaded from thememory.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application beingmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
followingmechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

34

Parameter Description

password parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 18).

SNMP Version This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the
SNMP community name that the test uses to communicate with themail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges – in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter. 



Chapter 3: Moni toring a Java Appl i cation

35

Parameter Description

Context This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEngineID value of the entity hosting the management
information (also called a contextEngineID) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option. 

Encrypttype If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.



Chapter 3: Moni toring a Java Appl i cation

36

Parameter Description

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic –
for instance, certain types of data traffic or traffic pertaining to specific
components – to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

Measurement Description Measurement
Unit Interpretation

Classes loaded Indicates the number of
classes currently
loaded intomemory.

Number Classes are fundamental to the
design of Java programming
language. Typically, Java
applications install a variety of class
loaders (that is, classes that
implement java.lang.ClassLoader)
to allow different portions of the
container, and the applications
running on the container, to have
access to different repositories of
available classes and resources. A
consistent decrease in the number
of classes loaded and unloaded
could indicate a road- block in the
loading/unloading of classes by the
class loader. If left unchecked,
critical resources/classes could be
rendered inaccessible to the
application, thereby severely
affecting its performance.

Classes unloaded Indicates the number of
classes currently
unloaded frommemory.

Number

Total classes
loaded

Indicates the total
number of classes
loaded into memory
since the JVM started,
including those
subsequently unloaded.

Number

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

37

3.2.4 JVM Garbage Collections Test

Manual memorymanagement is time consuming, and error prone. Most programs still contain leaks.
This is all doubly true with programs using exception-handling and/or threads. Garbage collection
(GC) is a part of a Java application’s JVM that automatically determines what memory a program is
no longer using, and recycles it for other use. It is also known as "automatic storage (or memory)
reclamation''.  The JVMGarbage Collections test reports the performance statistics pertaining to the
JVM's garbage collection.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for each garbage collector that is reclaiming the unused
memory on the JVMof the Java application beingmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the following
mechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

JMX remote port This parameter appers only if themode is set to jmx. Here, specify the port at which the
jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if themode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

38

Parameter Description

you can change this default value to reflect the same. 

User, Password, and
Confirm password

These parameters appear only if theMode is set to JMX. If JMX requires authentication
only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

Provider This parameter appears only if theMode is set to JMX. This test uses a JMX Provider
to access theMBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if theMode is JMX,
and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if theMode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 18).

SNMP Version This parameter appears only if theMode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.

SNMP Community This parameter appears only if theMode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with themail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supportingmessage security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from theMIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges – in other words, the eG agent should connect to theMIB
using the credentials of a user with access permissions to beMIB. Therefore, specify
the name of such a user against this parameter. 

Context This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP
context is a collection of management information accessible by an SNMP entity. An



Chapter 3: Moni toring a Java Appl i cation

39

Parameter Description

item of management informationmay exist in more than one context and an SNMP
entity potentially has access tomany contexts. A context is identified by the
SNMPEngineID value of the entity hosting themanagement information (also called a
contextEngineID) and a context name that identifies the specific context (also called a
contextName). If the USERNAME provided is associated with a context name, then
the eG agent will be able to poll theMIB and collect metrics only if it is configured with
the context name as well. In such cases therefore, specify the context name of the
username in the context text box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name. This
parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option. 

Encrypttype If the Encryptflag is set to Yes, then you will have tomention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic – for instance,
certain types of data traffic or traffic pertaining to specific components – to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can



Chapter 3: Moni toring a Java Appl i cation

40

Parameter Description

instruct the eG agent to conduct the SNMP data traffic related to themonitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Measurement Description Measurement
Unit Interpretation

No of garbage
collections started

Indicates the number of
times this garbage
collector was started to
release dead objects
from memory during the
last measurement
period.

Number

Time taken for
garbage collection

Indicates the time taken
to by this garbage
collector to perform the
current garbage
collection operation.

Secs Ideally, the value of both these
measures should be low. This is
because, the garbage collection
(GC) activity tends to suspend the
operations of the application until
such time that GC ends. Longer
the GC time, longer it would take
for the application to resume its
functions. To minimize the impact
of GC on application performance,
it is best to ensure that GC activity
does not take too long to complete.

Percent of time
spent by JVM for
garbage collection

Indicates the percentage
of time spent by this
garbage collector on
garbage collection
during the last
measurement period.

Percent

Measurements made by the test

3.2.5 JVM Memory Pool Garbage Collections Test

While the JVM Garbage Collections test reports statistics indicating how well each collector on the
JVM performs garbage collection, the measures reported by the JVM Memory Pool Garbage
Collections test help assess the impact of the garbage collection activity on the availability and
usage of memory in each memory pool of the JVM. Besides revealing the count of garbage
collections per collector and the time taken by each collector to perform garbage collection on the
individual memory pools, the test also compares the amount of memory used and available for use
pre and post garbage collection in each of the memory pools. This way, the test enables



Chapter 3: Moni toring a Java Appl i cation

41

administrators to guage the effectiveness of the garbage collection activity on thememory pools, and
helps them accurately identify those memory pools where enough memory could not reclaimed or
where the garbage collectors spent toomuch time.

Note:

l This test will work only if the target Java application uses the JDK/JRE offered by one of the
following vendors: Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.

l This test will not report metrics if theMode parameter of the test is set toSNMP.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for every GarbageCollector:MemoryPool pair on the JVM
of the Java application beingmonitored

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

MeasureMode This test allows you the option to collect the desiredmetrics using one of the following
methodologies:

l By contacting the Java runtime (JRE) of the application via JMX

l Using GC logs

To use JMX for metrics collections, set themeasuremodeto JMX.

On the other hand, if you intend to use the GC log files for collecting the required
metrics, set themeasuremode to Log File. In this case, you would be required to
enable GC logging. The procedure for this has been detailed in Section 3.2.5.1. 

JMX remote port This parameter appers only if themode is set to jmx. Here, specify the port at which the
jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if themode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

42

Parameter Description

resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same. 

User, Password, and
Confirm password

These parameters appear only if theMode is set to JMX. If JMX requires authentication
only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

JREHome This parameter will be available only if theMeasureMode is set to Log File. Specify the
full path to the Java Runtime Environment (JRE) used by the target application.

Logfilename This parameter will be available only if theMeasureMode is set to Log File. Specify the
full path to the GC log file to be used for metrics collection.

Provider This parameter appears only if theMode is set to JMX. This test uses a JMX Provider
to access theMBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if theMode is JMX,
and 10 seconds if theMode is SNMP.

Measurement Description Measurement
Unit Interpretation

Has garbage
collection happened?

Indicates whether garbage
collection occurred on this
memory pool in the last
measurement period.

This measure reports the value Yes if
garbage collection took place or No if it
did not take place on thememory pool.

The numeric values that correspond to
themeasure values of Yes and No are
listed below:

State Value

Yes 1

No 0

Note:

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

43

Measurement Description Measurement
Unit Interpretation

By default, this measure reports the
value Yes or No to indicate whether a
GC occurred on amemory pool or not.
The graph of this measure however,
represents the same using the
numeric equivalents – 0 or 1.

Collection count Indicates the number of
time in the last
measurement pool garbage
collection was started on
this memory pool.

Number

Initial memory before
GC

Indicates the initial amount
of memory (in MB) that this
memory pool requests
from the operating system
for memory management
during startup, before GC
process.

MB Comparing the value of these two
measures for amemory pool will give
you a fair idea of the effectiveness of
the garbage collection activity.

If garbage collection reclaims a large
amount of memory from thememory
pool, then the Initial memory after GC
will drop. On the other hand, if the
garbage collector does not reclaim
muchmemory from amemory pool, or
if the Java application suddenly runs a
memory-intensive process whenGC
is being performed, then the Initial
memory after GC may be higher than
the Initial memory before GC.

Initial memory after
GC

Indicates the initial amount
of memory (in MB) that this
memory pool requests
from the operating system
for memory management
during startup, after GC
process

MB

Max memory before
GC

Indicates themaximum
amount of memory that
can be used for memory
management by this
memory pool, before GC
process.

MB Comparing the value of these two
measures for amemory pool will
provide you with insights into the
effectiveness of the garbage collection
activity.

If garbage collection reclaims a large
amount of memory from thememory
pool, then theMax memory after GC
will drop. On the other hand, if the
garbage collector does not reclaim
muchmemory from amemory pool, or



Chapter 3: Moni toring a Java Appl i cation

44

Measurement Description Measurement
Unit Interpretation

if the Java application suddenly runs a
memory-intensive process whenGC
is being performed, then theMax
memory after GC valuemay exceed
theMax memory before GC.

Max memory after
GC

Indicates themaximum
amount of memory (in MB)
that can be used for
memory management by
this pool, after the GC
process.

MB

Committedmemory
before GC

Indicates the amount of
memory that is guaranteed
to be available for use by
this memory pool, before
the GC process.

MB

Committedmemory
after GC

Indicates the amount of
memory that is guaranteed
to be available for use by
this memory pool, after the
GC process.

MB

Usedmemory before
GC

Indicates the amount of
memory used by this
memory pool before GC.

MB Comparing the value of these two
measures for amemory pool will
provide you with insights into the
effectiveness of the garbage collection
activity.

If garbage collection reclaims a large
amount of memory from thememory
pool, then the Usedmemory after GC
may drop lower than the Usedmemory
before GC. On the other hand, if the
garbage collector does not reclaim
muchmemory from amemory pool, or
if the Java application suddenly runs a
memory-intensive process whenGC
is being performed, then the Used
memory after GC valuemay exceed
the Usedmemory before GC.

Usedmemory after
GC

Indicates the amount of
memory used by this
memory pool after GC.

MB

Percentage of
memory collected

Indicates the percentage of
memory collected from this
pool by the GC activity.

Percent A high value for this measure is
indicative of a large amount of unused
memory in the pool. A low value on the



Chapter 3: Moni toring a Java Appl i cation

45

Measurement Description Measurement
Unit Interpretation

other hand indicates that thememory
pool has been over-utilized. Compare
the value of this measure across pools
to identify the pools that have very
little freememory. If toomany pools
appear to be running short of memory,
it could indicate that the target
application is consuming toomuch
memory, which in the long run, can
slow down the application
significantly.

Collection duration Indicates the time taken by
this garbage collector for
collecting unusedmemory
from this pool.

Mins Ideally, the value of this measure
should be low. This is because, the
garbage collection (GC) activity tends
to suspend the operations of the
application until such time that GC
ends. Longer the GC time, longer it
would take for the application to
resume its functions. Tominimize the
impact of GC on application
performance, it is best to ensure that
GC activity does not take too long to
complete.

3.2.5.1 Enabling GC Logging

If you want the JVM Memory Pools Garbage Collections test to use the GC log file to report metrics,
then, you first need to enable GC logging. For this, follow the steps below:

1. Edit the startup script file of the Java application being monitored. Figure 20 depicts the startup script file
of a sample application. 



Chapter 3: Moni toring a Java Appl i cation

46

Figure 3.3: Editing the startup script file of a sample Java application

2. Add the line indicated by Figure 20 to the startup script file. This line should be of the following
format:

-Xloggc:<Full path to the GC log file to which GC details are to be logged> -

XX:+PrintGCDetails -XX:+PrintGCTimeStamps

Here, the entry, -XX:+PrintGCDetails -XX:+PrintGCTimeStamps, refers to the format in which
GC details are to be logged in the specified log file. Note that this test can monitor only those GC
log files which contain log entries of this format.

3. Finally, save the file and restart the application.

3.2.6 JVM Threads Test

This test reports the status of threads running in the JVM. Details of this test can be used to identify
resource-hungry threads.

Note:



Chapter 3: Moni toring a Java Appl i cation

47

If theMode parameter of this test is set toSNMP, then stack trace will not be available. Also, detailed
diagnostics will not reportCPU Time.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application beingmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
followingmechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX Remote Port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

48

Parameter Description

password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 18).

SNMP Version This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the
SNMP community name that the test uses to communicate with themail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges – in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter. 

Context This parameter appears only when v3 is selected as the SNMPVERSION. An



Chapter 3: Moni toring a Java Appl i cation

49

Parameter Description

SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEngineID value of the entity hosting the management
information (also called a contextEngineID) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the SNMPversion. From
the Authtype list box, choose the authentication algorithm using which SNMP
v3 converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the SNMPversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option. 

Encrypttype If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.



Chapter 3: Moni toring a Java Appl i cation

50

Parameter Description

PCT MediumCPU
Util Threads

By default, this parameter is set to 50. This implies that, by default, the threads
for which the current CPU consumption is between 50% and 70% (the default
value of the pct high cpu util threads parameter) will be counted as medium
CPU-consuming threads. The count of such threads will be reported as the
value of theMediumCPU threadsmeasure.

This default setting also denotes that threads that consume less than 50%CPU
will, by default, be counted as Low CPU threads. If need be, you can modify the
value of this parameter to change how much CPU should be used by a thread
for it to qualify as a medium CPU-consuming thread. This will consequently
alter the count of low CPU-consuming threads aswell.

PCT High CPU
Util Threads

By default, this parameter is set to 70. This implies that, by default, the threads
that are currently consuming over 70% of CPU time are counted as high CPU
consumers. The count of such threads will be reported as the value of the High
CPU threads measure. If need be, you can modify the value of this parameter
to change how much CPU should be used by a thread for it to qualify as a high
CPU-consuming thread.

Max Thread Count By default, this parameter is set to 20. This implies that the detailed diagnosis of
the Runnable threads, Waiting threads, and Timed waiting threads measures
will by default display only the top- 20 JVM threads in terms of CPU
consumption. To view more threads as part of detailed diagnostics, increase
the value of this parameter. To view all threads that are in the said state (eg.,
runnable, waiting, and timed waiting), specify All or * against this parameter.

USEPS This flag is applicable only for AIX LPARs. By default, on AIX LPARs, this test
uses the tprof command to compute CPU usage. Accordingly, this flag is set to
No by default. On some AIX LPARs however, the tprof command may not
function properly (this is an AIX issue). While monitoring such AIX LPARs
therefore, you can configure the test to use the ps command instead for metrics
collection. To do so, set this flag to Yes.
Note:
Alternatively, you can set the AIXUSEPS flag in the [AGENT_SETTINGS]
section of the eg_tests.ini file (in the <EG_INSTALL_SIR>\manager\config
directory) to yes (default: no) to enable the eG agent to use the ps command for
CPU usage computations on AIX LPARs. If this global flag and the USEPS flag
for a specific component are both set to no, then the test will use the default
tprof command to compute CPU usage for AIX LPARs. If either of these flags is



Chapter 3: Moni toring a Java Appl i cation

51

Parameter Description

set to yes, then the ps command will perform the CPU usage computations for
monitored AIX LPARs.  

In some high-security environments, the tprof command may require some
special privileges to execute on an AIX LPAR (eg., sudo may need to be used
to run tprof). In such cases, you can prefix the tprof command with another
command (like sudo) or the full path to a script that grants the required
privileges to tprof. To achieve this, edit the eg_ tests.ini file  (in the <EG_
INSTALL_DIR>\manager\config directory), and provide the prefix of your
choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS]
section. Finally, save the file.  For instance, if you set the AixTprofPrefix
parameter to sudo, then the eGagent will call the tprof command as sudo tprof.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic –
for instance, certain types of data traffic or traffic pertaining to specific
components – to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of
this test for a particular server, choose the On option. To disable the capability,
click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability



Chapter 3: Moni toring a Java Appl i cation

52

Parameter Description

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Total threads Indicates the total
number of threads
(including daemon and
non-daemon threads).

Number

Runnable threads Indicates the current
number of threads in a
runnable state.

Number The detailed diagnosis of this
measure, if enabled, lists the
names of the top- 20 (default)
runnable threads in terms of their
CPU usage. The time for which the
thread was in a blocked state,
waiting state, etc., are provided as
part of the detailed diagnostics. You
can change the sort order to view
threads by waiting time, blocked
time, etc. 

Blocked threads Indicates the number of
threads that are
currently in a blocked
state.

Number If a thread is trying to take a lock (to
enter a synchronized block), but the
lock is already held by another
thread, then such a thread is called
a blocked thread.

The detailed diagnosis of this
measure, if enabled, provides in-
depth information related to all the
blocked threads.

Waiting threads Indicates the number of
threads that are
currently in a waiting
state.

Number A thread is said to be in a Waiting
state if the thread enters a
synchronized block, tries to take a
lock that is already held by another

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

53

Measurement Description Measurement
Unit Interpretation

thread, and hence, waits till the
other thread notifies that it has
released the lock.

Ideally, the value of this measure
should be low. A very high value
could be indicative of excessive
waiting activity on the JVM. You
can use the detailed diagnosis of
this measure, if enabled, to figure
out which threads are currently in
the waiting state. By default, the
top-20 waiting threads in terms of
CPU usage will be listed. You can
change the sort order to view
threads by waiting time, blocked
time, etc.

While waiting, the Java application
program does no productive work
and its ability to complete the task-
at- hand is degraded. A certain
amount of waiting may be
acceptable for Java application
programs. However, when the
amount of time spent waiting
becomes excessive or if the
number of times that waits occur
exceeds a reasonable amount, the
Java application program may not
be programmed correctly to take
advantage of the available
resources. When this happens, the
delay caused by the waiting Java
application programs elongates the
response time experienced by an
end user. An enterprise may use



Chapter 3: Moni toring a Java Appl i cation

54

Measurement Description Measurement
Unit Interpretation

Java application programs to
perform various functions. Delays
based on abnormal degradation
consume employee time and may
be costly to corporations.

Timed waiting
threads

Indicates the number of
threads in a TIMED_
WAITING state.

Number When a thread is in the TIMED_
WAITING state, it implies that the
thread is waiting for another thread
to do something, but will give up
after a specified time out period.

To view the details of threads in the
TIMED_WAITING state, use the
detailed diagnosis of this measure,
if enabled. By default, the top-20
timed waiting threads in terms of
CPU usage will be listed. You can
change the sort order to view
threads by waiting time, blocked
time, etc. 

Low CPU threads Indicates the number of
threads that are
currently consuming
CPU lower than the
value configured in the
PCT Medium CPU Util
Threads text box.

Number To know which threads are
consuming low CPU, use the
detailed diagnosis of thismeasure.

Medium CPU
threads

Indicates the number of
threads that are
currently consuming
CPU that is higher than
the value configured in
the PCT Medimum
CPU Util Threads text
box and is lower than or

Number To know which threads are
consuming medium CPU, use the
detailed diagnosis of thismeasure.



Chapter 3: Moni toring a Java Appl i cation

55

Measurement Description Measurement
Unit Interpretation

equal to the value
specified in the PCT
High CPU Util Threads
text box.

High CPU threads Indicates the number of
threads that are
currently consuming
CPU that is greater than
the percentage
configured in the PCT
High CPU Util Threads
text box.

Number Ideally, the value of this measure
should be very low. A high value is
indicative of a resource contention
at the JVM. Under such
circumstances, you might want to
identify the resource- hungry
threads. To know which threads
are consuming excessive CPU, use
the detailed diagnosis of this
measure.

Peak threads Indicates the highest
number of live threads
since JVM started.

Number

Total threads Indicates the the total
number of threads
started (including
daemon, non- daemon,
and terminated) since
JVM started.

Number

Daemon threads Indicates the current
number of live daemon
threads.

Number

Deadlock threads Indicates the current
number of deadlocked
threads.

Number Ideally, this value should be 0. A
high value is a cause for concern,
as it indicates that many threads
are blocking one another causing
the application performance to
suffer. The detailed diagnosis of
this measure, if enabled, lists the
deadlocked threads and their
resource usage.



Chapter 3: Moni toring a Java Appl i cation

56

Note:

If themode for the JVM Threads test is set to SNMP, then the detailed diagnosis of this test will not
display theBlocked Time andWaited Time for the threads. Tomake sure that detailed diagnosis
reports these details also, do the following:

l Login to the application host.

l Go to the <JAVA_HOME>\jre\lib\management folder used by the target application, and edit the
management.properties file in that folder.

l Append the following line to the file:

com.sun.management.enableThreadContentionMonitoring

l Finally, save the file.

3.2.6.1 Accessing Stack Trace using the STACK TRACE link in the Measurements
Panel

While viewing the measures reported by the JVM Thread test, you can also view the resource
usage details and the stack trace information for all the threads, by clicking on the stack trace link in
theMeasurements panel.

Note:

If themode set for the JVM Thread test is SNMP, the stack trace detailsmay not be available.

Figure 3.4: The STACK TRACE link



Chapter 3: Moni toring a Java Appl i cation

57

A stack trace (also called stack backtrace or stack traceback) is a report of the active stack frames
instantiated by the execution of a program. It is commonly used to determine what threads are
currently active in the JVM, and which threads are in each of the different states – i.e., alive, blocked,
waiting, timed waiting, etc.

Typically, when a Java application begins exhibiting erratic resource usage patterns, it often takes
administrators hours, even days to figure out what is causing this anomaly – could it be owing to
one/more resource-intensive threads being executed by the application? If so, what is causing the
thread to erode resources? Is it an inefficient piece of code? In which case, which line of code could
be the most likely cause for the spike in resource usage? To be able to answer these questions
accurately, administrators need to know the complete list of threads that the application executes,
view the stack trace of each thread, analyze each stack trace in a top-down manner, and trace
where the problem originated.

eG Enterprise simplifies this seemingly laborious procedure by not only alerting administrators
instantly to excessive resource usage by a target application, but also by automatically identifying the
problematic thread(s), and providing the administrator with quick and easy access to the stack trace
information of that thread; with the help of stack trace, administrators can effortlessly drill down to the
exact line of code that requires optimization.

To access the stack trace information of a thread, click on the STACK TRACE link in the
Measurements panel of Figure 3.4.

Figure 3.5: Stack trace of a resource-intensive thread



Chapter 3: Moni toring a Java Appl i cation

58

Figure 3.5 that appears comprises of two panels. The left panel, by default, lists all the threads that
the target application executes, starting with the threads that are currently live. Accordingly, the All
Threads option is chosen by default from the Measurement list. If need be, you can override the
default setting by choosing a different option from theMeasurement list – in other words, instead of
viewing the complete list of threads, you can choose to view threads of a particular type or which are
in a particular state alone in Figure 3.5, by selecting a different Measurement from Figure 3.5. For
instance, to ensure that the left panel displays only those threads that are currently in a runnable
state, select the Live threads option from theMeasurement list. The contents of the left panel will
change as depicted by Figure 3.6.

Figure 3.6: Thread diagnosis of live threads

Also, the thread list in the left panel is by default sorted in the descending order of the Percent CPU
Time of the threads. This implies that, by default, the first thread in the list will be the thread that is currently
active and consuming the maximum CPU. You can change the sort order by selecting a different option from
theSort by list inFigure 3.6.

Typically, the contents of the right panel change according to the thread chosen from the left. Since
the first thread is the default selection in the left panel, and this thread by default consumes the
maximum CPU, we can conclude that the right panel will by default display the details of the leading
CPU consumer. Besides the name and state of the chosen thread, the right panel will provide the
following information:

l Cpu Time : The amount of CPU processing time (in seconds) consumed by the thread during the
last measurement period;



Chapter 3: Moni toring a Java Appl i cation

59

l Percent Cpu Time : The percentage of time the thread was using the CPU during the last
measurement period;

l Blocked Count: The number of the times during the last measurement period the thread was
blocked waiting for another thread;

l Blocked Time: The total duration for which the thread was blocked during the last measurement
period;

l Percentage Blocked Time : The percentage of time (in seconds) for which the thread was
blocked during the last measurement period;

l Waited : The number of times during the last measurement period the thread was waiting for
some event to happen (eg., wait for a thread to finish, wait for a timing event to finish, etc.);

l Waited Time: The total duration (in seconds) for which the thread was waiting during the last
measurement period;

l Percentage Waited Time: The percentage of time for which the thread was waiting during the
last measurement period.

In addition to the above details, the right panel provides theStack Trace of the thread.

In the event of a sudden surge in the CPU usage of the target Java application, the Thread
Diagnosis window of Figure 3.6 will lead you to the CPU-intensive thread, and will also provide you
with the Stack Trace of that thread. By analyzing the stack trace in a top-down manner, you can
figure out which method/routine called which, and thus locate the exact line of code that could have
contributed to the sudden CPU spike.

If the CPU usage has been increasing over a period of time, then, you might have to analyze the
stack trace for one/more prior periods, so as to perform accurate root-cause diagnosis. By default,
the Thread Diagnosis window of Figure 3.6 provides the stack trace for the current measurement
period only. If you want to view the stack trace for a previousmeasurement period, you will just have
to select a different option from the Measurement Time list. By reviewing the code executed by a
thread for different measurement periods, you can figure out out if the same line of code is
responsible for the increase in CPU usage.

3.3 The JVM Engine Layer
The JVM Engine layer measures the overall health of the JVM engine by reporting statistics related
to the following:



Chapter 3: Moni toring a Java Appl i cation

60

l TheCPU usage by the engine

l How the JVMenginemanagesmemory

l The uptime of the engine

Figure 3.7: The tests associated with the JVM Engine layer

3.3.1 JVM CPUUsage Test

This test measures the CPU utilization of the JVM. If the JVM experiences abnormal CPU usage
levels, you can use this test to instantly drill down to the threads that are contributing to the CPU
spike. Detailed stack trace information provides insights to code level information that can highlight
problemswith the design of the Java application.

Note:

This test will not report metrics if theMode parameter of the test is set toSNMP.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application beingmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

61

Parameter Description

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
followingmechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the Confirm Password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if the Mode is set to SNMP. Here specify the port



Chapter 3: Moni toring a Java Appl i cation

62

Parameter Description

number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 18).

SNMP Version This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the
SNMP community name that the test uses to communicate with themail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges – in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter. 

Context This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEngineID value of the entity hosting the management
information (also called a contextEngineID) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name.



Chapter 3: Moni toring a Java Appl i cation

63

Parameter Description

This parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option. 

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic –
for instance, certain types of data traffic or traffic pertaining to specific
components – to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

USEPS This flag is applicable only for AIX LPARs. By default, on AIX LPARs, this test
uses the tprof command to compute CPU usage. Accordingly, this flag is set to
No by default. On some AIX LPARs however, the tprof command may not
function properly (this is an AIX issue). While monitoring such AIX LPARs
therefore, you can configure the test to use the ps command instead for metrics
collection. To do so, set this flag to Yes.
Note:



Chapter 3: Moni toring a Java Appl i cation

64

Parameter Description

Alternatively, you can set the AIXUSEPS flag in the [AGENT_SETTINGS]
section of the eg_tests.ini file (in the <EG_INSTALL_SIR>\manager\config
directory) to yes (default: no) to enable the eG agent to use the ps command for
CPU usage computations on AIX LPARs. If this global flag and the USEPS flag
for a specific component are both set to no, then the test will use the default
tprof command to compute CPU usage for AIX LPARs. If either of these flags is
set to yes, then the ps command will perform the CPU usage computations for
monitored AIX LPARs.  

In some high-security environments, the tprof command may require some
special privileges to execute on an AIX LPAR (eg., sudo may need to be used
to run tprof). In such cases, you can prefix the tprof command with another
command (like sudo) or the full path to a script that grants the required
privileges to tprof. To achieve this, edit the eg_ tests.ini file  (in the <EG_
INSTALL_DIR>\manager\config directory), and provide the prefix of your
choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS]
section. Finally, save the file.  For instance, if you set the AixTprofPrefix
parameter to sudo, then the eGagent will call the tprof command as sudo tprof.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of
this test for a particular server, choose the On option. To disable the capability,
click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.



Chapter 3: Moni toring a Java Appl i cation

65

Measurement Description Measurement
Unit Interpretation

CPU utilization of
JVM

Indicates the
percentage of total
available CPU time
taken up by the JVM.

Percent If a system has multiple
processors, this value is the total
CPU time used by the JVM divided
by the number of processors on the
system.

Ideally, this value should be low. An
unusually high value or a consistent
increase in this value is indicative of
abnormal CPU usage, and could
warrant further investigation.

In such a situation, you can use the
detailed diagnosis of this measure,
if enabled, to determine which
runnable threads are currently
utilizing excessive CPU. 

Measurements made by the test

The detailed diagnosis of the CPU utilization of JVM measure lists all the CPU-consuming threads
currently executing in the JVM, in the descending order of the Percentage CPU Time of the threads;
this way, you can quickly and accurately identify CPU-intensive threads in the JVM. In addition to
CPU usage information, the detailed diagnosis also reveals the following information for every
thread:

l The number of times the thread was blocked during the last measurement period, the total
duration of the blocks, and the percentage of time for which the thread was blocked;

l The number of times the thread was in waiting during the last measurement period, the total
duration waited, and the percentage of time for which the thread waited;

l The Stacktrace of the thread, using which you can nail the exact line of code causing the CPU
consumption of the thread to soar;



Chapter 3: Moni toring a Java Appl i cation

66

Figure 3.8: The detailed diagnosis of the CPU utilization of JVMmeasure

3.3.2 JVM Memory Usage Test

This test monitors every memory type on the JVM and reports how efficiently the JVM utilizes the
memory resources of each type.

Note:

l For this test to report detailed diagnostics, the target Java application should use the JDK/JRE
offered by one of the following vendors only: Oracle, Sun, OpenJDK , Azul Zing

l If the target Java application is running using an IBM JRE/JDK, then, this test will not report
detailed diagnostics. To enable the test to report DD, a MAT plugin is required. Currently, only an
eG agent on an AIX system (using an IBM JDF/JRE) can be configured to use this plugin. This
plugin needs to be downloaded and extracted into the target AIX host. Once this is done, then the
next time the eG agent runs this test, it takes the help of the plugin to read the usage statistics of
object types from the heap dump file, and finally reports these metrics to the eG manager. To
know how to install and configure the MAT plugin, refer to the Installing and Configuring the
MAT Plugin.

Heap dump analysis using theMAT plugin is resource-intensive. It is not
recommended for usage in production servers.

l This test can provide detailed diagnosis information for only those monitored Java applications that use
JRE 1.6 or higher.

l This test can run in an agent-based/agentless manner only, but detailed diagnostics will be available only if
the test is run in an agent-basedmanner.



Chapter 3: Moni toring a Java Appl i cation

67

l For an Azul Zing JVM, you can have this test report additional metrics on heap memory usage by
enabling the MemoryMXBean interface. MemoryMXBean is an interface used by the Zing
management system to access memory-related properties. The MemoryMXBean provides an
overview of the memory system and the memory managers that control the size and use patterns
of memory. To enable the MemoryMXBean interface, add the following JVM option in the start-up
script of the target application.

-XX:+UseZingMXBeans

Also, to enable the test to report detailed diagnostics for a Zing JVM, make sure that the following
JVMoption is included in the start-up script of the target application:

-XX:+ProfileLiveObjects

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for everymemory type on the JVMbeingmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the following
mechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

JMX remote port This parameter appers only if themode is set to jmx. Here, specify the port at which the
jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in themanagement.properties file in the <JAVA_

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

68

Parameter Description

HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if themode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same. 

User, Password, and
Confirm password

These parameters appear only if theMode is set to JMX. If JMX requires authentication
only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

Provider This parameter appears only if theMode is set to JMX. This test uses a JMX Provider
to access theMBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if theMode is JMX,
and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if theMode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 18).

SNMP Version This parameter appears only if theMode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.

SNMP Community This parameter appears only if theMode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with themail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supportingmessage security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from theMIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges – in other words, the eG agent should connect to theMIB



Chapter 3: Moni toring a Java Appl i cation

69

Parameter Description

using the credentials of a user with access permissions to beMIB. Therefore, specify
the name of such a user against this parameter. 

Authpass Specify the password that corresponds to the above-mentioned user name. This
parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option. 

Encrypttype If the Encryptflag is set to Yes, then you will have tomention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic – for instance,
certain types of data traffic or traffic pertaining to specific components – to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can
instruct the eG agent to conduct the SNMP data traffic related to themonitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Heap Analysis By default, this flag is set to off. This implies that the test will not provide detailed
diagnosis information for memory usage, by default. To trigger the collection of detailed
measures, set this flag to On.



Chapter 3: Moni toring a Java Appl i cation

70

Parameter Description

Note:

l If heap analysis is switchedOn, then  the eG agent will be able to collect detailed

measures only if the Java application beingmonitored uses JDK 1.6 or higher.

l Heap analytics / detailed diagnostics will be provided only if the Java application

beingmonitored supports Oracle Hotspot.

Java Home This parameter appears only when the Heap Analysis flag is switchedOn. Here,
provide the full path to the install directory of JDK 1.6 or higher on the application host.
For example, c:\JDK1.6.0.

Exclude Packages The detailed diagnosis of this test, if enabled, lists the Java classes/packages that are
using the pool memory and the amount of memory used by each class/package. To
enable administrators to focus on thememory consumed by those classes/packages
that are specific to their application, without being distracted by thememory
consumption of basic Java classes/packages, the test, by default, excludes some
common Java packages from the detailed diagnosis.  The packages excluded by
default are as follows:

l All packages that start with the string java or javax - in other words, java.* and
javax.*.

l Arrays of primitive data types - eg., [Z, which is a one-dimensional array of
type boolean, [[B, which is a 2-dimensional array of type byte, etc.

l A few class loaders - eg., <symbolKlass>, <constantPoolKlass>,
<instanceKlassKlass>, <constantPoolCacheKlass>, etc.

This is why, the Exclude Packages parameter is by default configured with the
packages mentioned above. You can, if required, appendmore packages or patterns of
packages to this comma-separated list. This will ensure that such packages also are
excluded from the detailed diagnosis of the test. Note that the exclude packages
parameter is of relevance only if the Heap Analysis flag is set to 'Yes'.

Include Packages By default, this is set to all. This indicates that, by default, the detailed diagnosis of the
test (if enabled) includes all classes/packages associated with themonitored Java
application, regardless of whether they are basic Java packages or those that are
crucial to the functioning of the application. However, if you want the detailed diagnosis
to provide the details of memory consumed by a specific set of classes/packages
alone, then, provide a comma-separated list of classes/packages to be included in the
detailed diagnosis in the include packages text box. Note that the include packages
parameter is of relevance only if the Heap Analysis flag is set to 'Yes'.



Chapter 3: Moni toring a Java Appl i cation

71

Parameter Description

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against this
parameter.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Initial memory Indicates the
amount of memory
initially allocated at
startup.

MB

Usedmemory Indicates the
amount of memory
currently used.

MB It includes thememory occupied by all objects,
including both reachable and unreachable objects.

Ideally, the value of this measure should be low. A
high value or a consistent increase in the value
could indicate gradual erosion of memory
resources. In such a situation, you can take the
help of the detailed diagnosis of this measure (if
enabled), to figure out which class is using up
memory excessively.

Committed
memory

Indicates the
amount of memory

MB The amount of Committedmemory may change
over time. The Java virtual machinemay release

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

72

Measurement Description Measurement
Unit Interpretation

guaranteed to be
available for use
by the JVM.

memory to the system and committedmemory
could be less than the amount of memory initially
allocated at startup. Committed will always be
greater than or equal to usedmemory.

Freememory Indicates the
amount of memory
currently available
for use by the
JVM.

MB If an Azul Zing JVM is beingmonitored, then the
value of this measure will change according to the
value of theMemory pool size typemeasure. If the
Memory pool size typemeasure is Fixed, then the
value of this measure is the difference between the
value of theMax allocatedmemory andUsed
memory measures. On the other hand, if the
Memory pool size type is Elastic, then the value of
this measure will be the difference between the
value of theCommittedmemory andUsedmemory
measures.

For all other JVMs, this measure is the difference
between theMax allocatedmemory andUsed
memory measures.

Ideally, the value of this measure should be high.

Note:

Sometimes, administrators may not want to
cap/limit themaximum amount of memory that a
JVM can use. In such cases, they may set the
maximummemory to -1. If this is done, then it
implies that the JVM can use any amount of
memory. In this case therefore, theMaximum
allocatedmemory will also report the value -1, but
the Freememory measure will not be reported.

Max allocated
memory

Indicates the
maximum amount
of memory
allocated for the
JVM.

MB In the case of the Azul Zing JVM, this measure will
be reported only for memory pools of type FIXED.

Used percentage Indicates the
percentage of used
memory.

Percent In the case of the Azul Zing JVM, this measure will
be reported only for memory pools of type FIXED.
The formula for computing the value of this



Chapter 3: Moni toring a Java Appl i cation

73

Measurement Description Measurement
Unit Interpretation

measure for a FIXED memory type is as follows:

(Usedmemory / Committedmemory )*100

For all other JVMs, the value of this measure is
computed using the following formula:

(Usedmemory / Max allocatedmemory)*100

Ideally, the value of this measure should be low. A
very high value of this measure could indicate
excessivememory consumption by the JVM,
which in turn, could warrant further investigation. In
such a situation, you can take the help of the
detailed diagnosis of this measure (if enabled), to
figure out which class is using upmemory
excessively.

JVM heap
memory exceeds
initially reserved?

Indicates
whether/not the
heapmemory
usage has
exceeded the
amount of memory
initially reserved
for this memory
type.

The values that this measure can report and their
corresponding numeric values are listed in the table
below:

Measure Value Numeric Value

Yes 1

No 0

Typically, the value of this measure will beYes for
amemory pool of typeELASTIC - i.e., for those
descriptors that report the value ELASTIC for the
Memory pool size typemeasure. For
FIXED memory pools on the other hand, the value
of this measure will generally be No.

Note:

By default, the test reports theMeasure Values
listed in the table above to indicate whether/not
memory usage has exceeded allocation. In the
graph of this measure however, the same is
indicated using the numeric equivalents only.

Percentage heap
used after GC

Indicates the
percentage of heap

Percent This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'



Chapter 3: Moni toring a Java Appl i cation

74

Measurement Description Measurement
Unit Interpretation

memory used by
the Zing JVM after
garbage collection.

interface is enabled.

This measure is only reported for the 'Heap
memory usage' descriptor.

If garbage collection reclaims a large amount of
memory from the Zing JVM, then the value of this
measure will be low. On the other hand, if the
garbage collector does not reclaim muchmemory,
or if the Java application suddenly runs amemory-
intensive process whenGC is being performed,
then the value of this measure will be very high.

Heap occupied
by application
objects

Indicates the
amount of heap
memory that is
used by
application
objects.

MB This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'
interface is enabled.

This measure is only reported for the 'Heap
memory usage' descriptor.

Heap reserved
for holding
application
objects

Indicates the
amount of heap
memory that was
reserved for the
usage of
application
objects.

MB This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'
interface is enabled.

This measure is only reported for the 'Heap
memory usage' descriptor.

Percentage of
heap used by
application
objects

Indicates what
percentage of its
reservedmemory
the application
objects used.

Percent This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'
interface is enabled.

This measure is only reported for the 'Heap
memory usage' descriptor.

The formula used for computing the value of this
measure is as follows:

(Heap occupied by application objects/Heap
reserved for holding application objects)*100

A value close to 100% is a cause for concern as it
indicates that space reserved for application
objects is being eroded rapidly. If the space-drain is



Chapter 3: Moni toring a Java Appl i cation

75

Measurement Description Measurement
Unit Interpretation

not controlled, it can cause application
performance to deteriorate.

Memory pool size
type

Indicates this
memory pool's
type in terms of
size

This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'
interface is enabled.

The values that this measure can report and their
numeric values are listed in the table below:

Measure Value Numeric Value

Uninitialized 0

Fixed 1

Elastic 2

Each of thesemeasure values are described
below:

Measure Value Description

Uninitialized A memory pool may be

labelled as Unitialized, if the

memory region itself has not

been reserved.

Fixed A Fixed pool has a fixed upper
bound on its size, usually set
when the memory for that
memory pool is initially
reserved.

Elastic An Elastic memory pool has
the ability to use unused
memory that other memory
pools are not using. Likewise,
when the memory pool no
longer needs to use all of its
memory, it can return that
memory so that it can be used
by other sibling memory pools.

Note:

By default, the test reports theMeasure Values



Chapter 3: Moni toring a Java Appl i cation

76

Measurement Description Measurement
Unit Interpretation

listed in the table above to indicate thememory
pool size type. In the graph of this measure
however, the same is indicated using the numeric
equivalents only.

The detailed diagnosis of the Used memory measure, if enabled, lists all the classes that are using
the pool memory, the amount and percentage of memory used by each class, the number of
instances of each class that is currently operational, and also the percentage of currently running
instances of each class. Since this list is by default sorted in the descending order of the percentage
memory usage, the first class in the list will obviously be the leadingmemory consumer.

Figure 3.9: The detailed diagnosis of the Usedmemory measure

3.3.2.1 Installing and Configuring the MAT Plugin

Before installing theMAT plugin, make sure that the following requirements are in place:

l To make optimum use of the available memory, the eG agent on AIX runs the JVM Memory
Usage test as a separate process. Sufficient memory should be available to this process to
analyze heap dump. This memory size depends upon heap dump size. For instance, to analyse
heap dump of size 2 GB, the process needs free memory of size 4 GB. This implies that the
process should be sized with 100% more memory than the heap dump size. This can be



Chapter 3: Moni toring a Java Appl i cation

77

configured in the followingmanner:

o Edit the eg_tests.ini file in the /opt/egurkha/manager/config directory

o In the [DD_ROWS] section of the file, configure the following parameters:

Xms = <Initial heap size>

Xmx=<Maximum heap size>

By default, both these parameters are set to 2048M. You can change the value of these
parameters based on what the heap dump size is.

o Finally, save the file.

l Next, make sure that the /tmp directory in the AIX system has sufficient free space. This is
because, the heap dump files will be stored and analyzed in this folder only. The space
requirement of this folder too will vary with heap dump size. For instance, if the heap dump size is
40 MB, then for the MAT plugin to analyze memory usage, 50%more free space is required in the
/tmp directory – i.e., 60MB of free space.

To install the plugin, do the following:

1. Download the MAT plugin and extract it into the egurkha directory on the AIX system hosting
the eGagent. The steps in this regard are as follows:

o Download theMAT plugin,mat_plugin_AIX_PPC64.tar.gz, from the site.

o Copy the plugin to the /opt/egurkha folder.

o Next, issue the following command from the AIX shell prompt, to unzip the MAT plugin zip
file:

gunzip mat_plugin_AIX_PPC64.tar.gz

o Next, issue the following command:

tar –xvf mat_plugin_AIX_PPC64.tar

o A folder named 'mat' will now be created in the /opt/egurkha folder.

2. Configure the Java application/container on AIX to perform heap analysis. For this, insert the
following in the JVM arguments section of the start-up script of the application/application
server, and then save the file:



Chapter 3: Moni toring a Java Appl i cation

78

- Xdump:java:none - Xdump:heap:file=/tmp/egi_
heapdump.%Y%m%d.%H%M%S.%pid.%seq.phd

3. You may also want to fine-tune the following parameters in the [DD_ROWS] section of the eg_
tests.ini file:

l Heap_File_Generation_TimeOut – (Default: 5 minutes) This is the time up to which the eG
agent can write to the heap dump file. If the agent tries to continue writing to the file after this
duration, then the file will be deleted. This means, that no DD will be reported by the agent.
To avoid this, set the timeout period according to the heap dump size. Larger the size of the
heap dump, higher should be the timeout value.

l Heap_Analyzing_TimeOut – (Default: 120 minutes) This is the time up to which the MAT
plugin should read and analyze the data in the heap dump file . If the plugin is not able to
finish analyzing the data in the heap dump file within the configured duration, then detailed
diagnostics will not be reported. To avoid this, set the time period according to the heap
dump size. Larger the size of the heap dump, higher should be the timeout value.

4. Finally, restart the application / application server.

3.3.3 JVM Uptime Test

This test tracks the uptime of a JVM. Using information provided by this test, administrators can
determine whether the JVM was restarted. Comparing uptime across Java applications, an admin
can determine the JVMs that have been running without any restarts for the longest time. 

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for every Java applicationmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
followingmechanisms:

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

79

Parameter Description

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

JMX remote port This parameter appers only if themode is set to jmx. Here, specify the port at which
the jmx listens for requests from remote hosts. Ensure that you specify the same port
that you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if themode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if theMode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access to
JMX. To know how to create this user, refer to Section 2.1.2. Confirm the password by
retyping it in the confirm password text box.

Provider This parameter appears only if theMode is set to JMX. This test uses a JMX Provider
to access theMBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if theMode is JMX,
and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if theMode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in themanagement.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 18).

SNMP Version This parameter appears only if theMode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.



Chapter 3: Moni toring a Java Appl i cation

80

Parameter Description

SNMP Community This parameter appears only if theMode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with themail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supportingmessage security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from theMIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges – in other words, the eG agent should connect to theMIB
using the credentials of a user with access permissions to beMIB. Therefore, specify
the name of such a user against this parameter. 

Context This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP
context is a collection of management information accessible by an SNMP entity. An
item of management informationmay exist in more than one context and an SNMP
entity potentially has access tomany contexts. A context is identified by the
SNMPEngineID value of the entity hosting themanagement information (also called a
contextEngineID) and a context name that identifies the specific context (also called a
contextName). If the USERNAME provided is associated with a context name, then
the eG agent will be able to poll theMIB and collect metrics only if it is configured with
the context name as well. In such cases therefore, specify the context name of the
username in the context text box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name. This
parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option. 



Chapter 3: Moni toring a Java Appl i cation

81

Parameter Description

Encrypttype If the Encryptflag is set to Yes, then you will have tomention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic – for instance,
certain types of data traffic or traffic pertaining to specific components – to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can
instruct the eG agent to conduct the SNMP data traffic related to themonitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against this
parameter.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.



Chapter 3: Moni toring a Java Appl i cation

82

Measurement Description Measurement
Unit Interpretation

Has JVM been
restarted?

Indicates whether or not
the JVM has restarted
during the last
measurement period.

If the value of this measure is No, it
indicates that the JVM has not
restarted. The value Yes on the
other hand implies that the JVM
has indeed restarted.

The numeric values that
correspond to the restart states
discussed above are listed in the
table below:

State Value

Yes 1

No 0

Note:
By default, this measure reports
the value Yes or No to indicate
whether a JVM has restarted. The
graph of this measure however,
represents the same using the
numeric equivalents – 0 or 1. 

Uptime during the
last measure
period

Indicates the time period
that the JVM has been
up since the last time this
test ran.

Secs If the JVM has not been restarted
during the last measurement
period and the agent has been
running continuously, this value will
be equal to the measurement
period. If the JVM was restarted
during the last measurement
period, this value will be less than
the measurement period of the
test. For example, if the
measurement period is 300 secs,
and if the JVM was restarted 120

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

83

Measurement Description Measurement
Unit Interpretation

secs back, this metric will report a
value of 120 seconds.  The
accuracy of this metric is
dependent on the measurement
period – the smaller the
measurement period, greater the
accuracy.

Total Uptime of the
JVM

Indicates the total time
that the JVM has been
up since its last reboot.

Secs Administrators may wish to be
alerted if a JVM has been running
without a reboot for a very long
period. Setting a threshold for this
metric allows administrators to
determine such conditions.

3.3.4 JVM Leak Suspects Test
Note:

This test is CPU & Memory intensive and can cause slowness to the underlying application. It is
hence NOT advisable to enable this test on production environments. It is ideally suited for
Development and Staging environments.

Java implements automatic garbage collection (GC); once you stop using an object, you can depend
on the garbage collector to collect it. To stop using an object, you need to eliminate all references to
it. However, when a program never stops using an object by keeping a permanent reference to it,
memory leaks occur. For example, let’s consider the piece of code below:



Chapter 3: Moni toring a Java Appl i cation

84

Figure 3.10: A sample code

In the example above, we continue adding new elements to the list memoryLeakArea without ever
removing them. In addition, we keep references to the memoryLeakArea, thereby preventing GC
from collecting the list itself. So although there is GC available, it cannot help because we are still
using memory. The more time passes the more memory we use, which in effect requires an infinite
amount memory for this program to continue running. When no more memory is remaining, an
OutOfMemoryError alert will be thrown and generate an exception like this: Exception in thread
"main" java.lang.OutOfMemoryError: Java heap space at MemoryLeakDemo.main
(MemoryLeakDemo.java:14)

Typically, such alerts signal a potential memory leak!

A memory leak can diminish the performance of your mission-critical Java applications by reducing
the amount of available memory. Eventually, in the worst case, it may cause the application to crash
due to thrashing. To avert such unwarranted application failures, it is imperative that memory leaks
are detected at the earliest and the objects responsible for them accurately isolated. This is where,
the JVM Leak Suspects test helps! This test continuously monitors the JVM heap usage and
promptly alerts administrators when memory usage crosses a configured limit. The detailed
diagnostics of the test will then lead you to the classes that are consuming memory excessively,
thereby pointing you to those classes that may have caused the leak.

Note:



Chapter 3: Moni toring a Java Appl i cation

85

This test will work only if the following pre-requisites are fulfilled:

l The test should be executed in an agent-basedmanner only.

l The target Java application should use the JDK/JRE offered by one of the following vendors only:
Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.

l Themonitored Java application should use JDK/JRE 1.6 or higher.

l For this test to run and report metrics, the eG agent install user should be the same as the Java
application (or) Java web/application server install user.

l By default , this test programmatically dumps a heap dump (.hprof files) in the folder  <EG_
AGENT_INSTALL_DIR>\agent\logs folder. To enable the eG agent to read/analyse such files,
you need to add the eG agent install user to the Java application (or) Java web/application server
install user group. If this is not done, then the dump files will be created, but will not be processed
by the eG agent, thus ending up unnecessarily occupying disk space (note that .hprof files are
normally 1-5 GB in size).

This test is disabled by default. To enable the test, go to the ENABLE / DISABLE TESTS page using
the menu sequence : Agents -> Tests -> Enable/Disable, pick the desired Component type, set
Performance as the Test type, choose the test from the DISABLED TESTS list, and click on the <
button tomove the test to the ENABLED TESTS list. Finally, click theUpdate button.

Target of the test : A Java application

Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for every Java applicationmonitored

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
followingmechanisms:

l Using SNMP-based access to the Java runtimeMIB statistics;

l By contacting the Java runtime (JRE) of the application via JMX

Configurable parameters for the test



Chapter 3: Moni toring a Java Appl i cation

86

Parameter Description

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same. 

User, Password,
and Confirm
password

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if theMode is JMX, and 10 seconds if theMode is SNMP.

SNMPPort This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 18).

SNMP Version This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use



Chapter 3: Moni toring a Java Appl i cation

87

Parameter Description

in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the
SNMP community name that the test uses to communicate with themail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

User name This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges – in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter. 

Context This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEngineID value of the entity hosting the management
information (also called a contextEngineID) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box.  By default, this parameter is set to none.

Authpass Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm password Confirm the Authpass by retyping it here

Authtype This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:



Chapter 3: Moni toring a Java Appl i cation

88

Parameter Description

l MD5 –Message Digest Algorithm

l SHA – Secure Hash Algorithm

Encryptflag This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option. 

Encrypttype If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

l DES –Data Encryption Standard

l AES – Advanced Encryption Standard

Encryptpassword Specify the encryption password here.

Confirm password Confirm the encryption password by retyping it here.

Data over TCP This parameter  is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic –
for instance, certain types of data traffic or traffic pertaining to specific
components – to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of



Chapter 3: Moni toring a Java Appl i cation

89

Parameter Description

this test for a particular server, choose the On option. To disable the capability,
click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

Allocated Heap
Memory

Indicates the total
amount of memory
space occupied by the
objects that are currently
loaded on to the JVM.

MB

Leak suspected
classes

Indicates the number of
classes that arememory
leak suspects.

Number Use the detailed diagnosis of this
measure to know which classes are using
morememory than the configured pct
heap limit.

Remember that all applications/classes
that throw OutofMemory exceptions need
not be guilty of leakingmemory. Such an
exception can occur even if a class
requires morememory for normal
functioning. To distinguish between a
memory leak and an application that
simply needs morememory, we need to
look at the "peak load" concept. When
program has just started no users have
yet used it, and as a result it typically
needs much less memory then when
thousands of users are interacting with it.
Thus, measuringmemory usage
immediately after a program starts is not

Measurements made by the test



Chapter 3: Moni toring a Java Appl i cation

90

Measurement Description Measurement
Unit Interpretation

the best way to gauge how muchmemory
it needs! Tomeasure how muchmemory
an application needs, memory size
measurements should be taken at the
time of peak load—when it is most heavily
used. Therefore, it is good practice to
check thememory usage of the
‘suspected classes’ at the time of peak
load to determine whether they are indeed
leakingmemory or not.

Number of objects Indicates the number of
objects present in the
JVM.

Number Use the detailed diagnosis of this
measure to view the top-20 classes in the
JVM in terms of memory usage.

Number of classes Indicates the number of
classes currently
present in the JVM.

Number

Number of class
loaders

Indicates the number of
class loaders currently
present in the JVM.

Number

Number of GC roots Indicate the number of
GC roots currently
present in the JVM.

Number A garbage collection root is an object that
is accessible from outside the heap. The
following reasons make an object a GC
root:

Reason Description

System Class Class loaded by

bootstrap/system

class loader. For

example, everything

from the rt.jar

like java.util.

JNI Local Local variable in

native code, such as

user defined JNI



Chapter 3: Moni toring a Java Appl i cation

91

Measurement Description Measurement
Unit Interpretation

Reason Description

code or JVM internal

code

JNI Global Global variable in

native code, such as

user defined JNI

code or JVM internal

code

Thread Block Object referred to

from a currently

active thread block

Thread A started, but not

stopped, thread

Busy Monitor Everything that has

called wait() or notify

() or that is

synchronized. For

example, by

calling synchronized

(Object) or by

entering a

synchronized

method. Static

method means

class, non-static

method means

object

Java Local Local variable. For

example, input

parameters or

locally created

objects of methods



Chapter 3: Moni toring a Java Appl i cation

92

Measurement Description Measurement
Unit Interpretation

Reason Description

that are still in the

stack of a thread.

Native Stack In or out parameters

in native code, such

as user defined JNI

code or JVM internal

code. or reflection.

Finalizer An object which is in

a queue awaiting its

finalizer to be run.

Unfinalized An object which has

a finalize method,

but has not been

finalized and is not

yet on the finalizer

queue.

Unreachable An object which is

unreachable from

any other root, but

has been marked as

a root by MAT to

retain objects which

otherwise would not

be included in the

analysis.

Unknown An object of

unknown root type. 

Objects pending for
finalization

Indicates the number of
objects that are pending
for finalization.

Number Sometimes an object will need to perform
some action when it is destroyed. For
example, if an object is holding some non-



Chapter 3: Moni toring a Java Appl i cation

93

Measurement Description Measurement
Unit Interpretation

java resource such as a file handle or
window character font, then youmight
want to make sure these resources are
freed before an object is destroyed. To
handle such situations, Java provides a
mechanism called finalization. By using
finalization, you can define specific
actions that will occur when an object is
just about to be reclaimed by the garbage
collector.

A high value for this measure indicates the
existence of many objects that are still
occupying the JVMmemory space and
are unable to be reclaimed by GC. A
consistent rise in this value is also a sign
of amemory leak.

The detailed diagnosis of the Leak suspected classes measure lists the names of all classes for
which the memory usage is over the configured PCT HEAP LIMIT. In addition, the detailed diagnosis
also reveals the PERCENTAGE RETAINED HEAP of each class - this is the percentage of the total
Allocated heap size that is used by every class. From this, you can easily infer which class is
consuming the maximum memory, and is hence, the key memory leak suspect. By observing the
memory usage of this class during times of peak load, you can corroborate eG’s findings - i.e., you
can know for sure whether that class is indeed leakingmemory or not!

Figure 3.11: The detailed diagnosis of the Leak suspect classes measure

The detailed diagnosis of the Number of objects measure lists the names of the top-20 classes in the
JVM, in terms of memory usage. In addition, the detailed diagnosis also reveals the percentage
retained heap of each class - this is the percentage of the total Allocated heap size that is used by
every class. From this, you can easily infer which class is consuming the maximum memory, and is
hence, the key memory leak suspect. By observing the memory usage of this class during times of



Chapter 3: Moni toring a Java Appl i cation

94

peak load, you can corroborate eG’s findings - i.e., you can know for sure whether that class is
indeed leakingmemory or not!

Figure 3.12: The detailed diagnosis of the Number of objects measure

3.4 What the eG Enterprise Java Monitor Reveals?
This section discusses how administrators can effortlessly and accurately diagnose the root-cause
of issues experienced by Java applications, using the class eG JVM Monitor. Each of the sub-
sections that follow take the case of a sample application problem, and illustrates the steps to be
followed to troubleshoot the problem in the eGmonitoring console.

3.4.1 Identifying and Diagnosing a CPU Issue in the JVM

In this section, let us consider the case of the Java application, sapbusiness-152:123, which is being
monitored by eGEnterprise. Assume that this application is running on a Tomcat server.

Initially, the application was functioning normally, as indicated by Figure 3.13. There are no high
CPU threads.



Chapter 3: Moni toring a Java Appl i cation

95

Figure 3.13: The Java application beingmonitored functioning normally

Now, assume that suddenly, one of the threads executed by the application starts to run abnormally, 
consuming excessive CPU resources. This is indicated by a change in the value of the High cpu
threads measure reported by the jvm Threads test mapped to the jvm Internals layer of the Java
Application monitoring model (see Figure 3.13). As you can see, as long as the sapbusiness
application was performing well, the value of the High cpu threadsmeasure was 0 (see Figure 3.13).
However, as soon as a thread began exhibiting abnormal CPU usage trends, the value changed to 1
(see Figure 3.14).



Chapter 3: Moni toring a Java Appl i cation

96

Figure 3.14: The High cpu threads measure indicating that a single thread is consuming CPU excessively

To know which thread is consuming too much CPU, click on the diagnosis icon (i.e., the magnifying
glass icon) corresponding to the High cpu threadsmeasure in Figure 3.14. Figure 3.15 then appears
revealing the name of the CPU- intensive thread (SapBusinessConnectorThread) and the
percentage of CPU used by the thread during the last measurement period. In addition, Figure 3.15
also reveals the number of times the thread was blocked, the total duration of the blocks, the number
of times the thread was in waiting, and the percentage of time waited, thereby revealing how
resource-intensive the thread has been during the last measurement period.

Figure 3.15: The detailed diagnosis of the  High cpu threads measure

Let us now get back to the CPU usage issue. Now that we know which thread is causing the CPU
usage spike, we next need to determine what is causing this thread to erode the CPU resources. To
facilitate this analysis, the detailed diagnosis page of Figure 3.15 also provides the Stack Trace for
the thread. You might have to scroll left to view the complete Stack Trace of the thread (see Figure
3.16).



Chapter 3: Moni toring a Java Appl i cation

97

Figure 3.16: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure

The stack trace is useful in determining exactly which line of code the thread was executing when we
took the last diagnosis snapshot and what was the code execution path that the thread had taken.

To view the stack trace of the CPU-intensive thread more clearly and to analyze it closely, click on
the icon in Figure 3.16 or theStack Trace label adjacent to the icon. Figure 3.17 then appears.

Figure 3.17: Stack trace of the CPU-intensive thread

As you can see, Figure 3.17 provides two panels. The left panel of Figure 3.17, by default, displays
all the high CPU- consuming threads sorted in the descending order of their CPU usage.
Accordingly, the High cpu threads measure is chosen by default from the Measurement list, and the
Percentage Cpu Time is the default selection in the Sort By list in Figure 3.17. These default
selections can however be changed by picking a different option from the Measurement and Sort By
lists.



Chapter 3: Moni toring a Java Appl i cation

98

The right panel on the other hand, typically displays the current state, overall resource usage, and
the Stack Trace for the thread chosen from the left panel. By default however, the right panel
provides the stack trace for the leading CPU consumer.

In the case of our example, since only a single thread is currently utilizing CPU excessively, the
name of that thread (i.e, SapBusinessConnectorThread) alone will appear in the left panel of Figure
3.17. The right panel too therefore, will display the details of the SapBusinessConnectorThread
only. Let us begin to analyze the Stack Trace of this thread carefully.

Stack trace information should always be viewed in a top-down manner. The method most likely to
be the cause of the problem is the one on top. In the example of Figure 3.17 , this is
com.ibc.sap.logic.LogicBuilder.createLogic. The line of code that was executed last when the
snapshot was taken is within the createLogic method of the com.ibc.sap.logic.LogicBuilder class.
This is line number 216 of the LogicBuilder.java source file. The subsequent lines of the stack trace
indicate the sequence of method calls that resulted in com.ibc.sap.logic.LogicBuilder.createLogic
being invoked.  In this example, com.ibc.sap.logic.LogicBuilder.createLogic has been invoked from
the method com.ibc.sap.SapBusinessLogic.getLogic. This invocation has been done by line 515 of
SapBusinessLogic.java source file.

To verify if the stack trace is correct in identifying the exact line of the source code that is responsible
for the sudden increase in CPU consumption by the SapBusinessConnectorThread, let us review
the LogicBuilder.java file in an editor (see Figure 3.18).

Figure 3.18: The LogicBuilder.java file

Figure 3.18 indicates line 216 of the LogicBuilder.java file. At this line, a while loop seems to have
been initiated. This code is supposed to loop 1,500,000 times and then sleep waiting for count to
decrease. Instead, a problem in the code – the value of count being reset to 0 at line 222 - is causing



Chapter 3: Moni toring a Java Appl i cation

99

the while loop to execute forever, thereby resulting in one of the threads in the JVM taking a lot of
CPU. Deleting the code at line 222 would solve this problem. Once this is done, then the
SapConnectorThread will no longer consume too much CPU; this in turn will decrement the value of
the High Cpu threadsmeasure by 1 (see Figure 3.19).

Figure 3.19: The High CPU threads measure reporting a 0 value

With that, we have seen how a simple sequence of steps bundled into the eG JVMMonitor, help an
administrator in identifying not only a CPU-intensive thread, but also the exact line of code executed
by that thread that could be triggering the spike in usage.

3.4.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM

This section once again takes the example of the sapbusiness application used by Section 3.4.1.
Here, we will see how the eG JVM Monitor instantly identifies blocked threads, and intelligently
diagnoses the reason for the blockage.

If a thread executing within the sapbusiness application gets blocked, the value of the Blocked
threads measure reported by the jvm Threads test mapped to the JVM Internals layer, gets
incremented by 1. When this happens, eG Enterprise automatically raises this as a problem
condition and changes the state of the Blocked threadsmeasure (see Figure 3.20).



Chapter 3: Moni toring a Java Appl i cation

100

Figure 3.20: The value of the Blocked threads measure being incremented by 1

According to Figure 3.20, the eG JVM Monitor has detected that a thread running in the sapclient
application has been blocked. To know which thread this is and for how long it has been blocked,
click on the DIAGNOSIS icon corresponding to the Blocked threads measure. Figure 3.21 will then
appear revealing the name of the blocked thread, how long it was blocked, the CPU usage of the
thread, and the time for which the thread was in waiting.

Figure 3.21: Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the
blocked thread

Figure 3.21 clearly indicates that the DatabaseConnectorThread running in the sapbusiness
application was blocked 100% of the time. The next step is to figure out who or what is blocking the
thread, and why. To achieve this, we need to analyze the stack trace information of the blocked
thread. To access the stack trace of the DatabaseConnectorThread, click on the icon in Figure
3.21 or the Stack Trace label adjacent to the icon. Figure 3.22 then appears.



Chapter 3: Moni toring a Java Appl i cation

101

Figure 3.22: The Stack Trace of the blocked thread

While the left panel of Figure 3.22 displays the DatabaseConnectorThread, the right panel provides
the following information about the DatabaseConnectorThread:

l The Thread State indicating the thread that is blocking the DatabaseConnectorThread, and the
object on which the block occurred; from the right panel of Figure 3.22, we can infer that the
DatabaseConnectorThread has been blocked on the java.lang.Strin@11bebad object owned by
theObjectManagerThread.

l The CPU usage of the DatabaseConnectorThread, and the number of times and duration for
which this thread has been blocked and has been in waiting;

l The Stack Trace of the DatabaseConnectorThread.

Now that we have identified the blocked thread, let us proceed to determine the root-cause for this
block. For this purpose, the Stack Trace of theDatabaseConnectorThread needs to be analyzed. As
stated earlier, the stack trace needs to be analyzed in the top-down manner to identify the method
that could have caused the block. Accordingly, we can conclude that the first method in the Stack
Trace in Figure 3.22 is most likely to have introduced the block. This method, as can be seen from
Figure 21, executes the lines of code starting from line 126 contained within the Java program file
named DbConnection.java . In all probability, the problem should exist in this code block only.
Reviewing this code block can therefore shed more light on the reasons for the
DatabaseConnectorThread getting blocked. Hence, let us first open the DbConnection.java file in
an editor (see Figure 3.23).



Chapter 3: Moni toring a Java Appl i cation

102

Figure 3.23: The DbConnection.java program file

Line 126 of Figure 3.23 is within a synchronized block. The object used to synchronize the accesses
to this block is a variable named “sync”. Looking at the variable declarations at the top of the source
code, we can see that the “sync” variable  refers to the static string “test” (see Figure 37). 

Figure 3.24: The lines of code preceding line 126 of the DbConnection.java program file

By comparing information form stack trace and the source we can see that the
DatabaseConnectorThread is stuck entering the synchronized block. Access to the synchronized
block is exclusive – so some other thead is blocking this DatabaseConnectorThread from entering
the synchronized block. Looking at the stack trace again (see Figure 35), we can see the name of the
blocking thread. The blocking thread is the thread named “ObjectManagerThread”.

We can now use the stack trace tool again to see the stack trace of the blocking
ObjectManagerThread.



Chapter 3: Moni toring a Java Appl i cation

103

Figure 3.25: Viewing the stack trace of the ObjectManagerThread

From here, we can see that the ObjectManagerThread went into a timed waiting state at line number
26 of the ObjectManager.java source code.

Figure 3.26: The lines of code in the ObjectManager.java source file



Chapter 3: Moni toring a Java Appl i cation

104

Again, using a text editor, we can see that the ObjectManager thread enters a 3600 second timed
wait at line 26.  This sleep call is inside a synchronized block with the local variable “mysync” being
used as the object to synchronize on.

The key to troubleshooting this problem is to look at the variable declarations at the top of each
source code file.

On the surface, it is not clear why the ObjectManager thread, which synchronizes a block using a
variable called “mysync” which is local to this class would be blocked by the DbConnection thread,
which synchronizes on a variable called “sync” that is local to the DbConnection class.

An astute java programmer, however, would know to look at the variable declarations at the top of
each source code file.  In that way, one will quickly observe that both the "mysync" variable of the
ObjectManager class and the "sync" variable of the DbConnection class in fact refer to the same
static string: “test”.

Figure 3.27: Comparing the ObjectManager and DbConnection classes

So, even though the programmer has given two different variable names in the two classes, the two
classes refer to and are synchronizing on the same static string object “test”.  This is why two
unrelated threads are interfering with each other’s execution.

Modifying the two classes – ObjectManager and DbConnection – so that the variables "mysync" and
"sync" point to two different strings by using the new object creator resolves the problem in this case.

We have demonstrated here a real-world example, where because of the careless use of variables,
one could end up in a scenario where one thread blocks another. The solution in this case to avoid
this problem is to define non-static variables that the two classes can use for synchronization. This
example has demonstrated how the eG Java Monitor can help diagnose and resolve a complex
multi-thread synchronization problem in a Java application.



Chapter 3: Moni toring a Java Appl i cation

105

3.4.3 Identifying and Diagnosing a ThreadWaiting Situation in the JVM

This section takes the help of the sapbusiness application yet again to demonstrate how the eG JVM
Monitor quickly isolates waiting threads and identifies the root-cause for the thread waits.

Whenever a thread goes into waiting, the value of the Waiting threads measure reported by the jvm
Threads test mapped to the jvm Internals layer gets incremented by 1 (see Figure 3.28).

Figure 3.28: TheWaiting threads

To know which threads are in waiting, click on the DIAGNOSIS icon corresponding to the Waiting
threads measure in Figure 3.28. Figure 3.29 then appears listing all the threads that are currently in
waiting.



Chapter 3: Moni toring a Java Appl i cation

106

Figure 3.29: The detailed diagnosis of theWaiting threads measure

Of the threads listed in Figure 3.29, those that begin with http* are Tomcat’s java threads. For these
threads to be in a waiting state is normal, and hence, these threads can be ignored. Only the
SessionController thread indicated by Figure 3.29 is an application-specific thread. To know why
this thread has been in waiting, you need to study the stack trace of the thread; for this, first scroll to
the left of Figure 3.29. You will then be able to view the stack trace of the thread.

Figure 3.30: Viewing the stack trace of the waiting thread

If you want to view the stack trace more clearly, click on the icon in Figure 3.30 or the Stack Trace
label adjacent to the icon. Figure 3.31 then appears.



Chapter 3: Moni toring a Java Appl i cation

107

Figure 3.31: The Thread Diagnosis window forWaiting threads

The left panel of Figure 3.31 lists all the waiting threads, with the thread that registered the highest
waiting time being selected by default. Since we are interested in the user-defined SessionController
thread, select it from the left panel. The right panel will then change as depicted by Figure 3.32
below.

Figure 3.32: The stack trace for the SessionController thread

A close look at the stack trace reveals that the thread could have gone into the waiting mode while
executing the code block starting at line 215 of the UserSession.java program file. To zero-in on the



Chapter 3: Moni toring a Java Appl i cation

108

precise code that could have caused the thread to wait, open the UserSession.java file in an editor,
and locate line 215 in it.

Figure 3.33: The UserSession.java file

The code block starting at line 215 of Figure 3.33 explicitly puts the thread in the wait state until such
time that the notify() method is called to change the wait state to a runnable state. This piece of code
will have to be optimized to reduce or even completely eliminate the waiting period of the
SessionController thread.

With that, we have demonstrated the eG JVM Monitor’s ability to detect waiting threads and lead you to the precise

line of code that could have put the threads in a wait state.

3.4.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM

In this section, the sapclient application is used one more time to explain how the eG JVM Monitor
can be used to report on deadlock situations in your JVM, and to diagnose the root-cause of the
deadlock.

Until a deadlock situation arises, the Deadlock threads measure reported by the JVM Threads test
will report only 0 as its value (see Figure 3.34).



Chapter 3: Moni toring a Java Appl i cation

109

Figure 3.34: The JVM Threads test reporting 0 Deadlock threads

When, say 2 threads are deadlocked for a particular resource/object, then the Deadlock threads
measure will report the value 2, as depicted by Figure 3.35. Since a deadlock situation arises when
two/more threads try to block each other from accessing amemory object or a resource, the value of
the Blocked threads measure too will increase in the event of a deadlock; in the case of our example
therefore, you will find that theBlocked threadsmeasure too reports the value 2.

Figure 3.35: The Deadlock threads measure value increasing in the event of a deadlock situation



Chapter 3: Moni toring a Java Appl i cation

110

To know which threads are in a deadlock, click on the DIAGNOSIS icon corresponding to the Deadlock
threadsmeasure. Figure 3.36 then appears.

Figure 3.36: The detailed diagnosis page revealing the deadlocked threads

Figure 3.36 clearly reveals that 2 threads, namely – the ResourceDataTwo and the
ResourceDataOne thread- are in a deadlock currently. To figure out why these two threads are
deadlocked, you would have to carefully review the stack trace of both these threads. For this
purpose, scroll to the left of Figure 3.36 to view the stack trace clearly. 

Figure 3.37: Viewing the stack trace of the dadlocked threads in the detailed diagnosis page

To keenly focus on the stack trace, without being distracted by the other columns in Figure 3.36 and
Figure 3.37, click on the icon in Figure 3.37 or the Stack Trace label adjacent to the icon. Figure 3.38
then appears.



Chapter 3: Moni toring a Java Appl i cation

111

Figure 3.38: The stack trace for the ResourceDataOne thread

The left panel of Figure 3.38 lists the 2 deadlocked threads, with the thread that is the leading CPU
consumer being selected by default – in the case of our example, this is the ResourceDataOne
thread. For this default selection, the contents of the right panel will be as depicted by Figure 3.38
above. From the Thread State, it is evident that the ResourceDataOne thread has been blocked on
an object that is owned by the ResourceDataTwo thread.

If you closely scrutinize the stack trace of ResourceDataOne, you will uncover that once the thread
started running, it executed line 40 of the ResourceMonitor.java program file, which in turn invoked
line 68 of the same file; the deadlock appears to have occurred at line 68 only.

Let us now shift our focus to the ResourceDataTwo thread. To view the stack trace of this thread,
click on the thread name in the left panel of Figure 3.38. As you can see, the Thread State clearly
indicates that the ResouceDataTwo thread has been blocked by the ResourceDataOne thread.
With that, we can conclude that both threads are blocking each other, thus making for an ideal
deadlock situation.

Analysis of the stack trace of the ResourceDataTwo thread (see Figure 3.39) reveals that once
started, the thread executed line 94 of the ResourceMonitor.java file, which in turn invoked line 21 of
the same file; since no lines of code have been executed subsequently, we can conclude that the
deadlock occurred at line 21 only.



Chapter 3: Moni toring a Java Appl i cation

112

Figure 3.39: The stack trace for the ResourceDataTwo thread

From the above discussion, we can infer both the threads deadlocked while attempting to execute
code contained within the ResourceMonitor.java file. We now need to examine the code in this file to
figure out why the deadlock occurred. Let us therefore open the ResourceMonitor.java file.

Figure 3.40: The lines of code executed by the ResourceDataOne thread

If you can recall, the stack trace of the ResourceDataOne thread indicated a problem while
executing the code around line number 68 (see Figure 3.38) of the ResourceMonitor.java file. Figure
3.40 depicts this piece of code. According to this code, the ResourceDataOne thread calls a
lockSecondResource() method, which in turn invokes a synchronized block that puts the thread to



Chapter 3: Moni toring a Java Appl i cation

113

sleep for 500 milliseconds; a synchronized method, when called by a thread, cannot be invoked by
any other thread until its original caller releases themethod.

Going back to Figure 3.40, at the end of the sleep duration of 500 milliseconds, the synchronized block will
invoke another method named lockFirstResource () . However, note that this method and the
lockSecondResource()method are also called by the ResourceDataTwo thread. To verify this, let us proceed to
review the lines of code executed by theResourceDataTwo thread (seeFigure 3.41).

Figure 3.41: The lines of code executed by the ResourceDataTwo thread

As per the stack trace corresponding to the ResourceDataTwo thread (see Figure 3.39), the
deadlock creeps in at line 21 of the ResourceMonitor.java file. Figure 3.41 depicts the code around
line 21 of the ResourceMonitor.java file. This code reveals that the ResourceDataTwo thread
executes a lockFirstResource()method, which in turn invokes a synchronized block; within this block,
the thread is put to sleep for 500 milliseconds. Once the sleep ends, the block will invoke the
lockSecondResource() method; both this method and the lockFirstResource() method are also
executed by the ResourceDataOne thread.

From the discussion above, the following are evident:

l The ResourceDataOne thread will not be able to execute the lockSecondResource() method,
since the ResourceDataTwo thread calls this method within a synchronized block – this implies
that the ResourceDataTwo thread will ‘block’ the ResourceDataOne thread from executing the
lockSecondResource() method until such time that ResourceDataTwo executes themethod.

l The ResourceDataTwo thread on the other hand, will not be able to execute the
lockFirstResource () method, since the ResourceDataOne thread calls this method within a
synchronized block – this implies that the ResourceDataOne thread will ‘block’ the
ResourceDataTwo thread from executing the lockFirstResource() method until such time that
ResourceDataOne executes themethod.

Since both threads keep blocking each other, a deadlock situation occurs.



Chapter 3: Moni toring a Java Appl i cation

114

With that, we have demonstrated the eG JVM Monitor’s ability to detect deadlock threads and lead
you to the precise line of code that could have caused the deadlock.

3.4.5 Identifying and DiagnosingMemory Issues in the JVM

This section takes the example of the sapclient application again to demonstrate the effectiveness of
the eG JVM Monitor in proactively detecting and alerting administrators to memory contentions
experienced by Java applications.

If the usage of a  memory pool increases, the eG JVM Monitor indicates the same using the Used
memory measure for that pool reported by the JVM Memory Usage test mapped to the JVM
Engine layer. 

Figure 3.42: The Usedmemory measure indicating the amount of pool memory being utilized

To know which class is consuming memory excessively, click on the DIAGNOSIS icon
corresponding to the Used memory measure in Figure 3.42. Figure 3.43 then appears listing all the
classes that are using the pool memory, the amount and percentage of memory used by each class,
the number of instances of each class that is currently operational, and also the percentage of
currently running instances of each class. Since this list is by default sorted in the descending order
of the percentage memory usage, the first class in the list will obviously be the leading memory
consumer. In the case of our example, the memory contention in the sapbusiness application has
been caused by the 22% heapmemory usage of the com.ibc.object.SapBusinessObject class.



Chapter 3: Moni toring a Java Appl i cation

115

Figure 3.43: The detailed diagnosis of the Usedmemory measure

Sometimes, you might want to sort the classes by another column or quickly switch to another
measurement period to analyze the memory usage during that time frame. To achieve this, click on
the Heap Details link or the button next to it. Figure 53 then appears, allowing you the flexibility
to view memory-consuming classes based on a Sort by option and a Measurement Time of your
choice.

Figure 3.44: Choosing a different Sory By option andMeasurement Time



Chapter 3: Moni toring a Java Appl i cation

116

Careful examination of the method that calls the SapBusinessObject (see Figure 3.45) reveals that
an endless while loop is causing an array list named a to be populated with 20,000 instances of the
SapBusinessObject, every 10 seconds! The continuous addition of objects is quiet obviously
depleting thememory available to the JVM. 

Figure 3.45: Themethod that is invoking the SapBusinessObject

This is how the eG JVM Monitor greatly simplifies the process of identifying the source of memory
bottlenecks in a Java application.



About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.


	Chapter 1: Introduction
	Chapter 2: Pre-requisites for Monitoring Java Applications
	2.1 Enabling JMX Support for JRE
	2.1.1 Securing the ‘jmxremote.password’ file
	2.1.2 Configuring the eG Agent to Support JMX Authentication

	2.2 Enabling SNMP Support for JRE
	2.3 Managing the Java Application

	Chapter 3: Monitoring a Java Application
	3.1 The Java Transactions Layer
	3.1.1 Java Business Transactions Test

	3.2 The JVM Internals Layer
	3.2.1 JMX Connection to JVM
	3.2.2 JVM File Descriptors Test
	3.2.3 Java Classes Test
	3.2.4 JVM Garbage Collections Test
	3.2.5 JVM Memory Pool Garbage Collections Test
	3.2.6 JVM Threads Test

	3.3 The JVM Engine Layer
	3.3.1 JVM CPU Usage Test
	3.3.2 JVM Memory Usage Test
	3.3.3 JVM Uptime Test
	3.3.4 JVM Leak Suspects Test

	3.4 What the eG Enterprise Java Monitor Reveals?
	3.4.1 Identifying and Diagnosing a CPU Issue in the JVM
	3.4.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM
	3.4.3 Identifying and Diagnosing a Thread Waiting Situation in the JVM
	3.4.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM
	3.4.5 Identifying and Diagnosing Memory Issues in the JVM


	About eG Innovations

