P
%
)”.ff
&
\)///’]
.)00

Jul Aug Sep QOct

Monitoring Java Applications

eG Innovations Product Documentation

e

Total Performance Visibility

www.eginnovations.com

Table of Contents

CHAPTER 1: INTRODU CTION i 1
CHAPTER 2: PRE-REQUISITES FOR MONITORING JAVA APPLICATIONS 2
2.1 Enabling JMX Support for JRE . 2
2.1.1 Securing the ‘jmxremote.password’ file . . e 6
2.1.2 Configuring the eG Agent to Support JMX Authentication 12

2.2 Enabling SNMP Support for JRE ... 17
2.3 Managing the Java Application 24
CHAPTER 3: MONITORING A JAVA APPLICATION ... 26
3.1 TheJava Transactions Layer 27
3.1.1 Java Business Transactions Test 27
3.2The JVMINnternals Layer 28
3.2.1 JMX Connection 10 JVM il 29
3.2.2 JVM File Descriptors Test .. e 31
3.2.3 Java Classes Test 33
3.2.4 JVM Garbage Collections Test oo e e 37
3.2.5 JVM Memory Pool Garbage Collections Test 40
3.2.6 JVM Threads Test il 46
3.3The JVM ENgine Layer 59
3.3.1 JVM CPU Usage Test e 60
3.3.2JVM Memory Usage Test 66

3. 3.3 VM Uptime Test 78
3.3.4 JVM Leak Suspects Test 83

3.4 What the eG Enterprise Java Monitor Reveals? 94
3.4.1 Identifying and Diagnosing a CPU Issue inthe JVM 94
3.4.2 Identifying and Diagnosing a Thread Blocking Issue inthe JVM 99
3.4.3 Identifying and Diagnosing a Thread Waiting Situationinthe JVM __ 105
3.4 4 Identifying and Diagnosing a Thread Deadlock Situationinthe JVM 108
3.4.5 Identifying and Diagnosing Memory Issues inthe JVM _ 114

ABOUT EG INNOV ATIONS 117

Table of Figures

Figure 2.1: Selecting the Properties OptioNn ... e e 7
Figure 2.2: The Properties dialog boX 7
Figure 2.3: Deselecting the ‘Use simple file sharing’ option i 8
Figure 2.4: Clicking the Advanced button 9
Figure 2.5: Verfying whether the Owner of the file is the same as the application Owner __..__.._.. 9
Figure 2.6: Disinheriting permissions borrowed from a parentdirectory 10
Figure 2.7: Copying the inherited permissioNs i e 11
Figure 2.8: Granting full control to the file owner _ 12
Figure 2.9: Scrolling down the jmxremote.password file to view 2 commented entries __ _................ 13
Figure 2.10: The jmxremote.access file e 14
Figure 2.11: Uncommenting the ‘controlRole’ line 14
Figure 2.12: Editing the java.policy fille 15
Figure 2.13: Appending a new username password pairl 16
Figure 2.14: Assigning rights to the new user in the jmxremote.accessfile 16
Figure 2.15: Editing the java.policy file to grant john full access to javax.management.MBeanPermission ..._..._. 17
Figure 2.16: The snmp.acl fille . e 19
Figure 2.17: The snmp.acl file revealing the SNMP ACL example e, 20
Figure 2.18: Uncommenting the code bloCK e 20
Figure 2.19: The edited blOCK 22
Figure 2.20: Adding a Java Application el 24
Figure 2.21: List of Unconfigured tests for the Java Application 25
Figure 3.1: Layer model of the Java Application 26
Figure 3.2: The tests associated with the JVM Internals layer i 29
Figure 3.3: Editing the startup script file of a sample Java application 46
Figure 3.4: The STACK TRACE liNK _ i 56
Figure 3.5: Stack trace of a resource-intensive thread 57
Figure 3.6: Thread diagnosis of live threads e 58
Figure 3.7: The tests associated with the JVM Engine layer 60
Figure 3.8: The detailed diagnosis of the CPU utilization of JVM measure 66
Figure 3.9: The detailed diagnosis of the Used memory measure i, 76
Figure 3.10: A sample COAe e 84
Figure 3.11: The detailed diagnosis of the Leak suspectclasses measure iiiiiiiiiaii. 93
Figure 3.12: The detailed diagnosis of the Number of objects measure 94
Figure 3.13: The Java application being monitored functioningnormally 95
Figure 3.14: The High cpu threads measure indicating that a single thread is consuming CPU excessively ._..... 96
Figure 3.15: The detailed diagnosis of the High cpu threads measure i . 96

Figure 3.16: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure ._........_. 97

Figure 3.17: Stack trace of the CPU-intensive thread 97

Figure 3.18: The LogicBuilder java file e 98
Figure 3.19: The High CPU threads measure reportinga Ovalue iiiiiiiiiiiiiiiia... 99
Figure 3.20: The value of the Blocked threads measure being incremented by 1 100
Figure 3.21: Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the

blocked thread e 100
Figure 3.22: The Stack Trace ofthe blocked thread 101
Figure 3.23: The DbConnection.java program file 102
Figure 3.24: The lines of code preceding line 126 of the DbConnection.java programfile_.................... 102
Figure 3.25: Viewing the stack trace of the ObjectManagerThread 103
Figure 3.26: The lines of code in the ObjectManager.java sourcefile 103
Figure 3.27: Comparing the ObjectManager and DbConnection classes 104
Figure 3.28: The Waiting threads e e e e 105
Figure 3.29: The detailed diagnosis of the Waiting threads measure i .. 106
Figure 3.30: Viewing the stack trace of the waiting thread 106
Figure 3.31: The Thread Diagnosis window for Waiting threads 107
Figure 3.32: The stack trace for the SessionController thread 107
Figure 3.33: The UserSession.java file oL 108
Figure 3.34: The JVM Threads test reporting 0 Deadlock threads 109
Figure 3.35: The Deadlock threads measure value increasing in the event of a deadlock situation_..._..._. 109
Figure 3.36: The detailed diagnosis page revealing the deadlocked threads 110
Figure 3.37: Viewing the stack trace of the dadlocked threads in the detailed diagnosispage 110
Figure 3.38: The stack trace for the ResourceDataOne thread 111
Figure 3.39: The stack trace for the ResourceDataTwo thread 112
Figure 3.40: The lines of code executed by the ResourceDataOne thread 112
Figure 3.41: The lines of code executed by the ResourceDataTwo thread 113
Figure 3.42: The Used memory measure indicating the amount of pool memory being utilized ..._............._. 114
Figure 3.43: The detailed diagnosis of the Used memory measure 115
Figure 3.44: Choosing a different Sory By option and Measurement Time _ o 115

Figure 3.45: The method thatis invoking the SapBusinessObject 116

Chapter 1: Introduction

Chapter 1: Introduction

Java applications are predominantly used in enterprises today owing to their multi-platform nature.
Once written, a Java application can be run on heterogeneous platforms with no additional
configuration. This is why, the Java technology is widely used in the design and delivery of many
critical web and non-web-based applications.

The prime concern of the administrators of these applications is knowing how well the application is
functioning, and how to troubleshoot issues (if any) in the performance of these applications. Most
web application server vendors prescribe custom APIs for monitoring — for instance, WebSphere
and WebLogic allow administrators to use their built-in APIs for performance monitoring and
problem detection. The details of these APIs and how eG Enterprise uses them to monitor the
application server in question are discussed elaborately in this document.

Chapter 2: Pre-requisites for Monitoring Java Applications

Chapter 2: Pre-requisites for Monitoring Java Applications

The Java Application model that eG Enterprise prescribes provides both agentless and agent-based
monitoring support to Java applications. The eG agent, deployed either on the application host or on
a remote Windows host in the environment (depending upon the monitoring approach — whether
agent-based or agentless), can be configured to connect to the JRE used by the application and pull
out metrics of interest, using either of the following methodologies:

« JMX (Java Management Extensions)

« SNMP (Simple Network Management Protocol)
Note:
The eG agent uses the specifications prescribed by JSR 174 to perform JVM monitoring.

This is why, each test mapped to the top 2 layers of Figure 1 provides administrators with the option
to pick a monitoring MODE - i.e., either JMX or SNMP. The remaining test configuration depends
upon the mode chosen.

Since both JMX and SNMP support are available for JRE 1.5 and above only, the Java Application
model can be used to monitor only those applications that are running JRE 1.5 and above.
The supported JVMs are as follows:

« SunJVM 1.5 or higher

« JRockit JVM 5.0 R27.1 or higher
« IBMJRE 1.5 or higher
OpendDK 1.5 or higher

Azul Zing JVM 1.6 or higher

The sections to come discuss how to enable JMX and SNMP for JRE.

2.1 Enabling JMX Support for JRE

In older versions of Java (i.e., JDK/JRE 1.1, 1.2, and 1.3), very little instrumentation was built in, and
custom-developed byte-code instrumentation had to be used to perform monitoring. From JRE/JDK
1.5 and above however, support for Java Management Extensions (JMX) were pre-built into
JRE/JDK. JMX enables external programs like the eG agent to connect to the JRE of an application
and pull out metrics in real-time.

Note:

Chapter 2: Pre-requisites for Monitoring Java Applications

This section discusses the procedure for enabling JMX support for the JRE of any generic Java

application that may be monitored using eG Enterprise. To know how to enable JMX support for the

JRE of key application servers monitored out-of-the-box by eG Enterprise, refer to the relevant

chapters of the Configuring and Monitoring Application Servers document.

By default, JMX requires no authentication or security (SSL). In this case therefore, to use JMX for

pulling out metrics from a target application, the following will have to be done:

1.
2.

Login to the application host.

The <JAVA_HOME>\jre\lib\management folder used by the target application will typically
contain the following files:

« management.properties

« jmxremote.access

» jmxremote.password.template

« snmp.acl.template

Edit the managerment.properties file, and append the following lines to it:

com.sun.management . jmxremote .port=<Port No>

com.sun.management . jmxremote.ssl=false com.sun.management. jmxremote.authenticate=false
For instance, if the JMX listens on port 9005, then the first line of the above specification would
be:

com.sun.management . jmxremote.port=9005

Then, save the file.

Next, edit the start-up script of the target application, and add the following line to it:

-Dcom.sun.management.config.file=<management.properties file path>
-Djava.rmi.server.hostname=<IP Address>

For instance, on a Windows host, the <management.properties_file_path> can be expressed as:
D:\beal\jrockit_150_11\jre\lib\management\management.properties

On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>
specification will be as follows: lusr/jdk1.5.0_
05/jre/llib/management/management.properties

Chapter 2: Pre-requisites for Monitoring Java Applications

10.

In the second line, set the <IP Address> to the IP address using which the Java application has
been managed in the eG Enterprise system. Alternatively, you can add the following line to the
startup script: -Djava.rmi.server.hosthname=localhost

Save this script file too.

Next, during test configuration, do the following:

e SetJMX asthe mode;

« Set the port that you defined in step 3 above (in the management.properties file) as the jmx
remote port;

« Setthe user and password parameters to none.

« Update the test configuration.

On the other hand, if JMX requires only authentication (and no security), then the following steps will
apply:

1.

Login to the application host. If the application is executing on a Windows host, then, login to the
host as a local/domain administrator.

As stated earlier, the <java_home>\jre\lib\management folder used by the target application will
typically contain the following files:

management.properties

« jmxremote.access

jmxremote.password.template

« snmp.acl.template

First, copy the jmxremote.password.template file to any other location on the host, rename it as
as jmxremote.password, and then, copy it back to the <JAVA_HOME>\jre\libimanagement
folder.

Next, edit the jmxremote.password file and the jmxremote.access file to create a user with read-
write access to the JMX. To know how to create such a user, refer to Section 2.1.2.

Then, proceed to make the jmxremote.password file secure by granting a single user “full access”
to that file. For monitoring applications executing on Windows in particular, only the Owner of the
jmxremote.password file should have full control of that file. To know how to grant this privilege to
the Owner of the file, refer to Section 2.1.1.

. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be

Chapter 2: Pre-requisites for Monitoring Java Applications

10.

granted full access to the jmxremote.password file, by following the steps below:

« Login to the host as the user who is to be granted full control of the jmxremote.password file.

« Issue the following command:
chmod 600 jmxremote.password

« This will automatically grant the login user full access to the jmxremote.password file.
Next, edit the management.properties file, and append the following lines to it:

com. sun.management . jmxremote.port=<Port No>
com.sun.management . jmxremote.ssl=false
com.sun.management . jmxremote.authenticate=true

com.sun.management . jmxremote.access.file=<Path of jmxremote.access>

com. sun.management . jmxremote.password.file=<Path of jmxremote.password>

For instance, assume that the JMX remote port is 9005, and the jmxremote.access and
jmxremote.password files exist in the following directory on a Windows host: D:\bea\jrockit_150 _
11\jre\lib\management. The specification above will then read as follows:

com.sun.management . jmxremote.port=9005

com.sun.management . jmxremote.access.file=D:\\bea\\jrockit 150
11\\jre\\lib\\management\\jmxremote.access

com.sun.management . jmxremote.password. file=D:\\bea\\jrockit 150

11\\jre\\lib\\management\\ jmxremote.password

If the application in question is executing on a Unix/Solaris/Linux host, and the jmxremote.access
and jmxremote.password files reside in the /usr/jdk1.5.0_05/jre/lib/management folder of the
host, then the last 2 lines of the specification will be:

com.sun.management . jmxremote.access.file=/usr/jdkl.5.0
05/jre/lib/management/jmxremote.access
com.sun.management . jmxremote.password.file=/usr/jdkl.5.0

05/jre/lib/management/jmxremote.password

Finally, save the file.

Then, edit the start-up script of the target web application server, include the following line in it,
and save thefile:

-Dcom. sun.management.config.file=<management.properties file path>

-Djava.rmi.server.hostname=<IP Address>

Chapter 2: Pre-requisites for Monitoring Java Applications

11.

12.

For instance, on a Windows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties. On other hand, on a
Linux/Solaris host, a sample<management.properties_file_path> specification will be as follows:
lusrl/jdk1.5.0_05/jre/llib/management/management.properties

In the second line, set the <IP Address> to the IP address using which the Java application has
been managed in the eG Enterprise system. Alternatively, you can add the following line to the
startup script of the target web application server: -Djava.rmi.server.hostname=Ilocalhost

Next, during test configuration, do the following:

e« SetJMX as the mode;

« Ensure that the port number configured in the management.properties file at step 5 above is
set as the jmx remote port;

« Make sure that the user and password parameters of the test are that of a user with readwrite
rights to JMX. To know how to create a new user and assign the required rights to him/her,
refer to Section 2.1.2.

Note:

eG Enterprise cannot use JMX that requires both authentication and security (SSL), for
monitoring the target Java application.

2.1.1 Securing the jmxremote.password’ file

To enable the eG agent to use JMX (that requires authentication only) for monitoring a Windows-

based Java application, you need to ensure that the jmxremote.password file in the <JAVA_

HOME>\jre\libimanagement folder used by the target application is accessible only by the Owner

of that file. To achieve this, do the following:

1.
2.

Login to the Windows host as a local/domain administrator.
Browse to the location of the jmxremote.password file using Windows Explorer.

Next, right-click on the jmxremote.password file and select the Properties option (see Figure
2.1).

Chapter 2: Pre-requisites for Monitoring Java Applications

Mame =

I Size | Tvpe

| Date Modified

@ jmxremote, access

Open

IKBE ACCESSFile
IKE PASSWORD File
11 EE PROPERTIES File

14/10/2004 10:39
14/10/2004 10:39

manz

02)05/2004 03:36

Scan for Viruses, .,

Send To r

Cuk
Zopy

Create Shorkout
Delete
Rename

{ Froperties :>|

Figure 2.1: Selecting the Properties option

4. From Figure 2.2 that appears next, select the Security tab.

=
jmxremote.password Properties)

Genemmar_l,l I

|oxa limxremote.password
Tupe of file: PASSWORD File
Opens with: Unknown application Change...
Location: C:Ajdk 1. Bhjrehlibhmanagement
Size: 2.86 KB [2.923 bytes]
Size on disk: 4.00 KB [4.096 bytes)
Created: 14 October 2004, 10:38:31
b odified: 14 October 2004, 10:33:03
Accessed: 19 October 2004, 1416:13
Attributes: [T Beadonly [Hidden Advanced... |

ok, I Cancel I Apply

Figure 2.2: The Properties dialog box

Chapter 2: Pre-requisites for Monitoring Java Applications

However, if you are on Windows XP and the computer is not part of a domain, then the Security
tab may be missing. To reveal the Security tab, do the following:

o Open Windows Explorer, and choose Folder Options from the Tools menu.

« Select the View tab, scroll to the bottom of the Advanced Settings section, and clear the
check box next to Use Simple File Sharing.

General “iew I File T_I.Jpesl Offline Filesl

— Folder views
Y'ou can apply the view [zuch as Detailz or Tilez] that

you are using for thiz folder to all folders.

| Apply to &ll Folders I Fezet &l Folders |

Advanced zettings:

& Do not show hidden files and folders ;I
) Show hidden files and folders
Hide extenzions for known file types
Hide protected operating swstem files [Recommended)]
O Launch falder windows in a separate process
Remember each folder's view settings
[Restare previous folder windows at logan
O Show Control Panel in My Computer
Show encrypted or compreszed MTFS files in color
Show pop-up dezcription for folder and dezsktop items
‘U ze simple file shaning [Recommended)

-

Restore Defaults |

(] I Cancel I Aoply |

Figure 2.3: Deselecting the ‘Use simple file sharing’ option

« Click OK to apply the change

« When you restart Windows Explorer, the Security tab would be visible.

5. Next, select the Advanced button in the Security tab of Figure 2.4.

Chapter 2: Pre-requisites for Monitoring Java Applications

imxremote.password Properties - llll

General Security I Summar_l,.ll

GIDUD ar Usel names:

€7 5b23720 [BLANENab237E0]

Add... I Remove I
FPermizzionz for ab23780 Allow Denp
Full Contral [|
tlodify [
Read & Execute [|
Fead |
Wwirike [|
Special Permizzionsz [| [|

For special permissions or for advanced settings,
click Advanced.

k. I Cancel I Apply I

Figure 2.4: Clicking the Advanced button

6. Select the Owner tab to see who the owner of the file is.

Advanced Security Settings for jmxremote.password N 2l x|

Permissionsl Auditing Owner | Effective F"ermissionsl

*You can take ownership of an object if you have the appropniate permissions.

Current owner of this item:

Iab23FBD [ALANBNabZ23780]

Mame

€ 2023780 [ALANEab23780)
!ﬁ Adminiztrators [ALANE \Adminiztrators)

0K I Cancel | Spply |

Figure 2.5: Verfying whether the Owner of the file is the same as the application Owner

7. Then, proceed to select the Permissions tab in Figure 2.5 to set the permissions. If the

Chapter 2: Pre-requisites for Monitoring Java Applications

jmxremote.password file has inherited its permissions from a parent directory that allows users or
groups other than the Owner to access the file, then clear the Inherit from parent the
permission entries that apply to child objects check box in Figure 2.6.

Advanced Security Settings for jmxremote.password ﬂll

Permissions |.&uditing| Qwiner | Effective Permissions |

T view more information about Special permissions, select a permission entry, and then click Edit,

Permission entries:

Type Mame Permizzion Ihented From
Adminiztrators [ALANEMAdminist.. Full Control

Mlow SYSTEM
Allowy ab23780 [4LANE\abZ 3780)
Al Uszers [ALAMBYzers]

Full Contral
Full Contral C:h
Fead & Execute Cih

Add. | Edit.. Remove

@rit from parent the permizsion entries that apply to child ohjects. Include these with entries explicitly
ned here.

Ok I Cancel | Lpply |

Figure 2.6: Disinheriting permissions borrowed from a parent directory

8. At this point, you will be prompted to confirm whether the inherited permissions should be copied
from the parent or removed. Press the Copy button in Figure 2.7.

10

Chapter 2: Pre-requisites for Monitoring Java Applications

2]

x|

Selzcting this option means that the parent permizgion entries that applv b |)
\::J child objects will no longer be applied to this object, ick Edit.
.

-Tocopy the permizsion entries that were previously applied from the
parent to this object, click Copy,

-To remove the pemizgion enties that were previously applied from the I
parent and keep only thoze permizzions explicitly defined here, click
Remaove,

Toe jon, click Cancel.

Remaove Cancel

Add... Edi... Femove

I Inherit from parent the permission entries that apply to child objects. Include these with entries explicitly
defined here.

Ok | Cancel Spply

Figure 2.7: Copying the inherited permissions

9. Next, remove all permission entries that allow the jmxremote.password file to be accessed by
users or groups other than the file Owner. For this, click the user or group and press the Remove
button in Figure 2.8. At the end of this exercise, only a single permission entry granting Full
Control to the owner should remain in Figure 2.8.

11

Chapter 2: Pre-requisites for Monitoring Java Applications

Advanced Security Settings for jmrremote.password ﬂil

Permissions |Auditing| Dwnerl Effective Permissionsl

Ta view more information abot Special pemmiszions, select a permizsion entry, and then click Edit.

Permizzion entries:

Type Hame Permizzion Inherited From

Full Cantral <t inherited:

Add. Edt. || Femoe |

Inherit from parent the permission entries that apply to child objects. Include these with entries explicithy
defined here,

14 | Cancel | Apply

Figure 2.8: Granting full control to the file owner

10. Finally, click the Apply and OK buttons to register the changes. The password file is now secure,
and can only be accessed by the file owner.

Note:

If you are trying to enable JMX on a Linux host, you might encounter issues with the way hostnames
are resolved.

To solve it you might have to set the -Djava.rmi.server.hosthame=<hostname or localhost or
ip> property in the startup script of the target web application server.

If you are in local, simply try with - Djava.rmi.server.hostname=localhost or -
Djava.rmi.server.hosthame=127.0.0.1.

2.1.2 Configuring the eG Agent to Support JMX Authentication

If the eG agent needs to use JMX for monitoring a Java application, and this JMX requires
authentication only (and not security), then every test to be executed by such an eG agent should
be configured with the credentials of a valid user to JMX, with read-write rights. The steps for
creating such a user are detailed below:

12

Chapter 2: Pre-requisites for Monitoring Java Applications

1. Login to the application host. If the application being monitored is on a Windows host, then login
as a local/domain administrator to the host.

2. Go to the <JAVA_HOME>\jre\lib\management folder used by the target application to view the
following files:

« management.properties
» jmxremote.access
« jmxremote.password.template

« snmp.acl.template

3. Copy the jmxremote.password.template file to a different location, rename it as
jmxremote.password, and copy it back to the <JAVA_HOME>\jre\lib\management folder.

4. Open the jmxremote.password file and scroll down to the end of the file. By default, you will find
the commented entries indicated by Figure 2.9 below:

ﬂ Edil s CARrograny hilesi avakidic] B DR ZArestibimanagementsymnempies password i template s JJ \3!
@ File Edit Wiew Search Document Project Tools Window Help == .3
Jdazdw aa ¥ X oo |ShE-EldW=nd B
H 1 z 4 5 7 1 B —
P 1~
A given role should have at most one entry in this file. If a role
has no entry, it has no access.
If multiple entries are found for the same role name, then the last one
is used.
Lo#
In a typical installation, this file can be read by anybody on the
local machine, and possibly by people on other machines.
For # security, yvou should either restrict the access to this file,
or specify another, less accessible file in the management config file
as described above.
#
Following are two commented-out entries. The "measureRole” role has
password "QED”. The "controlRole” role has password "ReD™.
#
monitorRole (ED
controlRole ReD
»

Figure 2.9: Scrolling down the jmxremote.password file to view 2 commented entries

5. The two entries indicated by Figure 2.9 are sample username password pairs with access to
JMX. For instance, in the first sample entry of Figure 2.9 monitorRole is the username and QED
is the password corresponding to monitorRole. Likewise, in the second line, the controlRole user
takes the password R&D.

6. If you want to use one of these pre-defined username password pairs during test configuration,
then simply uncomment the corresponding entry by removing the # symbol preceding that entry.
However, prior to that, you need to determine what privileges have been granted to both these
users. For that, open the jmxremote.access file in the editor.

13

Chapter 2: Pre-requisites for Monitoring Java Applications

7.

@ File Edt ‘iew Search Document Project Tools ‘Window Help = |5
Jdedal ks viE X T B A W= EEE DO

B } 2 + 5 + 4 + 5 + G } 7 + g + +] + 1 f 2 ' i

"readwrite™ grants access to read and write attributes of MBeans,

to invoke operations on them, and to create or remowve them.

This access should be granted to only trusted clients,

gince they can potentially interfere with the smooth

operation of & ruming program

#

A given role should have at most one entry in this file. If a role

has no entry, it has no access.

If wmultiple entries are found for the same role name, then the last

access entry is used.

#

#

Default access control entries:

0 The "monitorFole™ role has readonly access.

o The "controlRole™ role has readwrite acceas.

monitorRole readonly

controlRole readwrite

Figure 2.10: The jmxremote.access file

Scrolling down the file (as indicated by Figure 2.10) will reveal 2 lines, each corresponding to the
sample username available in the jmxremote.password file. Each line denotes the access rights
of the corresponding user. As is evident from Figure 2.10, the user monitorRole has only
readonly rights, while user controlRole has readwrite rights. Since the eG agent requires
readwrite rights to be able to pull out key JVM-related statistics using JMX, we will have to
configure the test with the credentials of the user controlRole.

For that, first, edit the jmxremote.password file and uncomment the controlRole <password> line
as depicted by Figure 2.11.

|£.J File Edit Wew 3earch Document Project Tools Window Help el
Jedw aa vl Xloo SHEEE AW =y Haxd RO
F—++—1 | 2] 3] 4] 5] 6] 7] [} ! 0 | 1] 2] 3 =
§ .

A given role should have at most one entry in this file. If a role

has no entry, it has no access.

If multiple entries are found for the same role name, then the last one
is used.

In a typical installation, this file can be read by anvbody on the
local wmachine, and possibly by people on other machines.

For # security, wou should either restrict the access to this file,

or specify amother, less accessible file in the management config file
as described above.

Mo M MR M M W W

Following are two commented-out entries. The "measureRole™ role has
password "QED". The "controlRole™ role has password "ReaD™.

#

monitorRole QED

fontrolRole ReD

Figure 2.11: Uncommenting the ‘controlRole’ line

Then, save the file.

If a security manager is enabled for the target Java application, then you also need to make sure
that the controlRole is allowed full access to the javax.management.MBeanPermission. To grant
full access to the controlRole, do the following:

14

Chapter 2: Pre-requisites for Monitoring Java Applications

« Edit the java.policy file in the <JAVA_HOME>\jre\lib\security directory of the target Java
application.

« Insert the following entry at the top of the file's contents (see Figure 2.12):

grant principal javax.management.remote.JMXPrincipal "controlRole" ({
permission javax.management.MBeanPermission "*", "x";

}i

// Standard extensions get all permissions by default

grant principal javax.management.remote.JMAPrincipal "controlRole™ {
permissicn javax.management.MBeanPermission "*", "*":

T

grant codeBase "file:${[java.ext.dirs}}/*" [
permission java.security.AllPermission;:

}:
// default permissions granted to all domains

grant |
#/ Allows any thread to stop itself using the java.lang.Thread.stop()
/# method that takes no argument.
// Note that this permission is granted by default only to remain
// backwards compatible.
/4 It is strongly recommended that you either remove this permission
/4 from this policy file or further restrict it to code sources
// that you specify, because Thread.stop() is potentially unsafe.
// See the AFI specification of java.lang.Thread.stop() for more
/f information.
permission java.lang.RuntimePermission "stopThread”:

// allows anyone to listen on dynamic ports
permission java.net.SocketPermission "localheost:0™, "listen";

// "3standard™ properies that can be read by anvone

permisaion java.util.PropertyPermission "java.version”, "read";
permisaion java.util.PropertyPermission "java.vendor”, "read”;
permission java.util.PropertyPermission "java.vendor.url”, "read";
permission java.util.PropertyPermission "Java.class.version”, “read”;
permission java.util.PropertyPermission "os.name”, "read";
permission java.util.PropertyPermission "os.version®, "read”;
permission java.util.PropertyPermission "os.arch™, "read”;
permission java.util.PropertyPermission "file.separator”, "read";

Figure 2.12: Editing the java.policy file
« Then, save the file.
If this is not done, then a java.security.AccessControlException will occur, when the eG
agent attempts to connect to the JRE using JMX.

11. You can now proceed to configure the tests with the user name controlRole and password R&D.

12. Alternatively, instead of going with these default credentials, you can create a new username
password pair in the jmxremote.password file, assign readwrite rights to this user in the
jmxremote.access file, and then configure the eG tests with the credentials of this new user. For
instance, let us create a user john with password john and assign readwrite rights to john.

13. For this purpose, first, edit the jmxremote.password file, and append the following line (see
Figure 2.13) to it:

15

Chapter 2: Pre-requisites for Monitoring Java Applications

Jjohn john

@ File Edit Yiew Search Document Project Tools ‘Window Help]]
Jdszd@ ke v Xoo|YeREdW =S HadNa
B—t——1 ! 2 ! 3 ! 4-———4 5 ! 5 t 7 ' 8 ' !] ! 1 ! Z } 3 +-——

A4 given role should have at most one entry in this file. If a role
has no entry, it has no access.

If multiple entries are found for the same role name, then the last one
iz used.

#

#

#

#

#

#

In a typical installation, this file can be read by anybody on the

local machine, and possibly by people on other machines.

For # security, you should either restrict the access to this file,
or specify another, less accessible file in the meanagement config file
as described ahowve.

#
#
#
#
#
#

Following are two commented-out entries. The "measureRole” role has
password "QEDT. The "controlRole™ role has password "ReD™.

monitorRole QED
controlRole R&D

john john

Figure 2.13: Appending a new username password pair

14. Save the jmxremote.password file.

15. Then, edit the jmxremote.access file, and append the following line (see Figure 2.14) to it:

john readwrite

@ File Edit Yew Search Document Project Tools ‘Window Help e E=
Jxda as ¥ D BX (oo |SiRE W=z Eaadna
H 1 : z : 3 + E ; 5 - 6 + 7 + & " ; 0 : 1 : z " 3 Fo——1
"readwrite” grants access to read and write attributes of MBeans, 1
to inwoke operations on them, and to create or remowe them.
This access should be granted to only trusted clients,
since they can potentially interfere with the smooth
operation of a running program
#
A given role should hawve at most one entry in this file. If a role
has no entry, it has no access.
If multiple entries are found for the same role name, then the last
access entry is used.
#
#
Default access control entries:
0 The "monitorRole”™ role has readonly access.
o The "controlRole"” role has readwrite access.
wonitorBole readonly
controlRole readurite
Jjohn readwrite
»

Figure 2.14: Assigning rights to the new user in the jmxremote.access file

16. Then, save the jmxremote.access file.

17. Next, if a security manager object is enabled for your Java application, then insert the following
entry at the top of the contents of the java.policy file (in the <JAVA_HOME>\jre\lib\security folder
(see Figure 2.15).

16

Chapter 2: Pre-requisites for Monitoring Java Applications

// Standard extensions get all permissions by default

grant principal javax.management.remote.JMHPrincipal "jchn" |
permissicn javax.management.MBeanPermissicn ™*™, "*";

i

grant codeBase "file:$[{java.ext.dira}}/+"™ |
permission java.security.AllPermissicon;

i
// default permissions granted to all domains

grant {
/4 Rllows any thread to stop itself using the java.lang.Thread.stop()
// method that takes no argument.
// Hote that this permission is granted by default only to remain
//{ backwards compatible.
£/ It is strongly recommended that you either remove this permission
f/ from this policy file or further restrict it to code sources
// that you specify, because Thread.stop() is potentially unsafe.
f// 3ee the RAFI specification of java.lang.Thread.stop() for more
// information.
permission java.lang.RuntimePermission "stopThread™;

f// allows anyone to listen on dynamic ports
permission java.net.SccketPermission "localhost:0", ™listen™:

// "standard™ properies that can be read by anyone

permission java.util.PropertyPermission "jawva.wversion™, "read™:
permission java.util.PropertyPermission "java.vendor™, "read";
permission java.util.PropertyPermission "java.wvendor.url™, "read";
permission java.util.PropertyPermission "java.class.version™, "read”;
permission java.util.PropertyPermission "os.name™, "read":
permission java.util.PropertyPermission "os.version™, "read";
permission java.util.PropertyPermission "os.arch™, "read";
permission java.util.PropertyPermission "file.separator™, "read";
nermiasinn Gawa.ntil. Pronertubermiaaion "nath.aenarator”. "read"s

Figure 2.15: Editing the java.policy file to grant john full access to javax.management.MBeanPermission

18. Finally, proceed to configure the tests with the user name and password, john and john,
respectively.

2.2 Enabling SNMP Support for JRE

Instead of JMX, you can configure the eG agent to monitor a Java application using SNMP-based
access to the Java runtime MIB statistics.

In some environments, SNMP access might have to be authenticated by an ACL (Access Control
List), and in some other cases, it might not require an ACL.

If SNMP access does not require ACL authentication, then follow the steps below to enable
SNMP support:

1. Login to the application host.
2. Ensure that the SNMP service and the SNMP Trap Service are running on the host.

3. Next, edit the management.properties file in the <JAVA_HOME>\jre\libimanagement folder
used by the target application.

17

Chapter 2: Pre-requisites for Monitoring Java Applications

4. Append the following lines to the file:

com.sun.management.snmp.port=<Port No>

com. sun.management.snmp.interface=0.0.0.0
com.sun.management.snmp.acl=false

For instance, if the SNMP port is 1166, then the first line of the above specification will be:
com.sun.management .snmp.port=1166

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept
SNMP requests from any host in the environment. To ensure that the JRE services only those
SNMP requests that are received from the eG agent, set the second line of the specification to
the IP address of the agent host. For instance, if the eG agent to monitor the Java application is
executing on 192.168.10.152, then the second line of the specification will be:

com. sun.management.snmp.interface=192.168.10.152

Next, edit the start-up script of the target application, include the following line it, and save the
script file.

-Dcom.sun.management.config.file=<management.properties file path>

For instance, on a Windows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\imanagement.properties.

On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification
will be as follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties.

On the contrary, if SNMP access requires ACL authentication, then follow the steps below to
enable SNMP support for the JRE:

1.

Login to the application host. If the target application is executing on a Windows host, login as a
local/domain administrator.

Ensure that the SNMP service and SNMP Trap Service are running on the host.

Copy the snmp.acl.template file in the <JAVA_HOME>\jre\lib\management folder to another
location on the local host. Rename the snmap.acl.template file as snmp.acl, and copy the
snmp.acl file back to the <JAVA_HOME>\jre\libi\management folder.

Next, edit the snmp.acl file, and set rules for SNMP access in the file.

18

Chapter 2: Pre-requisites for Monitoring Java Applications

@ File Edit Yew Search Document Project Tools ‘Window Help

Jeda s v X Y EE AW =gd HEE O

: 1 ; 7 ; ' a4 ; & ; ; 7 '

Template for SNMP Access Control List File

0 Copy¥ this template to snup.acl

o Aet access control for SHMP support

o Change the permission of stmp.acl to be read-only
by the owmer.

See below for the location of smuwp.acl file.

d oM M W e W Wk W

£

GNMP Access Control List File

Default location of this file is $JRE/lib/managemnent/snmp.acl.

You can specify an alternate location by specifying a property in
the management config file $JRE/lib/managenent/nanagenent, propercies
or by specifying a system property (Jee that file for details).

oW M W W W

File permissionz of the smmp.acl file

#

Since there are cleartext community strings stored in this file,
this ACL file must be readable by ONLY the owmer,

otherwize the program will exit with an error.

#

Format of the acl group

#

communities: a list of SNMP community strings to which the
access control applies separated by commas.

#

access: either "read-only” or "read-write”.

#

Figure 2.16: The snmp.acl file

5. For that, first scroll down the file to view the sample code block revealed by Figure 2.17.

19

Chapter 2: Pre-requisites for Monitoring Java Applications

@ File Edit Yiew 3Search Document Project Tools Window Help

Update the community strings (public and priwvate) below
before copying this template f£ile

Common SNMP ACL Exauple

o Only localhost can connect, and access rights
are limited to read-only
o Traps are sent to localhost only

communities = public, private
access = read-only

wanagers = localhost

'

'

trap = |

{
trap-community = public
hosts = localhost

i

oM R M S R H G B Hh M W MR MR O MR R MR MR R MR MR M R oW

'

Jedw de v X P A= S Do D
B——+-—1 =y e . f — 5 t 5 : 7 . 8 . 9~ I e ST
#
#

Figure 2.17: The snmp.acl file revealing the SNMP ACL example

6. Uncomment the code block by removing the # symbol preceding each line of the block as

indicated by Figure 2.18.

@ File Edit Wew Search Document Project Tools Window Help

communities = public, priwvate
access = read-only
wanagers = localhost

i
trap = {
i
trap-comnmunity = public
hosts = localhost
'
4 }

Jxd@| s v X | = FhEE AW =S EE DN
B-—t—-—1 + 2 } 3 ' 4 + 5 + 6 } 7 + g t & 2 3-
#

#
Update the community strings (public and priwvate) below
before copying this template file
#
Common SNMP ACL Exanple
#
#
0 Only localhost can connect, and access rights
are limited to read-only
o Traps are sent to localhost only
#
#
acl = {
{

Figure 2.18: Uncommenting the code block

20

Chapter 2: Pre-requisites for Monitoring Java Applications

10.

Next, edit the code block to suit your environment.

The acl block expects the following parameters:

« communities : Provide a comma-separated list of community strings, which an SNMP request
should carry for it to be serviced by this JRE; in the example illustrated by Figure 17, the
community strings recognized by this JRE are public and private. You can add more to this list,
or remove a community string from this list, if need be.

« access : Indicate the access rights that SNMP requests containing the defined communities
will have; in Figure 2.18, SNMP requests containing the community string public or private, will
have only read-only access to the MIB statistics. To grant full access, you can specify rea-write
instead.

« managers : Specify a comma-separated list of SNMP managers or hosts from which SNMP
requests will be accepted by this JRE; in the example illustrated by Figure 2.18, all SNMP
requests from the localhost will be serviced by this JRE. Typically, since the SNMP requests
originate from an eG agent, the IP of the eG agent should be configured against the managers
parameter. For instance, if the IP address of the agent host is 192.16.10.160, then, to ensure
that the JRE accepts requests from the eG agent alone, set managers to 192.168.10.160,
instead of localhost.

Every acl block in the snmp.acl file should have a corresponding trap block. This trap block should
be configured with the following values:

« trap-community: Provide a comma-separated list of community strings that can be used by
SNMP traps sent by the Java application to the managers specified in the acl block. In the
example of Figure 2.18, all SNMP traps sent by the Java application being monitored should
use the community string public only.

» hosts: Specify a comma-separated list of IP addresses / host names of hosts from which
SNMP traps can be sent. In the case of Figure 2.18, traps can be sent by the localhost only. If a
single snmp.acl file is being centrally used by multiple applications/devices executing on
multiple hosts, then to ensure that all such applications are able to send traps to the configured
SNMP managers (in the acl block), you can provide the IP address/hostname of these
applications as a comma-separated list against hosts.

Figure 2.19 depicts how the acl and frap blocks can be slightly changed to suit the monitoring needs of an
application.

21

Chapter 2: Pre-requisites for Monitoring Java Applications

@ File Edit Miew Search Document Project Tools Window Help

Jedw e vl X wo S itg R AW =l EHEE TN

B--t—-1 - Z] 4---—+ 5 - [: 7---—+) : - i t----1 ; Z

#

Update the comwmunity strings (public and priwate) below
before copying this template file

Common SHMP ACL Example

o Only localhost can connect, and access rights
are limited to read-only
o Traps are sent to localhost only

Mo o W G G M W W MR W R W

-0

1=y

communities = public, priwvate
access = read-only
managers = 192,165.10.160

trap = |
{
trap-comminity = public
hosts = localhost
i
}

Figure 2.19: The edited block

11. Then, proceed to make the snmp.acl file secure by granting a single user “full access” to that file.
For monitoring applications executing on Windows in particular, only the Owner of the snmp,.acl
file should have full control of that file. To know how to grant this privilege to the Owner of a file,
refer to Section 2.1.1. This section actually details the procedure for making the
jmxremote.password file on Windows, secure. Use the same procedure for making the snmp.acl
file on Windows secure, but make sure that you select the snmp.acl file and not the
jmxremote.password file.

12. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be
granted full access to the snmp.acl file, by following the steps below:

« Login to the host as the user who is to be granted full control of the snmp.acl file.

« Issue the following command:
chmod 600 snmp.acl!

« This will automatically grant the login user full access to the jmxremote.password file.

13. Next, edit the management.properties file in the <JAVA_HOME>\jre\lib\management folder
used by the target application.

14. Append the following lines to the file:

22

Chapter 2: Pre-requisites for Monitoring Java Applications

15.

16.

17.

18.

com.sun.management.snmp.port=<PortNo>

com.sun.management.snmp.interface=0.0.0.0

com. sun.management.snmp.acl=true

com.sun.management.snmp.acl.file=<Path of snmp.acl>

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept SNMP
requests from any host in the environment. To ensure that the JRE services only those SNMP requests

that are received from the eG agent, set the second line of the specification to the IP address of the agent

host.

For example, if the Java application being monitored listens for SNMP requests at port number
1166, the eG agent monitoring the Java application is deployed on 192.168.10.152, and these
SNMP requests need to be authenticated using the snmp.acl file in the D:\bea\jrockit_150_
11\jrellib directory, then the above specification will read as follows:

com. sun.management.snmp.port=1166
com.sun.management.snmp.interface=192.168.10.152
com. sun.management.snmp.acl=true com.sun.management.snmp.acl.file=D:\\bea\\jrockit

150 11\\Jjre\\lib\\management\\snmp.acl

However, if the application in question is executing on a Unix/Solaris/Linux host, and the
snmp.acl file is in the /usr/jdk1.5.0_05/jre/lib/management folder of the host, then the last line
of the specification will be:

com.sun.management.snmp.acl.file =/usr/jdkl.5.0 05/jre/lib/management/snmp.acl
Next, edit the start-up script of the target application, include the following line in it, and save the
script file.

-Dcom. sun.management.config.file=<management.properties file path>

For instance, on a Windows host, the <management.properties_file_path> can be expressed as:
D:\bea\jrockit_150_11\jre\lib\management\management.properties.

On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>
specification will be as follows: lusr/jdk1.5.0_
05/jre/llib/management/management.properties.

The sections to come discuss the top 2 layers of Figure 3.1, as the remaining layers have already
been discussed at length in the Monitoring Unix and Windows Servers document.

23

Chapter 2: Pre-requisites for Monitoring Java Applications

2.3 Managing the Java Application

The eG Enterprise cannot automatically discover a Java Application. This implies that you need to
manually add the component for monitoring. To manage a Java Application component, do the

following:

1. Loginto the eG administrative interface.

2. eG Enterprise cannot automatically discover Java Application server. You need to manually add
the server using the COMPONENTS page (see Figure 2.20) that appears when the Infrastructure
-> Components -> Add/Modify menu sequence is followed. Remember that components

manually added are managed automatically.

COMPONENT

Component information

Host IP/Name 192.168.10.1
Mick mame Javaspp
Port number B0

Monitoring approach

Agentless

(=1 Auto Manual

Internal agent assignment

External agents

Additional information

eThis page enabkles the administrator to provide the details of a new component

= BALCK

Figure 2.20: Adding a Java Application

3. When you attempt to sign out, a list of unconfigured tests appears.

24

Chapter 2: Pre-requisites for Monitoring Java Applications

List of unconfigured tests for "Java Application’

Java Classes JMX Coennection to JVM J¥M CPU Usage
JVM File Descriptors JVM Carbage Collections J¥M Memory Pool Carbage Collections
JVM Memory Usage JVM Threads J¥M Uptime

Processes

Figure 2.21: List of Unconfigured tests for the Java Application

4. Click on the Java Classes test to configure it. This test reports the number of classes
loaded/unloaded from the memory. To know how to configure the test, refer to Section 3.2.3.

5. Finally, signout of the eG administrative interface.

25

Chapter 3: Monitoring a Java Application

Chapter 3: Monitoring a Java Application

The prime concern of administrators of Java applications is knowing how well the application is
functioning, and how to troubleshoot issues (if any) in the performance of these applications. Most
web application server vendors prescribe custom APIs for monitoring — for instance, WebSphere
and WebLogic allow administrators to use their built-in APIs for performance monitoring and
problem detection.

Besides such applications, you might have stand-alone Java applications that do not provide any
APIs for monitoring. To enable users to monitor the overall health of such stand-alone Java
applications, eG Enterprise offers a generic monitoring model called the Java Application.

Java Transactions

T¥M Engine

WM Internals

Application Processes

RER

Metwork

SRREeRR |

4 3 7+ 0 3 1 1

Cperating System

Figure 3.1: Layer model of the Java Application

Each layer of Figure 3.1 above is mapped to a series of tests that report critical statistics pertaining to
the Java application being monitored. Using these statistics, administrators can figure out the
following:

« Hasthe Java heap been sized properly?
« How effective is garbage collection? Is it impacting application performance?

« Often, Java programs use threads. A single program may involve multiple concurrent threads
running in parallel. Is there excessive blocking between threads due to synchronization issues
during application design?

26

Chapter 3: Monitoring a Java Application

« Are there runaway threads, which are taking too many CPU cycles? If such threads exist, which
portions of code are responsible for spawning such threads?

« Isthe JVM managing its memory resources efficiently or is the free memory on the JVM very less?
Which type of memory is being utilized by the JVM increasingly?

« Has a scheduled JVM restart occurred? If so, when?

3.1 The Java Transactions Layer

By default, this layer will not be available for any monitored Java Application. This is because, the
Java Business Transactions test mapped to this layer is disabled by default. To enable the test,
follow the Agents -> Tests -> Enable/Disable menu sequence, select Java Application as the
Component type, Performance as the Test type, and then select Java Business Transactions
from the DISABLED TESTS list. Click the Enable button to enable the selected test, and click the
Update button to save the changes.

3.1.1 Java Business Transactions Test

The responsiveness of a transaction is the key determinant of user experience with that transaction;
if response time increases, user experience deteriorates. To make users happy, a Java business
transaction should be rapidly processed by each of the JVM nodes in its path. Processing
bottlenecks on a single JVM node can slowdown/stall an entire business transaction or can cause
serious transaction errors. This in turn can badly scar the experience of users. To avoid this,
administrators should promptly identify slow/stalled/errored transactions, isolate the JVM node on
which the slowness/error occurred, and uncover what caused the aberration on that node — is it
owing to SQL queries executed by the node? Or is it because of external calls — eg., async calls,
SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business Transactions test
helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests
received by that JVM, and groups requests based on user-configured pattern specifications. For
each transaction pattern, the test then computes and reports the average time taken by that JVM
node to respond to the transaction requests of that pattern. In the process, the test identifies the
slow/stalled transactions of that pattern, and reports the count of such transactions and their
responsiveness. Detailed diagnostics provided by the test accurately pinpoint the exact transaction
URLSs that are slow/stalled, the total round-trip time of each transaction, and also indicate when such
transaction requests were received by that node. The slowest transaction in the group can thus be
identified.

27

Chapter 3: Monitoring a Java Application

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in
SQL query processing, the test also reports the average time the transactions of each pattern took to
execute SQL queries. If a majority of the queries are slow, then the test will instantly capture the
same and notify administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know
which are the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node,
highlights transactions that are under-performing, and takes administrators close to the root-cause
of poor transaction performance.

For this test to run and report metrics, you first need to install and configure the eG Java BTM
(Business Transaction Monitor) on the target Java application / J2EE container. To know
how, refer to the Java Business Transaction Monitoring document.

After BTM-enabling the target, configure this test. Instructions for configuring this test and

interpreting the metrics it reports are available in the 'Java Business Transactions Test'
topic in the Java Business Transaction Monitoring document.

3.2 The JVM Internals Layer

The tests associated with this layer measure the internal health of the Java Virtual Machine (JVM),
and enables administrators to find accurate answers to the following performance queries:

« How many classes have been loaded/unloaded from memory?

« Did garbage collection take too long to complete? If so, which memory pools spent too much
time in garbage collection?

« Are too many threads in waiting state in the JVM?

« Which threads are consuming CPU?

28

Chapter 3: Monitoring a Java Application

| @ M Internals seach[| ¥ Al

B IMX Connection to WM

Java Classes

8+ 1vM Garbage Collections O
H FS MarkSweep
B PS5 Scavenge

B+ VM Memery Pool Garbage Ceollections IJ
B PS MarkSweep:Code Cache

FS MarkSweep:FS Eden Space

FS MarkSweep:F3 Old Gen

PS5 MarkSweep:PS Perm Gen

FS MarkSweep:PS Survivor Space

FS Scavenge:Code Cache

FS Scavenge:FS Eden Space

ES Scavenge:PS Cld Gen

PS5 Scavenge:PS Perm Gen

PS Scavenge:PS Survivor Space
J¥M File Descriptors
JvM Threads

Figure 3.2: The tests associated with the JVM Internals layer
3.2.1 JMX Connection to JVM

This test reports the availability of the target Java application, and also indicates whether JMX is
enabled on the application or not. In addition, the test promptly alerts you to slowdowns experienced
by the application, and also reveals whether the application was recently restarted or not.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for the Java application being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the

29

Chapter 3: Monitoring a Java Application

Parameter Description

<JAVA_ HOME>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

User, Password, These parameters appear only if the Mode is set to JMX. If JMX requires

and Confirm authentication only (but no security), then ensure that the user and password

password parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

Provider This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Timeout Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

Measurements made by the test

Measurement Description m«:iatsurement Interpretation
JMX availability Indicates whether the |Percent If the value of this measure is
target application is 100%, it indicates that the Java
available or not and application is available with JMX
whether JMX is enabled enabled. The value 0 on the other
or not on the application. hand, could indicate one/both the
following:

« The Java application is unavailable;

« The Java application is available,

but JMX is not enabled;

30

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement
Unit

Interpretation

JMX response time

Indicates the time taken
to connect to the JMX

Secs

A high value could indicate a

connection bottleneck.

corresponds to the Java
application has
changed.

agent of the Java

application.
Has the PID | Indicates = whether/not This measure will report the value
changed? the process ID that Yes if the PID of the target

application has changed; such a
change is indicative of an
application restart. If the application
has not restarted - i.e., if the PID
has not changed - then this
measure will return the value No.

3.2.2 JVM File Descriptors Test

This test reports useful statistics pertaining to file descriptors.

Note:

This test will work only if the target Java application uses the JDK/JRE offered by one of the following

vendors only: Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.
Target of the test :

A Java application

Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for the Java application being monitored

Configurable para

meters for the test

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at

which the jmx listens for requests from remote hosts. Ensure that you specify

31

Chapter 3: Monitoring a Java Application

Parameter Description
the same port that you configured in the management.properties file in the
<JAVA_ HOME=>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a

User, Password,
and Confirm
password

Provider

Timeout

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

Measurements made by the test

Measurement

Measurement
Unit

Description

Interpretation

Open file | Indicates the number of | Number

descriptorsin JVM |file descriptors currently

open for the application.

Maximum file | Indicates the maximum | Number
descriptorsin JVM | number of file
descriptors allowed for
the application.
File descriptor | Indicates the file | Percent
usage by JVM descriptor usage in

percentage.

32

Chapter 3: Monitoring a Java Application

3.2.3 Java Classes Test

This test reports the number of classes loaded/unloaded from the memory.

Target of the test : A Java application

Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for the Java application being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the
following mechanisms:

« Using SNMP-based access to the Java runtime MIB statistics;

« By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME=>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a

User, Password,
and Confirm

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password

33

Chapter 3: Monitoring a Java Application

Parameter

Description

password

Provider

Timeout

SNMPPort

SNMP Version

parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME=>\jre\lib\management folder used by the target application (see
page 18).

This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the

User name

SNMP community name that the test uses to communicate with the mail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges — in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter.

34

Chapter 3: Monitoring a Java Application

Parameter

Description

Context

Authpass

Confirm password

Authtype

Encryptflag

Encrypttype

Encryptpassword

This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEnginelD value of the entity hosting the management
information (also called a contextEnginelD) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

« MDS5 —Message Digest Algorithm
o SHA —Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option.

If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

« DES —Data Encryption Standard
o AES —Advanced Encryption Standard

Specify the encryption password here.

35

Chapter 3: Monitoring a Java Application

Parameter Description

Confirm password Confirm the encryption password by retyping it here.

Dataover TCP This parameter is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic —
for instance, certain types of data traffic or traffic pertaining to specific
components — to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

Measurements made by the test

Measurement Description ll\jlr(:;surement Interpretation

Classes loaded Indicates the number of | Number Classes are fundamental to the
classes currently design of Java programming
loaded into memory. language. Typically, Java

applications install a variety of class
loaders (that is, classes that

implement java.lang.ClassLoader)

Classes unloaded | Indicates the number of | Number to allow different portions of the
classes currently container, and the applications
unloaded from memory. running on the container, to have

access to different repositories of
available classes and resources. A

consistent decrease in the number
Total classes | Indicates the total | Number

loaded number of classes

of classes loaded and unloaded
could indicate a road-block in the
loading/unloading of classes by the
class loader. If left unchecked,

loaded into memory
since the JVM started,
including those critical resources/classes could be
subsequently unloaded. rendered inaccessible to the
application, thereby severely

affecting its performance.

36

Chapter 3: Monitoring a Java Application

3.2.4 JVM Garbage Collections Test

Manual memory management is time consuming, and error prone. Most programs still contain leaks.
This is all doubly true with programs using exception-handling and/or threads. Garbage collection
(GC) is a part of a Java application’s JVM that automatically determines what memory a program is
no longer using, and recycles it for other use. It is also known as "automatic storage (or memory)
reclamation”. The JVM Garbage Collections test reports the performance statistics pertaining to the
JVM's garbage collection.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for each garbage collector that is reclaiming the unused
memory on the JVM of the Java application being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the following
mechanisms:

« Using SNMP-based access to the Java runtime MIB statistics;
« By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at which the
jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in the management.properties file in the <JAVA _
HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then

37

Chapter 3: Monitoring a Java Application

Parameter

Description

you can change this default value to reflect the same.

User, Password, and These parameters appear only if the Mode is set to JMX. If JMX requires authentication

Confirm password

Provider

Timeout

SNMPPort

SNMP Version

SNMP Community

User name

Context

only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX Provider
to access the MBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if the Mode is JMX,
and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in the management.properties file in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see page 18).

This parameter appears only if the Mode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.

This parameter appears only if the Mode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with the mail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3)is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supporting message security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from the MIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges —in other words, the eG agent should connect to the MIB
using the credentials of a user with access permissions to be MIB. Therefore, specify
the name of such a user against this parameter.

This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP
context is a collection of management information accessible by an SNMP entity. An

38

Chapter 3: Monitoring a Java Application

Parameter

Description

Authpass

Confirm password

Authtype

Encryptflag

Encrypttype

Encryptpassword
Confirm password

Data over TCP

item of management information may exist in more than one context and an SNMP
entity potentially has access to many contexts. A context is identified by the
SNMPEnginelD value of the entity hosting the management information (also called a
contextEnginelD) and a context name that identifies the specific context (also called a
contextName). If the USERNAME provided is associated with a context name, then
the eG agent will be able to poll the MIB and collect metrics only if it is configured with
the context name as well. In such cases therefore, specify the context name of the
username in the context text box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name. This
parameter once again appears only if the snmpversion selected is v3.

Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

« MDS5 —Message Digest Algorithm
o SHA —Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option.

If the Encryptflag is set to Yes, then you will have to mention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

o DES —Data Encryption Standard
o AES —Advanced Encryption Standard
Specify the encryption password here.

Confirm the encryption password by retyping it here.

This parameter is applicable only if mode is set to SNMP. By default, inan IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic — for instance,
certain types of data traffic or traffic pertaining to specific components — to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can

39

Chapter 3: Monitoring a Java Application

Parameter Description

instruct the eG agent to conduct the SNMP data traffic related to the monitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Measurements made by the test

Measurement Description gﬁiatsurement Interpretation
No of garbage |Indicates the number of | Number
collections started |times this garbage
collector was started to
release dead objects
from memory during the
last measurement
period.
Time taken for|Indicates the time taken | Secs Ideally, the value of both these
garbage collection |to by this garbage measures should be low. This is
collector to perform the because, the garbage collection
current garbage (GC) activity tends to suspend the
collection operation. operations of the application until
such time that GC ends. Longer
Percent of time |Indicates the percentage | Percent the GC time, longer it would take
spent by JVM for|of time spent by this for the application to resume its
garbage collection |garbage collector on functions. To minimize the impact
garbage collection of GC on application performance,
during the last it is best to ensure that GC activity
measurement period. does not take too long to complete.

3.2.5 JVM Memory Pool Garbage Collections Test

While the JVM Garbage Collections test reports statistics indicating how well each collector on the
JVM performs garbage collection, the measures reported by the JVM Memory Pool Garbage
Collections test help assess the impact of the garbage collection activity on the availability and

usage of memory in each memory pool of the JVM. Besides revealing the count of garbage

collections per collector and the time taken by each collector to perform garbage collection on the
individual memory pools, the test also compares the amount of memory used and available for use
pre and post garbage collection in each of the memory pools. This way, the test enables

40

Chapter 3: Monitoring a Java Application

administrators to guage the effectiveness of the garbage collection activity on the memory pools, and
helps them accurately identify those memory pools where enough memory could not reclaimed or
where the garbage collectors spent too much time.

Note:

« This test will work only if the target Java application uses the JDK/JRE offered by one of the
following vendors: Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.

« This test will not report metrics if the Mode parameter of the test is set to SNMP.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for every GarbageCollector:MemoryPool pair on the JVM
of the Java application being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed.

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to.

Measure Mode This test allows you the option to collect the desired metrics using one of the following
methodologies:

« By contacting the Java runtime (JRE) of the application via JMX
« Using GC logs

To use JMX for metrics collections, set the measure modeto JMX.

On the other hand, if you intend to use the GC log files for collecting the required
metrics, set the measure mode to Log File. In this case, you would be required to
enable GC logging. The procedure for this has been detailed in Section 3.2.5.1.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at which the
jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in the management.properties file in the <JAVA _
HOME>\jre\lib\management folder used by the target application (see page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have

a1

Chapter 3: Monit

oring a Java Application

Parameter

Description

User, Password, and
Confirm password

JREHome

Logdfilename

Provider

Timeout

resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires authentication
only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

This parameter will be available only if the Measure Mode is set to Log File. Specify the
full path to the Java Runtime Environment (JRE) used by the target application.

This parameter will be available only if the Measure Mode is set to Log File. Specify the
full path to the GC log file to be used for metrics collection.

This parameter appears only if the Mode is set to JMX. This test uses a JMX Provider
to access the MBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if the Mode is JMX,
and 10 seconds if the Mode is SNMP.

Measurements made by the test

Measurement

Has garbage
collection happened?

Description Me.asurement Interpretation

Unit
Indicates whether garbage This measure reports the value Yes if
collection occurred on this garbage collection took place or No if it
memory pool in the last did not take place on the memory pool.

measurement period. .
P The numeric values that correspond to

the measure values of Yes and No are

listed below:
State Value
Yes 1
No 0
Note:

42

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement

Unit

Interpretation

By default, this measure reports the
value Yes or No to indicate whether a
GC occurred on a memory pool or not.
The graph of this measure however,
represents the same using the
numeric equivalents —0 or 1.

GC

amount of memory that
can be used for memory
management by this
memory pool, before GC
process.

Collection count Indicates the number of Number
time in the last
measurement pool garbage
collection was started on
this memory pool.
Initial memory before | Indicates the initial amount | MB Comparing the value of these two
GC of memory (in MB) that this measures for a memory pool will give
memory pool requests you a fair idea of the effectiveness of
from the operating system the garbage collection activity.
for -memory management If garbage collection reclaims a large
during startup, before GC
amount of memory from the memory
process. -
pool, then the Initial memory after GC
.) . will drop. On the other hand, if the
Initial memory after | Indicates the initial amount | MB arbage collector does not reclaim
GC of memory (in MB) that this garbag
much memory from a memory pool, or
memory pool requests . _—
i if the Java application suddenly runs a
from the operating system .)
memory-intensive process when GC
for memory management o .
. is being performed, then the Initial
during startup, after GC .
r0cess memory after GC may be higher than
P the Initial memory before GC.
Max memory before | Indicates the maximum MB Comparing the value of these two

measures for a memory pool will
provide you with insights into the
effectiveness of the garbage collection
activity.

If garbage collection reclaims a large
amount of memory from the memory
pool, then the Max memory after GC
will drop. On the other hand, if the
garbage collector does not reclaim
much memory from a memory pool, or

43

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement
Unit

Interpretation

if the Java application suddenly runs a

memory collected

memory collected from this
pool by the GC activity.

Max memory after Indicates the maximum MB))
aC amount of memory (in MB) rnem.ow-lnten8|ve process when GC
that can be used for is being performed, then the Max
memory after GC value may exceed
memory management by
this pool, after the GC the Max memory before GC.
process.
Committed memory | Indicates the amount of MB
before GC memory that is guaranteed
to be available for use by
this memory pool, before
the GC process.
Committed memory | Indicates the amount of MB
after GC memory that is guaranteed
to be available for use by
this memory pool, after the
GC process.
Used memory before | Indicates the amount of MB Comparing the value of these two
GC memory used by this measures for a memory pool will
memory pool before GC. provide you with insights into the
effectiveness of the garbage collection
activity.
If garbage collection reclaims a large
amount of memory from the memory
pool, then the Used memory after GC
. may drop lower than the Used memory
Used memory after | Indicates the amount of MB .
, before GC. On the other hand, if the
GC memory used by this .
garbage collector does not reclaim
memory pool after GC.
much memory from a memory pool, or
if the Java application suddenly runs a
memory-intensive process when GC
is being performed, then the Used
memory after GC value may exceed
the Used memory before GC.
Percentage of Indicates the percentage of | Percent A high value for this measure is

indicative of a large amount of unused
memory in the pool. A low value on the

Chapter 3: Monitoring a Java Application

Measurement

Unit Interpretation

Measurement Description

other hand indicates that the memory
pool has been over-utilized. Compare
the value of this measure across pools
to identify the pools that have very
little free memory. If too many pools
appear to be running short of memory,
it could indicate that the target
application is consuming too much
memory, which in the long run, can
slow down the application

significantly.
Collection duration Indicates the time taken by | Mins Ideally, the value of this measure
this garbage collector for should be low. This is because, the
collecting unused memory garbage collection (GC) activity tends
from this pool. to suspend the operations of the

application until such time that GC
ends. Longer the GC time, longer it
would take for the application to
resume its functions. To minimize the
impact of GC on application
performance, it is best to ensure that
GC activity does not take too long to
complete.

3.2.5.1 Enabling GC Logging

If you want the JVM Memory Pools Garbage Collections test to use the GC log file to report metrics,
then, you first need to enable GC logging. For this, follow the steps below:

1. Edit the startup script file of the Java application being monitored. Figure 20 depicts the startup script file
of a sample application.

45

Chapter 3: Monitoring a Java Application

3.

File Edit Format View Help
@REM JAWA_WVENDOR -‘endor of the WM (i.e. BEA, HP, IBM, Sun, etc.)

@REM PATH - DK and WehLogic directories are added to system path.
MREEM YWEBLOGIC_CLASSPATH
@REM - Classpath needed to start WebLogic Server.

@REM PATCH_CLASSPATH - Classpath used for patches

@REM PATCH_LIBPATH - Library path used for patches

@REM PATCH_PATH - Path used for patches

@REM WEBLOGIC_EXTENSIOMN_DIRS - Extension dirs for WebLogic classpath patch
BREM JANA_NM - The java arg specifying the WM to run. {i.e.

DREM - server, -hotspot, etc.)

@REM USER_MEM_ARGS - The variable to override the standard memory arguments
@REM passed to java.

(@REM PRODUCTION_MODE - The variable that determines whether Weblogic Server is started in production mode,
@REM POINTBASE_HOME - Point Base home directory.

BREM POINTBASE_CLASSPATH

DREM - Classpath needed to start PointBase.

@REM

@REM Other variables used in this script include:

@REM SERVER_MNAME - Mame of the weblogic server.

@REM 1avA_OPTIONS -Java command-line options for running the server. (These

@REM will be tagged on to the end of the Java_wM and
mREM MEM_ARGS) | |
BREM

@REM For additional information, refer to "Managing Server Startup and Shutdown for Oracle WebLogic Server”
@REM (http: /fdownload.oracle.comfdocsfcd/E12838_01/weh. 1111213708 /overview.htm).

R ook sk oo Kk K S koS ke

@REM Call setDomainEny here.

set 188 OPTIONS=-Deom, sun.managerment.config file=C\Oraclet\Middlewarehjdk 160_11% .
-¥logge: C: foracle/GCLogs.log -xX: +PrintGCDetails -xx: +PrintGCTimeStamps € ————— Fﬁ::n':‘ztgftﬂ];hélgixﬂ;!e and
set DOMAIN_HOME=C:\Oracle\Middleware\user_projects\domainsibase_domain

far %%%i in ("%DOMAIN_HOME%") do set DOMAIN_HOME=%%~fsi

“operties

call "%DOoMAIN_HOMEY%\hintsetDomainEny.cmd" %*
set SAVE_Javs OPTIONS=%]avs_OPTIOMNS%
set SAVE_CLASSPATH=%CLASSPATHY
@REM Start PointBase
set PE_DEBUG_LEVEL=0
if "%POINTBASE_FLAGY:"=="true" |
call "Wl _HOMEY:\commontbinstartPointBase.cmd” -port="%POINTRASE_PORTY% -debug=%PB_DEBUG_LEVELY -console=false -background=true
-ini=%D0OMAIN_HOME%\nointhase.ini ="%DOMAIN_HOME%\nointhase log" 2=&1

)

Figure 3.3: Editing the startup script file of a sample Java application

Add the line indicated by Figure 20 to the startup script file. This line should be of the following
format:

-Xloggc:<Full path to the GC log file to which GC details are to be logged> -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps

Here, the entry, -XX:+PrintGCDetails -XX:+PrintGCTimeStamps, refers to the format in which
GC details are to be logged in the specified log file. Note that this test can monitor only those GC
log files which contain log entries of this format.

Finally, save the file and restart the application.

3.2.6 JVM Threads Test

This test reports the status of threads running in the JVM. Details of this test can be used to identify
resource-hungry threads.

Note:

46

Chapter 3: Monitoring a Java Application

If the Mode parameter of this test is set to SNMP, then stack trace will not be available. Also, detailed
diagnostics will not report CPU Time.

Target of the test : A Java application
Agent deploying the test : An internal/remote agent

Outputs of the test : One set of results for the Java application being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the

following mechanisms:
« Using SNMP-based access to the Java runtime MIB statistics;
« By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

JMX Remote Port This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_HOME=>\jre\lib\management folder used by the target application (see
page 3).

JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

User, Password, These parameters appear only if the Mode is set to JMX. If JMX requires
and Confirm authentication only (but no security), then ensure that the user and password
password parameters are configured with the credentials of a user with read-write access

to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the

47

Chapter 3: Monitoring a Java Application

Parameter

Description

Provider

Timeout

SNMPPort

SNMP Version

password by retyping it in the confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME>\jre\lib\management folder used by the target application (see
page 18).

This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the

User name

Context

SNMP community name that the test uses to communicate with the mail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges — in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter.

This parameter appears only when v3 is selected as the SNMPVERSION. An

48

Chapter 3: Monitoring a Java Application

Parameter

Description

Authpass

Confirm password

Authtype

Encryptflag

Encrypttype

Encryptpassword

Confirm password

SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPENginelD value of the entity hosting the management
information (also called a contextEnginelD) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the SNMPversion. From
the Authtype list box, choose the authentication algorithm using which SNMP
v3 converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

« MD5 - Message Digest Algorithm
o SHA — Secure Hash Algorithm

This flag appears only when v3 is selected as the SNMPversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option.

If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

o DES —Data Encryption Standard
o AES — Advanced Encryption Standard
Specify the encryption password here.

Confirm the encryption password by retyping it here.

49

Chapter 3: Monitoring a Java Application

Parameter

Description

PCT Medium CPU
Util Threads

PCT High CPU
Util Threads

Max Thread Count

USEPS

By default, this parameter is set to 50. This implies that, by default, the threads

for which the current CPU consumption is between 50% and 70% (the default
value of the pct high cpu util threads parameter) will be counted as medium
CPU-consuming threads. The count of such threads will be reported as the
value of the Medium CPU threads measure.

This default setting also denotes that threads that consume less than 50% CPU
will, by default, be counted as Low CPU threads. If need be, you can modify the
value of this parameter to change how much CPU should be used by a thread
for it to qualify as a medium CPU-consuming thread. This will consequently
alter the count of low CPU-consuming threads as well.

By default, this parameter is set to 70. This implies that, by default, the threads
that are currently consuming over 70% of CPU time are counted as high CPU
consumers. The count of such threads will be reported as the value of the High
CPU threads measure. If need be, you can modify the value of this parameter
to change how much CPU should be used by a thread for it to qualify as a high
CPU-consuming thread.

By default, this parameter is set to 20. This implies that the detailed diagnosis of
the Runnable threads, Waiting threads, and Timed waiting threads measures
will by default display only the top-20 JVM threads in terms of CPU
consumption. To view more threads as part of detailed diagnostics, increase
the value of this parameter. To view all threads that are in the said state (eg.,
runnable, waiting, and timed waiting), specify All or * against this parameter.

This flag is applicable only for AIX LPARSs. By default, on AIX LPARs, this test
uses the tprof command to compute CPU usage. Accordingly, this flag is set to
No by default. On some AIX LPARs however, the tprof command may not
function properly (this is an AIX issue). While monitoring such AIX LPARs
therefore, you can configure the test to use the ps command instead for metrics
collection. To do so, set this flag to Yes.

Note:

Alternatively, you can set the AIXUSEPS flag in the [AGENT_SETTINGS]
section of the eg_tests.ini file (in the <EG_INSTALL_SIR>\manager\config
directory) to yes (default: no) to enable the eG agent to use the ps command for
CPU usage computations on AIX LPARs. If this global flag and the USEPS flag
for a specific component are both set to no, then the test will use the default
tprof command to compute CPU usage for AIX LPARs. If either of these flags is

50

Chapter 3: Monitoring a Java Application

Parameter

Description

Dataover TCP

DD Frequency

Detailed Diagnosis

set to yes, then the ps command will perform the CPU usage computations for
monitored AIX LPARs.

In some high-security environments, the tprof command may require some
special privileges to execute on an AIX LPAR (eg., sudo may need to be used
to run tprof). In such cases, you can prefix the tprof command with another
command (like sudo) or the full path to a script that grants the required
privileges to tprof. To achieve this, edit the eg_tests.ini file (in the <EG_
INSTALL_DIR>\manager\config directory), and provide the prefix of your
choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS]
section. Finally, save the file. For instance, if you set the AixTprofPrefix
parameter to sudo, then the eG agent will call the tprof command as sudo tprof.

This parameter is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic —
for instance, certain types of data traffic or traffic pertaining to specific
components — to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of
this test for a particular server, choose the On option. To disable the capability,
click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

51

Chapter 3: Monitoring a Java Application

Parameter Description

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement
Unit

Measurement Description

Interpretation

Total threads Indicates the total | Number
number of threads
(including daemon and
non-daemon threads).

Runnable threads |Indicates the current| Number The detailed diagnosis of this
number of threads in a measure, if enabled, lists the
runnable state. names of the top-20 (default)

runnable threads in terms of their
CPU usage. The time for which the
thread was in a blocked state,
waiting state, etc., are provided as
part of the detailed diagnostics. You
can change the sort order to view
threads by waiting time, blocked

time, etc.

Blocked threads Indicates the number of | Number If a thread is trying to take a lock (to
threads that are enter a synchronized block), but the
currently in a blocked lock is already held by another
state. thread, then such a thread is called

a blocked thread.

The detailed diagnosis of this
measure, if enabled, provides in-
depth information related to all the

blocked threads.
Waiting threads Indicates the number of | Number A thread is said to be in a Waiting
threads that are state if the thread enters a
currently in a waiting synchronized block, tries to take a

state. lock that is already held by another

52

Chapter 3: Monitoring a Java Application

Measurement
Unit

Measurement Description

Interpretation

thread, and hence, waits till the
other thread notifies that it has
released the lock.

Ideally, the value of this measure
should be low. A very high value
could be indicative of excessive
waiting activity on the JVM. You
can use the detailed diagnosis of
this measure, if enabled, to figure
out which threads are currently in
the waiting state. By default, the
top-20 waiting threads in terms of
CPU usage will be listed. You can
change the sort order to view
threads by waiting time, blocked
time, etc.

While waiting, the Java application
program does no productive work
and its ability to complete the task-
at- hand is degraded. A certain
amount of waiting may be
acceptable for Java application
programs. However, when the
amount of time spent waiting
becomes excessive or if the
number of times that waits occur
exceeds a reasonable amount, the
Java application program may not
be programmed correctly to take
advantage of the available
resources. When this happens, the
delay caused by the waiting Java
application programs elongates the
response time experienced by an
end user. An enterprise may use

53

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement
Unit

Interpretation

Java application programs to
perform various functions. Delays
based on abnormal degradation
consume employee time and may

be costly to corporations.

CPU that is higher than
the value configured in
the PCT Medimum
CPU Util Threads text
box and is lower than or

Timed waiting | Indicates the number of | Number When a thread is in the TIMED _
threads threads in a TIMED_ WAITING state, it implies that the
WAITING state. thread is waiting for another thread
to do something, but will give up
after a specified time out period.
To view the details of threads in the
TIMED WAITING state, use the
detailed diagnosis of this measure,
if enabled. By default, the top-20
timed waiting threads in terms of
CPU usage will be listed. You can
change the sort order to view
threads by waiting time, blocked
time, etc.

Low CPU threads |Indicates the number of | Number To know which threads are
threads that are consuming low CPU, use the
currently consuming detailed diagnosis of this measure.
CPU lower than the
value configured in the
PCT Medium CPU Util
Threads text box.

Medium CPU | Indicates the number of | Number To know which threads are

threads threads that are consuming medium CPU, use the
currently consuming detailed diagnosis of this measure.

Chapter 3: Monitoring a Java Application

Measurement

Measurement
Unit

Interpretation

Description
equal to the value
specified in the PCT

High CPU Util Threads
text box.

number of deadlocked
threads.

High CPU threads |Indicates the number of | Number Ideally, the value of this measure
threads that are should be very low. A high value is
currently consuming indicative of a resource contention
CPU that is greater than at the JVM. Under such
the percentage circumstances, you might want to
configured in the PCT identify the resource- hungry
High CPU Util Threads threads. To know which threads
text box. are consuming excessive CPU, use

the detailed diagnosis of this
measure.

Peak threads Indicates the highest| Number
number of live threads
since JVM started.

Total threads Indicates the the total| Number
number of threads
started (including
daemon, non-daemon,
and terminated) since
JVM started.

Daemonthreads |Indicates the current| Number
number of live daemon
threads.

Deadlock threads |Indicates the current| Number Ideally, this value should be 0. A

high value is a cause for concern,
as it indicates that many threads
are blocking one another causing
the application performance to
suffer. The detailed diagnosis of
this measure, if enabled, lists the
deadlocked threads and their
resource usage.

55

Chapter 3: Monitoring a Java Application

Note:

If the mode for the JVM Threads test is set to SNMP, then the detailed diagnosis of this test will not
display the Blocked Time and Waited Time for the threads. To make sure that detailed diagnosis
reports these details also, do the following:

« Login to the application host.

« Go to the <JAVA_HOME>\jre\lib\management folder used by the target application, and edit the
management.properties file in that folder.

« Append the following line to the file:

com. sun.management .enableThreadContentionMonitoring

« Finally, save the file.

3.2.6.1 Accessing Stack Trace using the STACK TRACE link in the Measurements
Panel

While viewing the measures reported by the JVM Thread test, you can also view the resource
usage details and the stack trace information for all the threads, by clicking on the stack trace link in
the Measurements panel.

Note:

If the mode set for the JVM Thread test is SNMP, the stack trace details may not be available.

{ IVM Internals search[@ ¥ all
u-| WM Engine m
| Java Classes
a'l JVM Internals I E 1M Garbage Collections [
u-| Application Processes i B Copy
a_l B MarkSweepCompact
Tc
1 B I @ VM Threads
u-| Network m
u'| Cperating System i
Fans LT L L Lk men e U 22 200
| @@ VM Threads 4 STACK TRACE € DETAILS 4 HELP |
| W Total threads (Number) 25 b @I B Runnzble threads (Humber) & b)
M Elocked threads (Number) 0 b @l B Waiting threads (Number) s b)|
B Timed waiting threads (Number] 14 b @l B Low cpu threads (Humber] 25 b)|
B Medium cpu threads (Humber) 0 b @l B High cou threads (Humber) o b)|
M Pezk threads (Number) 33 b @l B Started threads (Humber) o b)|
B Czemon threads (Number) 23 & ®|

Figure 3.4: The STACK TRACE link

56

Chapter 3: Monitoring a Java Application

A stack trace (also called stack backtrace or stack traceback) is a report of the active stack frames
instantiated by the execution of a program. It is commonly used to determine what threads are
currently active in the JVM, and which threads are in each of the different states —i.e., alive, blocked,
waiting, timed waiting, etc.

Typically, when a Java application begins exhibiting erratic resource usage patterns, it often takes
administrators hours, even days to figure out what is causing this anomaly — could it be owing to
one/more resource-intensive threads being executed by the application? If so, what is causing the
thread to erode resources? Is it an inefficient piece of code? In which case, which line of code could
be the most likely cause for the spike in resource usage? To be able to answer these questions
accurately, administrators need to know the complete list of threads that the application executes,
view the stack trace of each thread, analyze each stack trace in a top-down manner, and trace
where the problem originated.

eG Enterprise simplifies this seemingly laborious procedure by not only alerting administrators
instantly to excessive resource usage by a target application, but also by automatically identifying the
problematic thread(s), and providing the administrator with quick and easy access to the stack trace
information of that thread; with the help of stack trace, administrators can effortlessly drill down to the
exact line of code that requires optimization.

To access the stack trace information of a thread, click on the STACK TRACE link in the
Measurements panel of Figure 3.4.

Measurement Time: Jun 22, 2005 1‘.:12:22&:5 Measurement: | All Threads |:' Sort By:| Percentage Cpu Time ':
RMI TCP Connection(40)-192.168.10.11% Thread Name i RMI TCP Connection{40)-152.168.10.152 sl
HostConfig[localhost] Thread State ¢ RUMNNABLE
Thread-10
RMI TCP Accept-0
StandardManager[] = i = 4 B i
RMI TCP Connection{33)-192.168.10.12 Cpu Time ercentag® | piocked Blocked Time & o ohege = Waited Tima | o o 5 =9¢
i Cpu Time Blockead Waited Waited Time
Thread-16 (Secs) e Count (Secs) & o (Secs) o N
http8088-Processord (o) ime (%) (%) 1=
http8088-Processorz 0.082 0.0525 1 0.0 a a 0.0 a
RMI TCP Accept-13600
RMI LeaseChecker
Stack T
http8088-Processorl et
Finalizer sun.management.ThreadImpl.getThreadInfol(Native Method)
Thread-31 Y "
e sun.management. ThreadImpl.getThreadInfo(ThreadImpl.java: 144)
Rri?;irjgce Handler sun.management. ThreadImpl.getThreadInfo(ThreadImpl.java:120)
http8088-Processor3 sun.reflact.GeneratadMethodAcceszor22.invake(Unknown Source)
RMI TCP Connection(41)-152.168.10.1¢ : z y
Thread-25 sun.reflect.DelegatingMethodAccessorlmpl.invoke(DelegatingMethodAccessorlmpl.java: 23]
Thread-21 - ? 2 P : 5
V3. . ct.M Jdnwv M Javai
StandardManager/final] java.lang.reflect.Method.invoke{Method.java: 585)
Thread-11 sun.management.MXBeanSupport.invoke(MXBeanSupport.java: 532)
http8088-Monitor g .
IM¥ zerver connection timeout FES sun.management.MXBeanSupport.invoke(MXBeanSupport.java: 54}
com.sun.jmx.mbeanserver.DynamicMetaDataImpl.invoke(DynamicMetaDatalmpl.java:i213)
com.sun.jmx.mbezanserver.MetaDataImpl.invoke(MetaDatalmpl.java: 220)

Figure 3.5: Stack trace of a resource-intensive thread

57

Chapter 3: Monitoring a Java Application

Figure 3.5 that appears comprises of two panels. The left panel, by default, lists all the threads that
the target application executes, starting with the threads that are currently live. Accordingly, the All
Threads option is chosen by default from the Measurement list. If need be, you can override the
default setting by choosing a different option from the Measurement list — in other words, instead of
viewing the compilete list of threads, you can choose to view threads of a particular type or which are

in a particular state alone in Figure 3.5, by selecting a different Measurement from Figure 3.5. For
instance, to ensure that the left panel displays only those threads that are currently in a runnable
state, select the Live threads option from the Measurement list. The contents of the left panel will
change as depicted by Figure 3.6.

Measurement Time: | Jun 22, 2009 1‘_:1.2:225_.-:-_5 Measurement: 2|l Threads s ' Sort By: | Percentzge Cpu Time '-

RMI TCP Connection(40]-152.168.10.11

Thread Name i RMI TCP Connection{40)-192.168.10.152

http8088-Processorl

Finalizer

Threzd-31

main

Reference Handler

Timer-0

http8088-Frocessors

RMI TCP Connection(41)-192.168,10.1%
Thread-z6

Thread-21
StandardManager/final]
Thread-11

http8088-Monitor

IMX server connection timeout 788

sun.management.ThreadImpl.getThreadInfol(Native Method)
sun.management. ThreadImpl.getThreadInfe(ThreadImpl.java: 144)
sun.management. ThreadImpl.getThreadInfe(ThreadImpl.java: 120)

sun.reflact.GeneratadMethodAcceszor22.invake(Unknown Source)

sun.reflect.DelegstingMethodacces
java.lang.reflect.Method.invoke{Method.java:585)
sun.management.MXBeanSupport.inveke(MXBeanSupport.java:632)

sun.management.M¥BeanSupport.invake(MXBeanSupport.java: 54}

sorlmpl.invake(DelegatingMethodAccessarlmpl.java25)

HostCenfig[locslhest] Thread State ¢ RUNNAELE

Thread-10

RMI TCP Accept-0

StandardManzger[] |
RMI TCP Connection(33)-132.168.10.1% Cpu Time Pzrie_:lif_:ze Blocked Blocked Time PeBr'iecl:‘t:;e Waited Waited Time :f;.:::'f;?nee
Thread-16 (Sacs) p[%} Count (Secs) & (9%6) (Sacs) (%) i |
http8088-Processord e '55=I
hitpSORS-Broressord 0.082 0.0525 1 0.0 0 o 0.0 0

RMI TCP Accept-12600

RMI LeaseChecker Stack Trace

com.sun.jmx.mbeanserver.DynamicMetaDataImpl.invoke(DynamicMetaDatalmpl.java:i213)

com.sun.jmx.mbeanserver.MetaDataImpl.invoke(MetaDatalmpl.java:i 220)

Figure 3.6: Thread diagnosis of live threads

Also, the thread list in the left panel is by default sorted in the descending order of the Percent CPU
Time of the threads. This implies that, by default, the first thread in the list will be the thread that is currently
active and consuming the maximum CPU. You can change the sort order by selecting a different option from
the Sort by list in Figure 3.6.

Typically, the contents of the right panel change according to the thread chosen from the left. Since
the first thread is the default selection in the left panel, and this thread by default consumes the
maximum CPU, we can conclude that the right panel will by default display the details of the leading
CPU consumer. Besides the name and state of the chosen thread, the right panel will provide the
following information:

o Cpu Time : The amount of CPU processing time (in seconds) consumed by the thread during the
last measurement period;

58

Chapter 3: Monitoring a Java Application

o Percent Cpu Time: The percentage of time the thread was using the CPU during the last
measurement period;

« Blocked Count: The number of the times during the last measurement period the thread was
blocked waiting for another thread;

« Blocked Time: The total duration for which the thread was blocked during the last measurement
period;

« Percentage Blocked Time: The percentage of time (in seconds) for which the thread was
blocked during the last measurement period;

« Waited: The number of times during the last measurement period the thread was waiting for
some event to happen (eg., wait for a thread to finish, wait for a timing event to finish, etc.);

« Waited Time: The total duration (in seconds) for which the thread was waiting during the last
measurement period;

« Percentage Waited Time: The percentage of time for which the thread was waiting during the
last measurement period.

In addition to the above details, the right panel provides the Stack Trace of the thread.

In the event of a sudden surge in the CPU usage of the target Java application, the Thread
Diagnosis window of Figure 3.6 will lead you to the CPU-intensive thread, and will also provide you
with the Stack Trace of that thread. By analyzing the stack trace in a top-down manner, you can
figure out which method/routine called which, and thus locate the exact line of code that could have
contributed to the sudden CPU spike.

If the CPU usage has been increasing over a period of time, then, you might have to analyze the
stack trace for one/more prior periods, so as to perform accurate root-cause diagnosis. By default,
the Thread Diagnosis window of Figure 3.6 provides the stack trace for the current measurement
period only. If you want to view the stack trace for a previous measurement period, you will just have
to select a different option from the Measurement Time list. By reviewing the code executed by a
thread for different measurement periods, you can figure out out if the same line of code is
responsible for the increase in CPU usage.

3.3 The JVM Engine Layer

The JVM Engine layer measures the overall health of the JVM engine by reporting statistics related
to the following:

59

Chapter 3: Monitoring a Java Application

« The CPU usage by the engine
« How the JVM engine manages memory

« The uptime of the engine

VM Engine search | ¥ Al

WM Cpu Usage

B 1¢M Memory Usage L
B Heap_Memory_Usage
B Memory_Pool_Code_Cache_(Non-heap_memory)
B Memaory_Fool_Eden_Space_(Heap_memary)
B Memory_FPool_Perm_Gen_(Non-heap_memary)
B Memaory_Pool_Survivor_Space_(Heap_memory)
B Memory_Fool_Tenured_Gen_(Heap_memory)
B Mon-Heap_Memory_Usage
WM Uptime —

Figure 3.7: The tests associated with the JVM Engine layer
3.3.1 JVM CPU Usage Test

This test measures the CPU utilization of the JVM. If the JVM experiences abnormal CPU usage
levels, you can use this test to instantly drill down to the threads that are contributing to the CPU
spike. Detailed stack trace information provides insights to code level information that can highlight
problems with the design of the Java application.

Note:

This test will not report metrics if the Mode parameter of the test is set to SNMP.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for the Java application being monitored

Configurable parameters for the test

Parameter Description
Test period How often should the test be executed
Host The host for which the test is to be configured.

60

Chapter 3: Monitoring a Java Application

Parameter

Description

Port

Mode

JMX remote port

JNDIname

User, Password,
and Confirm
password

Provider

Timeout

SNMPPort

The port number at which the specified host listens to

This test can extract metrics from the Java application using either of the
following mechanisms:

« Using SNMP-based access to the Java runtime MIB statistics;
« By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_ HOME>\jre\lib\management folder used by the target application (see

page 3).

This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the Confirm Password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port

61

Chapter 3: Monitoring a Java Application

Parameter

Description

SNMP Version

number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME=>\jre\lib\management folder used by the target application (see
page 18).

This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use
in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the

User name

Context

Authpass

SNMP community name that the test uses to communicate with the mail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPV3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges — in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter.

This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEnginelD value of the entity hosting the management
information (also called a contextEnginelD) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name.

62

Chapter 3: Monitoring a Java Application

Parameter

Description

Confirm password

Authtype

Encryptflag

Encryptpassword
Confirm password

Dataover TCP

USEPS

This parameter once again appears only if the snmpversion selected is v3.
Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

« MDS5 —Message Digest Algorithm
o SHA —Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option.

« DES —Data Encryption Standard

o AES —Advanced Encryption Standard

Specify the encryption password here.

Confirm the encryption password by retyping it here.

This parameter is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic —
for instance, certain types of data traffic or traffic pertaining to specific
components — to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

This flag is applicable only for AIX LPARs. By default, on AIX LPARs, this test
uses the tprof command to compute CPU usage. Accordingly, this flag is set to
No by default. On some AIX LPARs however, the tprof command may not
function properly (this is an AIX issue). While monitoring such AIX LPARs
therefore, you can configure the test to use the ps command instead for metrics
collection. To do so, set this flag to Yes.

Note:

63

Chapter 3: Monitoring a Java Application

Parameter

Description

DD Frequency

Detailed Diagnosis

Alternatively, you can set the AIXUSEPS flag in the [AGENT_SETTINGS]
section of the eg tests.ini file (in the <EG_INSTALL _SIR>\manager\config
directory) to yes (default: no) to enable the eG agent to use the ps command for
CPU usage computations on AIX LPARs. If this global flag and the USEPS flag
for a specific component are both set to no, then the test will use the default
tprof command to compute CPU usage for AIX LPARs. If either of these flags is
set to yes, then the ps command will perform the CPU usage computations for
monitored AIX LPARSs.

In some high-security environments, the tprof command may require some
special privileges to execute on an AIX LPAR (eg., sudo may need to be used
to run tprof). In such cases, you can prefix the tprof command with another
command (like sudo) or the full path to a script that grants the required
privileges to tprof. To achieve this, edit the eg_tests.ini file (in the <EG_
INSTALL_DIR>\manager\config directory), and provide the prefix of your
choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS]
section. Finally, save the file. For instance, if you set the AixTprofPrefix
parameter to sudo, then the eG agent will call the tprof command as sudo tprof.

Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of
this test for a particular server, choose the On option. To disable the capability,
click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

64

Chapter 3: Monitoring a Java Application

Measurements made by the test

Measurement Description Il\Jllﬁiatsurement Interpretation
CPU utilization of | Indicates the | Percent If a system has multiple
JVM percentage of total processors, this value is the total
available CPU time CPU time used by the JVM divided
taken up by the JVM. by the number of processors on the
system.

Ideally, this value should be low. An
unusually high value or a consistent
increase in this value is indicative of
abnormal CPU usage, and could
warrant further investigation.

In such a situation, you can use the
detailed diagnosis of this measure,
if enabled, to determine which
runnable threads are currently
utilizing excessive CPU.

The detailed diagnosis of the CPU utilization of JVM measure lists all the CPU-consuming threads
currently executing in the JVM, in the descending order of the Percentage CPU Time of the threads;
this way, you can quickly and accurately identify CPU-intensive threads in the JVM. In addition to
CPU usage information, the detailed diagnosis also reveals the following information for every
thread:

o The number of times the thread was blocked during the last measurement period, the total
duration of the blocks, and the percentage of time for which the thread was blocked;

« The number of times the thread was in waiting during the last measurement period, the total
duration waited, and the percentage of time for which the thread waited;

« The Stacktrace of the thread, using which you can nail the exact line of code causing the CPU
consumption of the thread to soar;

65

Chapter 3: Monitoring a Java Application

Details of the threads

Time| Thread Name |ThreadlD| Thread | Cpu | Percentage|Blocked| Blocked | Percentage Waited| Waited |Percentage Stacktrace
State Time Cpu Time Count Time Blocked Time Waited
(Sacs) (%) (Secs) | Time (%) (Secs) | Time (%)
Jun 22, 2009 14:42:30 StadkTrace =]
http7077- 15 RUNMABLE | 2.256 0.6651 103 0.006 0 a3 534.26 18.18 java.net.SocketInputStream.socketRead0(Native Method):
Proceszorz ItS

java.net.SocketInputStream.read(SocketinputStream.java: 129);

511ProtocolsHitp11Co sConnec
_org.zpache.tomest.util. et TepWorke Thraad.nunlt

org.apache.tom: .threzds. ThreadPoolsControlRunnable.run
(ThreadPosl.java683): java.lang. Thread.run(Thread java:815)

http7077- 21 RUNMNAELE 2.89 | 0.4811 231 0.045 |0 403 654.029 |0
Processord
arssRequestline
yote.httpl1.Httpl1Processor.process
Http11Protocol£Httn 1 1ConnectionHandler.processConnection
org.apache.temeat.util.net. TepWorkerThraad.runlt
-H s.ThreadPoolsControlRunnable.run
Threadpcol |a 2:583) Ja a.lang.Thread.run(Thread java:615)
http 077 18 RUNNAELE 3.984 0.4528 102 0.014 |0 407 562.412 |17.27 java.net.SocketlinputStraam. soch d0(Native Mathod):
rrrrrrrrr In s

tBufferjavai7e?);

Figure 3.8: The detailed diagnosis of the CPU utilization of JVM measure
3.3.2 JVM Memory Usage Test

This test monitors every memory type on the JVM and reports how efficiently the JVM utilizes the
memory resources of each type.

Note:

« For this test to report detailed diagnostics, the target Java application should use the JDK/JRE
offered by one of the following vendors only: Oracle, Sun, OpenJDK, Azul Zing

« If the target Java application is running using an IBM JRE/JDK, then, this test will not report
detailed diagnostics. To enable the test to report DD, a MAT plugin is required. Currently, only an
eG agent on an AlX system (using an IBM JDF/JRE) can be configured to use this plugin. This
plugin needs to be downloaded and extracted into the target AIX host. Once this is done, then the
next time the eG agent runs this test, it takes the help of the plugin to read the usage statistics of
object types from the heap dump file, and finally reports these metrics to the eG manager. To
know how to install and configure the MAT plugin, refer to the Installing and Configuring the
MAT Plugin.

Heap dump analysis using the MAT plugin is resource-intensive. It is not
recommended for usage in production servers.
¢ This test can provide detailed diagnosis information for only those monitored Java applications that use
JRE 1.6 or higher.

¢ This test can run in an agent-based/agentless manner only, but detailed diagnostics will be available only if
the test is run in an agent-based manner.

66

Chapter 3: Monitoring a Java Application

« For an Azul Zing JVM, you can have this test report additional metrics on heap memory usage by

enabling the MemoryMXBean interface. MemoryMXBean is an interface used by the Zing

management system to access memory-related properties. The MemoryMXBean provides an

overview of the memory system and the memory managers that control the size and use patterns
of memory. To enable the MemoryMXBean interface, add the following JVM option in the start-up
script of the target application.

-XX:+UseZingMXBeans

Also, to enable the test to report detailed diagnostics for a Zing JVM, make sure that the following
JVM option is included in the start-up script of the target application:

-XX:+ProfileLiveObjects

Target of the test : A Java application

Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for every memory type on the JVM being monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the following
mechanisms:
« Using SNMP-based access to the Java runtime MIB statistics;
« By contacting the Java runtime (JRE) of the application via JMX
To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

JMX remote port This parameter appers only if the mode is set to jmx. Here, specify the port at which the

jmx listens for requests from remote hosts. Ensure that you specify the same port that
you configured in the management.properties file in the <JAVA _

67

Chapter 3: Monitoring a Java Application

Parameter Description
HOME>\jre\lib\management folder used by the target application (see page 3).
JNDIname This parameter appears only if the mode is set to JMX. The JNDIname is a lookup

name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same.

User, Password, and These parameters appear only if the Mode is set to JMX. If JMX requires authentication

Confirm password

Provider

Timeout

SNMPPort

SNMP Version

SNMP Community

User name

only (but no security), then ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how
to create this user, refer to Section 2.1.2. Confirm the password by retyping it in the
confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX Provider
to access the MBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if the Mode is JMX,
and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in the management.properties file in the <JAVA _
HOME>\jre\lib\management folder used by the target application (see page 18).

This parameter appears only if the Mode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.

This parameter appears only if the Mode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with the mail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3) is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supporting message security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from the MIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges — in other words, the eG agent should connect to the MIB

68

Chapter 3: Monitoring a Java Application

Parameter Description
using the credentials of a user with access permissions to be MIB. Therefore, specify
the name of such a user against this parameter.

Authpass Specify the password that corresponds to the above-mentioned user name. This

Confirm password

Authtype

Encryptflag

Encrypttype

Encryptpassword
Confirm password

Data over TCP

Heap Analysis

parameter once again appears only if the snmpversion selected is v3.
Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

« MDS5 —Message Digest Algorithm
o SHA —Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option.

If the Encryptflag is set to Yes, then you will have to mention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

o DES —Data Encryption Standard
o AES — Advanced Encryption Standard

Specify the encryption password here.
Confirm the encryption password by retyping it here.

This parameter is applicable only if mode is set to SNMP. By default, inan IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic — for instance,
certain types of data traffic or traffic pertaining to specific components — to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can
instruct the eG agent to conduct the SNMP data traffic related to the monitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

By default, this flag is set to off. This implies that the test will not provide detailed
diagnosis information for memory usage, by default. To trigger the collection of detailed
measures, set this flag to On.

69

Chapter 3: Monitoring a Java Application

Parameter Description
Note:
« If heap analysis is switched On, then the eG agent will be able to collect detailed
measures only if the Java application being monitored uses JDK 1.6 or higher.
« Heap analytics / detailed diagnostics will be provided only if the Java application
being monitored supports Oracle Hotspot.
JavaHome This parameter appears only when the Heap Analysis flag is switched On. Here,

Exclude Packages

Include Packages

provide the full path to the install directory of JDK 1.6 or higher on the application host.
For example, ¢:\JDK1.6.0.

The detailed diagnosis of this test, if enabled, lists the Java classes/packages that are
using the pool memory and the amount of memory used by each class/package. To
enable administrators to focus on the memory consumed by those classes/packages
that are specific to their application, without being distracted by the memory
consumption of basic Java classes/packages, the test, by default, excludes some
common Java packages from the detailed diagnosis. The packages excluded by
default are as follows:

« All packages that start with the string java or javax - in other words, java.* and
javax.*.

« Arrays of primitive data types - eg., [Z, which is a one-dimensional array of
type boolean, [[B, which is a 2-dimensional array of type byte, etc.

« A few class loaders - eg., <symbolKlass>, <constantPoolKlass>,
<instanceKlassKlass>, <constantPoolCacheKlass>, etc.

This is why, the Exclude Packages parameter is by default configured with the
packages mentioned above. You can, if required, append more packages or patterns of
packages to this comma-separated list. This will ensure that such packages also are
excluded from the detailed diagnosis of the test. Note that the exclude packages
parameter is of relevance only if the Heap Analysis flag is set to 'Yes'.

By default, this is set to all. This indicates that, by default, the detailed diagnosis of the
test (if enabled) includes all classes/packages associated with the monitored Java
application, regardless of whether they are basic Java packages or those that are
crucial to the functioning of the application. However, if you want the detailed diagnosis
to provide the details of memory consumed by a specific set of classes/packages
alone, then, provide a comma-separated list of classes/packages to be included in the
detailed diagnosis in the include packages text box. Note that the include packages
parameter is of relevance only if the Heap Analysis flag is set to'Yes'.

70

Chapter 3: Monitoring a Java Application

Parameter Description

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against this
parameter.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement
Unit

Interpretation

Measurement Description

Initial memory Indicates the MB
amount of memory
initially allocated at

startup.
Used memory Indicates the MB It includes the memory occupied by all objects,
amount of memory including both reachable and unreachable objects.

currently used. Ideally, the value of this measure should be low. A

high value or a consistent increase in the value
could indicate gradual erosion of memory
resources. In such a situation, you can take the
help of the detailed diagnosis of this measure (if
enabled), to figure out which class is using up
memory excessively.

Committed Indicates the MB The amount of Committed memory may change
memory amount of memory over time. The Java virtual machine may release

71

Chapter 3: Monitoring a Java Application

Measurement Description mt:iatsurement Interpretation
guaranteed to be memory to the system and committed memory
available for use could be less than the amount of memory initially
by the JVM. allocated at startup. Committed will always be

greater than or equal to used memory.

Free memory Indicates the MB If an Azul Zing JVM is being monitored, then the
amount of memory value of this measure will change according to the
currently available value of the Memory pool size type measure. If the
for use by the Memory pool size type measure is Fixed, then the
JVM. value of this measure is the difference between the

value of the Max allocated memory and Used
memory measures. On the other hand, if the
Memory pool size type is Elastic, then the value of
this measure will be the difference between the
value of the Committed memory and Used memory
measures.

For all other JVMs, this measure is the difference
between the Max allocated memory and Used
memory measures.

Ideally, the value of this measure should be high.
Note:

Sometimes, administrators may not want to
cap/limit the maximum amount of memory that a
JVM can use. In such cases, they may set the
maximum memory to -1. If this is done, then it
implies that the JVM can use any amount of
memory. In this case therefore, the Maximum
allocated memory will also report the value -1, but
the Free memory measure will not be reported.

Max allocated Indicates the MB In the case of the Azul Zing JVM, this measure will

memory maximum amount be reported only for memory pools of type FIXED.
of memory
allocated for the
JVM.

Used percentage | Indicates the Percent In the case of the Azul Zing JVM, this measure will
percentage of used be reported only for memory pools of type FIXED.
memory. The formula for computing the value of this

72

Chapter 3: Monitoring a Java Application

Measurement

Measurement Description

Unit

Interpretation

measure for a FIXED memory type is as follows:
(Used memory / Committed memory)*100

For all other JVMs, the value of this measure is
computed using the following formula:

(Used memory / Max allocated memory)*100

Ideally, the value of this measure should be low. A
very high value of this measure could indicate
excessive memory consumption by the JVM,
which in turn, could warrant further investigation. In
such a situation, you can take the help of the
detailed diagnosis of this measure (if enabled), to
figure out which class is using up memory
excessively.

JVM heap
memory exceeds
initially reserved?

Indicates
whether/not the
heap memory
usage has
exceeded the
amount of memory
initially reserved
for this memory

type.

The values that this measure can report and their
corresponding numeric values are listed in the table
below:

Measure Value Numeric Value

Yes 1

No 0

Typically, the value of this measure will be Yes for
a memory pool of type ELASTIC -i.e., for those
descriptors that report the value ELASTIC for the
Memory pool size type measure. For

FIXED memory pools on the other hand, the value
of this measure will generally be No.

Note:

By default, the test reports the Measure Values
listed in the table above to indicate whether/not
memory usage has exceeded allocation. In the
graph of this measure however, the same is
indicated using the numeric equivalents only.

Indicates the Percent

percentage of heap

Percentage heap
used after GC

This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'

73

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement

Unit

Interpretation

memory used by
the Zing JVM after
garbage collection.

interface is enabled.

This measure is only reported for the 'Heap
memory usage' descriptor.

If garbage collection reclaims a large amount of
memory from the Zing JVM, then the value of this
measure will be low. On the other hand, if the
garbage collector does not reclaim much memory,
or if the Java application suddenly runs a memory-
intensive process when GC is being performed,
then the value of this measure will be very high.

objects used.

Heap occupied Indicates the MB This measure is reported only for Azul Zing
by application amount of heap JVM, and only when the 'MemoryMXBean'
objects memory that is interface is enabled.

use‘? by. This measure is only reported for the 'Heap

application .

) memory usage' descriptor.

objects.
Heap reserved Indicates the MB This measure is reported only for Azul Zing
for holding amount of heap JVM, and only when the 'MemoryMXBean'
application memory that was interface is enabled.
objects reserved for the

usage of

application This measure is only reported for the 'Heap

objects. memory usage' descriptor.
Percentage of Indicates what Percent This measure is reported only for Azul Zing
heap used by percentage of its JVM, and only when the 'MemoryMXBean'
application reserved memory interface is enabled.
objects the application

This measure is only reported for the 'Heap
memory usage' descriptor.

The formula used for computing the value of this
measure is as follows:

(Heap occupied by application objects/Heap
reserved for holding application objects)*100

A value close to 100% is a cause for concern as it
indicates that space reserved for application
objects is being eroded rapidly. If the space-drainis

74

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement

Unit

Interpretation

not controlled, it can cause application
performance to deteriorate.

Memory pool size
type

Indicates this
memory pool's
type in terms of
size

This measure is reported only for Azul Zing
JVM, and only when the 'MemoryMXBean'
interface is enabled.

The values that this measure can report and their
numeric values are listed in the table below:

Measure Value

Numeric Value

Uninitialized 0
Fixed 1
Elastic 2

Each of these measure values are described

below:

Measure Value

Description

Uninitialized

A memory pool may be
labelled as Unitialized, if the
memory region itself has not|

been reserved.

Fixed

A Fixed pool has a fixed upper
bound on its size, usually sef
when the memory for that
memory pool is initially
reserved.

Elastic

An Elastic memory pool has
the ability to use unused
memory that other memory
pools are not using. Likewise,
when the memory pool no
longer needs to use all of its
memory, it can return that
memory so that it can be used
by other sibling memory pools.

Note:

By default, the test reports the Measure Values

75

Chapter 3: Monitoring a Java Application

Measurement

Unit Interpretation

Measurement Description

listed in the table above to indicate the memory
pool size type. In the graph of this measure
however, the same is indicated using the numeric
equivalents only.

The detailed diagnosis of the Used memory measure, if enabled, lists all the classes that are using
the pool memory, the amount and percentage of memory used by each class, the number of
instances of each class that is currently operational, and also the percentage of currently running
instances of each class. Since this list is by default sorted in the descending order of the percentage
memory usage, the first class in the list will obviously be the leading memory consumer.

Details of JVM Heap Usage

Time Class Name Instance Count Instance Percentage Memory used(MB) Peﬂ:\entmmmrv o]
Jun 17, 2009 12:11:01 -
com.ibc.object.SapBusinessObject 104003 11.5774 12.629 22,5521
[Liava.lang.Object; 23586 2.6255 7.4904 13.3759
=constMethodKlas> 41243 4.5911 5.8357 10.4211
java.lang.5tring 174044 19.3742 3.9836 7.11386
[Cc 240000 26.7163 3.6621 6.5356
[B 7336 0.8166 3.5868 6.4051
=methodklas> 41243 4.5911 3.1514 5.6275
=symbolKlas> 69152 7.6979 2.8014 5.0025
[1 26240 2.921 2.3018 4.1105
=constantPoolklas> 3097 0.3448 2.0491 3.6591
<instanceKlassKlas> 3097 0.3448 1.296 2.3144
<constantPoolCacheKlas> 2663 0.2964 1.2536 2.2286
[s 5546 0.6174 0.4283 0.7649
java.util.HashtablesEntry 15908 1.7708 0.3641 0.6502
=methodDatakKlas> 870 0.09&8 0.3594 0.6418
java.lang.reflect.Method 4269 0.4752 0.3257 0.5816
java.lang.Class 3383 0.23766 0.3097 0.5531
java.util.Vector 13266 1.4767 0.2026 0.5422

Figure 3.9: The detailed diagnosis of the Used memory measure
3.3.2.1 Installing and Configuring the MAT Plugin
Before installing the MAT plugin, make sure that the following requirements are in place:

o To make optimum use of the available memory, the eG agent on AIX runs the JVM Memory
Usage test as a separate process. Sufficient memory should be available to this process to
analyze heap dump. This memory size depends upon heap dump size. For instance, to analyse
heap dump of size 2 GB, the process needs free memory of size 4 GB. This implies that the
process should be sized with 100% more memory than the heap dump size. This can be

76

Chapter 3: Monitoring a Java Application

configured in the following manner:

o Editthe eg_tests.inifile in the /opt/egurkha/manager/config directory

o Inthe [DD_ROWS] section of the file, configure the following parameters:

Xms = <Initial heap size>

Xmx=<Maximum heap size>

By default, both these parameters are set to 2048M. You can change the value of these
parameters based on what the heap dump size is.

o Finally, save the file.

o Next, make sure that the /tmp directory in the AIX system has sufficient free space. This is
because, the heap dump files will be stored and analyzed in this folder only. The space
requirement of this folder too will vary with heap dump size. For instance, if the heap dump size is
40 MB, then for the MAT plugin to analyze memory usage, 50% more free space is required in the
/tmp directory —i.e., 60 MB of free space.

To install the plugin, do the following:

1.

Download the MAT plugin and extract it into the egurkha directory on the AIX system hosting

the eG agent. The steps in this regard are as follows:

(e)

Download the MAT plugin, mat_plugin_AIX_PPC64.tar.gz, from the site.
Copy the plugin to the /opt/egurkha folder.

Next, issue the following command from the AIX shell prompt, to unzip the MAT plugin zip
file:

gunzip mat_plugin_AIX_PPC64.tar.gz
Next, issue the following command:

tar —xvf mat_plugin_AIX_PPC64.tar

A folder named 'mat' will now be created in the /opt/egurkha folder.

Configure the Java application/container on AlX to perform heap analysis. For this, insert the

following in the JVM arguments section of the start-up script of the application/application
server, and then save the file:

77

Chapter 3: Monitoring a Java Application

- Xdump:java:none - Xdump:heap:file=/tmp/egi_
heapdump.%Y%m%d.%H%M%S. %pid. %seq.phd

3. You may also want to fine-tune the following parameters in the [DD_ROWS] section of the eg_
tests.inifile:

o Heap_File_Generation_TimeOut — (Default: 5 minutes) This is the time up to which the eG
agent can write to the heap dump file. If the agent tries to continue writing to the file after this
duration, then the file will be deleted. This means, that no DD will be reported by the agent.
To avoid this, set the timeout period according to the heap dump size. Larger the size of the
heap dump, higher should be the timeout value.

o Heap_Analyzing_TimeOut — (Default: 120 minutes) This is the time up to which the MAT
plugin should read and analyze the data in the heap dump file . If the plugin is not able to
finish analyzing the data in the heap dump file within the configured duration, then detailed
diagnostics will not be reported. To avoid this, set the time period according to the heap
dump size. Larger the size of the heap dump, higher should be the timeout value.

4. Finally, restart the application / application server.
3.3.3 JVM Uptime Test

This test tracks the uptime of a JVM. Using information provided by this test, administrators can
determine whether the JVM was restarted. Comparing uptime across Java applications, an admin
can determine the JVMs that have been running without any restarts for the longest time.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for every Java application monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the

following mechanisms:

78

Chapter 3: Monitoring a Java Application

Parameter

Description

JMX remote port

JNDIname

User, Password,

and Confirm

password

Provider

Timeout

SNMPPort

SNMP Version

« Using SNMP-based access to the Java runtime MIB statistics;
« By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the JMX
option is chosen here.

This parameter appers only if the mode is set to jmx. Here, specify the port at which
the jmx listens for requests from remote hosts. Ensure that you specify the same port
that you configured in the management.properties file in the <JAVA _
HOME>\jre\lib\management folder used by the target application (see page 3).

This parameter appears only if the mode is set to JMX. The JNDIname is a lookup
name for connecting to the JMX connector. By default, this is jmxrmi. If you have
resgistered the JMX connector in the RMI registery using a different lookup name, then
you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access to
JMX. To know how to create this user, refer to Section 2.1.2. Confirm the password by
retyping it in the confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX Provider
to access the MBean attributes of the target Java application and collect metrics.
Specify the package name of this JMX Provider here. By default, this is set to
com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response from the
target Java application. If there is no response from the target beyond the configured
duration, the test will timeout. By default, this is set to 240 seconds if the Mode is JMX,
and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port number
through which the server exposes its SNMP MIB. Ensure that you specify the same
port you configured in the management.properties file in the <JAVA _
HOME>\jre\lib\management folder used by the target application (see page 18).

This parameter appears only if the Mode is set to SNMP. The default selection in the
SNMP version list is v1. However, for this test to work, you have to select SNMP v2 or
v3 from this list, depending upon which version of SNMP is in use in the target
environment.

79

Chapter 3: Monitoring a Java Application

Parameter

Description

SNMP Community

User name

Context

Authpass

Confirm password

Authtype

Encryptflag

This parameter appears only if the Mode is set to SNMP. Here, specify the SNMP
community name that the test uses to communicate with the mail server. The default is
public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the SNMP
version chosen is v3, then this parameter will not appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP version
3 (SNMPv3)is an extensible SNMP Framework which supplements the SNMPv2
Framework, by additionally supporting message security, access control, and remote
SNMP configuration capabilities. To extract performance statistics from the MIB using
the highly secure SNMP v3 protocol, the eG agent has to be configured with the
required access privileges — in other words, the eG agent should connect to the MIB
using the credentials of a user with access permissions to be MIB. Therefore, specify
the name of such a user against this parameter.

This parameter appears only when v3 is selected as the SNMPVERSION. An SNMP
context is a collection of management information accessible by an SNMP entity. An
item of management information may exist in more than one context and an SNMP
entity potentially has access to many contexts. A context is identified by the
SNMPEnginelD value of the entity hosting the management information (also called a
contextEnginelD) and a context name that identifies the specific context (also called a
contextName). If the USERNAME provided is associated with a context name, then
the eG agent will be able to poll the MIB and collect metrics only if it is configured with
the context name as well. In such cases therefore, specify the context name of the
username in the context text box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name. This
parameter once again appears only if the snmpversion selected is v3.

Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3 converts
the specified username and password into a 32-bit format to ensure security of SNMP
transactions. You can choose between the following options:

« MD5 —Message Digest Algorithm
« SHA — Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the eG
agent does not encrypt SNMP requests. Accordingly, the flag is set to No by default.
To ensure that SNMP requests sent by the eG agent are encrypted, select the Yes
option.

80

Chapter 3: Monitoring a Java Application

Parameter

Description

Encrypttype

Encryptpassword
Confirm password

Data over TCP

DD Frequency

Detailed Diagnosis

If the Encryptflag is set to Yes, then you will have to mention the encryption type by
selecting an option from the Encrypttype list. SNMP v3 supports the following
encryption types:

« DES —Data Encryption Standard
« AES — Advanced Encryption Standard

Specify the encryption password here.
Confirm the encryption password by retyping it here.

This parameter is applicable only if mode is set to SNMP. By default, inan IT
environment, all data transmission occurs over UDP. Some environments however,
may be specifically configured to offload a fraction of the data traffic —for instance,
certain types of data traffic or traffic pertaining to specific components —to other
protocols like TCP, so as to prevent UDP overloads. In such environments, you can
instruct the eG agent to conduct the SNMP data traffic related to the monitored target
over TCP (and not UDP). For this, set this flag to Yes. By default, this flag is set to No.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can modify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against this
parameter.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

81

Chapter 3: Monitoring a Java Application

Measurements made by the test

Measurement Description ﬁﬁﬁsurement Interpretation

Has JVM been |Indicates whether or not If the value of this measure is No, it

restarted? the JVM has restarted indicates that the JVM has not
during the last restarted. The value Yes on the
measurement period. other hand implies that the JVM

has indeed restarted.

The numeric values that
correspond to the restart states
discussed above are listed in the

table below:
State Value
Yes 1
No 0
Note:

By default, this measure reports
the value Yes or No to indicate
whether a JVM has restarted. The
graph of this measure however,
represents the same using the
numeric equivalents—0or 1.

Uptime during the | Indicates the time period | Secs If the JVM has not been restarted
last measure | that the JVM has been during the Ilast measurement
period up since the last time this period and the agent has been

testran. running continuously, this value will

be equal to the measurement
period. If the JVM was restarted
during the last measurement
period, this value will be less than
the measurement period of the
test. For example, if the
measurement period is 300 secs,
and if the JVM was restarted 120

82

Chapter 3: Monitoring a Java Application

Measurement

Unit Interpretation

Measurement Description

secs back, this metric will report a
value of 120 seconds. The
accuracy of this metric s
dependent on the measurement

period — the smaller the
measurement period, greater the

accuracy.
Total Uptime of the | Indicates the total time|Secs Administrators may wish to be
JVM that the JVM has been alerted if a JVM has been running
up since its last reboot. without a reboot for a very long

period. Setting a threshold for this
metric allows administrators to
determine such conditions.

3.3.4 JVM Leak Suspects Test

Note:

This test is CPU & Memory intensive and can cause slowness to the underlying application. It is
hence NOT advisable to enable this test on production environments. It is ideally suited for
Development and Staging environments.

Java implements automatic garbage collection (GC); once you stop using an object, you can depend
on the garbage collector to collect it. To stop using an object, you need to eliminate all references to
it. However, when a program never stops using an object by keeping a permanent reference to it,
memory leaks occur. For example, let’s consider the piece of code below:

83

Chapter 3: Monitoring a Java Application

import java.util.Arraylist;
import java.util.lList;

class MemorylLeakDemo {
private static List<Integer> memoryleakArea = new ArraylList<Integer>();

public static void main(String [] args) {

int i1teration = @;

while (true) {

Integer payload = new Integer(iteration);
memoryleakArea.add(payload);
1teration++

Figure 3.10: A sample code

In the example above, we continue adding new elements to the list memoryLeakArea without ever
removing them. In addition, we keep references to the memorylLeakArea, thereby preventing GC
from collecting the list itself. So although there is GC available, it cannot help because we are still
using memory. The more time passes the more memory we use, which in effect requires an infinite
amount memory for this program to continue running. When no more memory is remaining, an
OutOfMemoryError alert will be thrown and generate an exception like this: Exception in thread
"main" java.lang.OutOfMemoryError: Java heap space at MemoryLeakDemo.main
(MemoryLeakDemo.java:14)

Typically, such alerts signal a potential memory leak!

A memory leak can diminish the performance of your mission-critical Java applications by reducing
the amount of available memory. Eventually, in the worst case, it may cause the application to crash
due to thrashing. To avert such unwarranted application failures, it is imperative that memory leaks
are detected at the earliest and the objects responsible for them accurately isolated. This is where,
the JVM Leak Suspects test helps! This test continuously monitors the JVM heap usage and
promptly alerts administrators when memory usage crosses a configured limit. The detailed
diagnostics of the test will then lead you to the classes that are consuming memory excessively,
thereby pointing you to those classes that may have caused the leak.

Note:

84

Chapter 3: Monitoring a Java Application

This test will work only if the following pre-requisites are fulfilled:

« The test should be executed in an agent-based manner only.

« The target Java application should use the JDK/JRE offered by one of the following vendors only:
Oracle, Sun, OpenJDK. IBM JDK/JRE is not supported.

« The monitored Java application should use JDK/JRE 1.6 or higher.

« For this test to run and report metrics, the eG agent install user should be the same as the Java
application (or) Java web/application server install user.

« By default , this test programmatically dumps a heap dump (.hprof files) in the folder <EG_
AGENT _INSTALL_DIR>\agent\logs folder. To enable the eG agent to read/analyse such files,
you need to add the eG agent install user to the Java application (or) Java web/application server
install user group. If this is not done, then the dump files will be created, but will not be processed
by the eG agent, thus ending up unnecessarily occupying disk space (note that .hprof files are
normally 1-5 GB in size).

This test is disabled by default. To enable the test, go to the ENABLE / DISABLE TESTS page using
the menu sequence : Agents -> Tests -> Enable/Disable, pick the desired Component type, set
Performance as the Test type, choose the test from the DISABLED TESTS list, and click on the <
button to move the test to the ENABLED TESTS list. Finally, click the Update button.

Target of the test : A Java application
Agent deploying the test : Aninternal/remote agent

Outputs of the test : One set of results for every Java application monitored

Configurable parameters for the test

Parameter Description

Test period How often should the test be executed

Host The host for which the test is to be configured.

Port The port number at which the specified host listens to

Mode This test can extract metrics from the Java application using either of the

following mechanisms:
« Using SNMP-based access to the Java runtime MIB statistics;

« By contacting the Java runtime (JRE) of the application via JMX

85

Chapter 3: Monitoring a Java Application

Parameter

Description

JMX remote port

JNDIname

User, Password,

and Confirm

password

Provider

Timeout

SNMPPort

SNMP Version

To configure the test to use SNMP, select the SNMP option. On the other hand,
choose the JMX option to configure the test to use JMX instead. By default, the
JMX option is chosen here.

This parameter appers only if the mode is set to jmx. Here, specify the port at
which the jmx listens for requests from remote hosts. Ensure that you specify
the same port that you configured in the management.properties file in the
<JAVA_ HOME>\jre\lib\management folder used by the target application (see

page 3).

This parameter appears only if the mode is set to JMX. The JNDIname is a
lookup name for connecting to the JMX connector. By default, this is jmxrmi. If
you have resgistered the JMX connector in the RMI registery using a different
lookup name, then you can change this default value to reflect the same.

These parameters appear only if the Mode is set to JMX. If JMX requires
authentication only (but no security), then ensure that the user and password
parameters are configured with the credentials of a user with read-write access
to JMX. To know how to create this user, refer to Section 2.1.2. Confirm the
password by retyping it in the confirm password text box.

This parameter appears only if the Mode is set to JMX. This test uses a JMX
Provider to access the MBean attributes of the target Java application and
collect metrics. Specify the package name of this JMX Provider here. By
default, this is set to com.sun.jmx.remote.protocol.

Specify the duration (in seconds) for which this test should wait for a response
from the target Java application. If there is no response from the target beyond
the configured duration, the test will timeout. By default, this is set to 240
seconds if the Mode is JMX, and 10 seconds if the Mode is SNMP.

This parameter appears only if the Mode is set to SNMP. Here specify the port
number through which the server exposes its SNMP MIB. Ensure that you
specify the same port you configured in the management.properties file in the
<JAVA_HOME=>\jre\lib\management folder used by the target application (see
page 18).

This parameter appears only if the Mode is set to SNMP. The default selection
in the SNMP version list is v1. However, for this test to work, you have to select
SNMP v2 or v3 from this list, depending upon which version of SNMP is in use

86

Chapter 3: Monitoring a Java Application

Parameter

Description

in the target environment.

SNMP Community This parameter appears only if the Mode is set to SNMP. Here, specify the

User name

Context

Authpass

Confirm password

Authtype

SNMP community name that the test uses to communicate with the mail server.
The default is public. This parameter is specific to SNMP v1 and v2 only.
Therefore, if the SNMP version chosen is v3, then this parameter will not
appear.

This parameter appears only when v3 is selected as the SNMP version. SNMP
version 3 (SNMPv3) is an extensible SNMP Framework which supplements
the SNMPv2 Framework, by additionally supporting message security, access
control, and remote SNMP configuration capabilities. To extract performance
statistics from the MIB using the highly secure SNMP v3 protocol, the eG agent
has to be configured with the required access privileges — in other words, the
eG agent should connect to the MIB using the credentials of a user with access
permissions to be MIB. Therefore, specify the name of such a user against this
parameter.

This parameter appears only when v3 is selected as the SNMPVERSION. An
SNMP context is a collection of management information accessible by an
SNMP entity. An item of management information may exist in more than one
context and an SNMP entity potentially has access to many contexts. A context
is identified by the SNMPEnNginelD value of the entity hosting the management
information (also called a contextEnginelD) and a context name that identifies
the specific context (also called a contextName). If the USERNAME provided is
associated with a context name, then the eG agent will be able to poll the MIB
and collect metrics only if it is configured with the context name as well. In such
cases therefore, specify the context name of the username in the context text
box. By default, this parameter is set to none.

Specify the password that corresponds to the above-mentioned user name.
This parameter once again appears only if the snmpversion selected is v3.

Confirm the Authpass by retyping it here

This parameter too appears only if v3 is selected as the snmpversion. From the
authtype list box, choose the authentication algorithm using which SNMP v3
converts the specified username and password into a 32-bit format to ensure
security of SNMP transactions. You can choose between the following options:

87

Chapter 3: Monitoring a Java Application

Parameter

Description

Encryptflag

Encrypttype

Encryptpassword
Confirm password

Dataover TCP

DD Frequency

Detailed Diagnosis

« MDS5 —Message Digest Algorithm
o SHA —Secure Hash Algorithm

This flag appears only when v3 is selected as the snmpversion. By default, the
eG agent does not encrypt SNMP requests. Accordingly, the flag is set to No by
default. To ensure that SNMP requests sent by the eG agent are encrypted,
select the Yes option.

If the Encryptflag is set to Yes, then you will have to mention the encryption type
by selecting an option from the Encrypttype list. SNMP v3 supports the
following encryption types:

« DES —Data Encryption Standard

o AES —Advanced Encryption Standard

Specify the encryption password here.

Confirm the encryption password by retyping it here.

This parameter is applicable only if mode is set to SNMP. By default, in an IT
environment, all data transmission occurs over UDP. Some environments
however, may be specifically configured to offload a fraction of the data traffic —
for instance, certain types of data traffic or traffic pertaining to specific
components — to other protocols like TCP, so as to prevent UDP overloads. In
such environments, you can instruct the eG agent to conduct the SNMP data
traffic related to the monitored target over TCP (and not UDP). For this, set this
flag to Yes. By default, this flag is set to No.

Refers to the frequency with which detailed diagnosis measures are to be
generated for this test. The default is 1:1. This indicates that, by default, detailed
measures will be generated every time this test runs, and also every time the
test detects a problem. You can modify this frequency, if you so desire. Also, if
you intend to disable the detailed diagnosis capability for this test, you can do so
by specifying none against this parameter.

To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG
agents can be configured to run detailed, more elaborate tests as and when
specific problems are detected. To enable the detailed diagnosis capability of

88

Chapter 3: Monitoring a Java Application

Parameter Description

this test for a particular server, choose the On option. To disable the capability,
click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurements made by the test

Measurement Description gﬁiatsurement Interpretation
Allocated Heap Indicates the total MB
Memory amount of memory

space occupied by the
objects that are currently

loaded on to the JVM.

Leak suspected Indicates the number of | Number Use the detailed diagnosis of this

classes classes that are memory measure to know which classes are using
leak suspects. more memory than the configured pct

heap limit.

Remember that all applications/classes
that throw OutofMemory exceptions need
not be guilty of leaking memory. Such an
exception can occur even if a class
requires more memory for normal
functioning. To distinguish between a
memory leak and an application that
simply needs more memory, we need to
look at the "peak load" concept. When
program has just started no users have
yet used it, and as a result it typically
needs much less memory then when
thousands of users are interacting with it.
Thus, measuring memory usage
immediately after a program starts is not

89

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement
Unit

Interpretation

the best way to gauge how much memory
it needs! To measure how much memory
an application needs, memory size
measurements should be taken at the
time of peak load—when it is most heavily
used. Therefore, it is good practice to
check the memory usage of the
‘suspected classes’ at the time of peak
load to determine whether they are indeed
leaking memory or not.

GC roots currently
present in the JVM.

Number of objects | Indicates the number of | Number Use the detailed diagnosis of this
objects present in the measure to view the top-20 classes in the
JVM. JVM in terms of memory usage.
Number of classes | Indicates the number of | Number
classes currently
present in the JVM.
Number of class Indicates the number of | Number
loaders class loaders currently
present in the JVM.
Number of GC roots | Indicate the number of | Number A garbage collection root is an object that

is accessible from outside the heap. The
following reasons make an object a GC
root:

Reason Description

System Class Class loaded by
bootstrap/system
class loader. For

example, everything

from the rtjar

like java.util.

JNI Local Local variable in
native code, such as

user defined JNI

20

Chapter 3: Monitoring a Java Application

Measurement .
Interpretation

Measurement Description Unit

Reason Description

code or JVM internal

code

JNI Global Global variable in
native code, such as

user defined JNI
code or JVM internal

code

Thread Block Object referred to
from a currently

active thread block

Thread A started, but not

stopped, thread

Everything that has
called wait() or notify

() orthatis

Busy Monitor

synchronized. For
example, by
calling synchronized
(Object) or by

entering a
synchronized
method. Static
method means
class, non-static
method means

object

Java Local Local variable. For
example, input
parameters or

locally created

objects of methods

91

Chapter 3: Monitoring a Java Application

Measurement

Description

Measurement
Unit

Interpretation

Reason

Description

that are still in the

stack of a thread.

Native Stack

In or out parameters
in native code, such
as user defined JNI
code or JVM internal

code. or reflection.

Finalizer

An object which is in
a queue awaiting its

finalizer to be run.

Unfinalized

An object which has
a finalize method,
but has notbeen

finalized and is not
yet on the finalizer

queue.

Unreachable

An object which is
unreachable from
any other root, but
has been marked as
a root by MAT to
retain objects which
otherwise would not
be included in the

analysis.

Unknown

An object of

unknown root type.

Objects pending for
finalization

Indicates the number of
objects that are pending
for finalization.

Number

Sometimes an object will need to perform
some action when it is destroyed. For
example, if an object is holding some non-

92

Chapter 3: Monitoring a Java Application

Measurement
Unit

Measurement Description

Interpretation

javaresource such as afile handle or
window character font, then you might
want to make sure these resources are
freed before an object is destroyed. To
handle such situations, Java provides a
mechanism called finalization. By using
finalization, you can define specific
actions that will occur when an object is
just about to be reclaimed by the garbage
collector.

A high value for this measure indicates the
existence of many objects that are still
occupying the JVM memory space and
are unable to be reclaimed by GC. A
consistent rise in this value is also a sign
of a memory leak.

The detailed diagnosis of the Leak suspected classes measure lists the names of all classes for
which the memory usage is over the configured PCT HEAP LIMIT. In addition, the detailed diagnosis
also reveals the PERCENTAGE RETAINED HEAP of each class - this is the percentage of the total
Allocated heap size that is used by every class. From this, you can easily infer which class is
consuming the maximum memory, and is hence, the key memory leak suspect. By observing the
memory usage of this class during times of peak load, you can corroborate eG’s findings - i.e., you
can know for sure whether that class is indeed leaking memory or not!

TIME ‘ CLASS NAME ‘ INSTANCE COUNT ‘ INSTANCE SIZE (MB) ‘ RETAINED SIZE (MB) ‘ PERCENTAGE RETAINED ‘

Details of leak suspects

HEAP(%4)

May 30, 2013 16:36:05
sun.misc Launcherf AppClassloadar 1 0.0001 116.0477 56.6705
Java.util Vacter 18516 0.4421 115.9608 56.6281

Jjava.lang. Object]] 47439 23.3555 115.2608 56.6281

Figure 3.11: The detailed diagnosis of the Leak suspect classes measure

The detailed diagnosis of the Number of objects measure lists the names of the top-20 classes in the
JVM, in terms of memory usage. In addition, the detailed diagnosis also reveals the percentage
retained heap of each class - this is the percentage of the total Allocated heap size that is used by
every class. From this, you can easily infer which class is consuming the maximum memory, and is
hence, the key memory leak suspect. By observing the memory usage of this class during times of

93

Chapter 3: Monitoring a Java Application

peak load, you can corroborate eG’s findings - i.e., you can know for sure whether that class is
indeed leaking memory or not!

Detailed Diagnosis = Measure Graph Summary Graph Trend Graph Fix History Fix Feedback

Component 1521885 1813800 Measured By 162.168.8.26

Test JTVM Lezk Suspacts

Measurement | Number of objects El

Timeline [1hour |+| From [[May 30, 2013 #r[16[.|Min[33]+] To[E [May 30, 2013 Hr[17 [+ |Mia[=22]+] mm
INSTANCE SIZE (MB) RETAINED SIZE (MB) PERCENTAGE RETAINED | *

TIME ‘ CLASS NAME ‘ INSTANCE COUNT

HEAP(%)

May 30, 2013 16:36:05 |

sun.misc. Launcherf AppClassl oader I 116.0477
java.util. Vector 18316
javalang. Object]] 47430
jeva.util AmayList 18606
o 553334
47439 23.3555 55.3334
ObjectContainer 1 [1] 43,4604
javawtil AsravTist 10606 0.3757 43.4606 21.2235 =
Jjava.lang Object]] 47430 233555 43.4605 11.2234 |
comn. 2z HalpParsarTheasd 1 0.0001 4.0368 2.4108
com. 2z HalpXMILFilsR asder il 1] 4.0368 2.4108
Jjeva.wtil Hashtsble 10728 0.4002 40181 24017
Jjava.util HashtablaTEntre]] 10750 0.844 4018 24017
org.apache. naming resotrces. ResourcaCacha 2 0.0001 4.7237
orz apacha jasper sarvlet TepSerdlat 2 0.0001 47232 2.3065
g.apache jasper. compiler JspRuntimeContaxt 2 0.0001 4.721 2.3055
ooz apachs naming resources. CacheEntry] 2 0.0014 4715 2.3025
java.util.concument. ConcurrentHashMap 110 0.0042 4.7008 23
Jjava.util.concumrent. ConcurrentHashhlapSSezment]] | 111 0.0076 4.7087 1280 -

Figure 3.12: The detailed diagnosis of the Number of objects measure
3.4 What the eG Enterprise Java Monitor Reveals?

This section discusses how administrators can effortlessly and accurately diagnose the root-cause
of issues experienced by Java applications, using the class eG JVM Monitor. Each of the sub-
sections that follow take the case of a sample application problem, and illustrates the steps to be
followed to troubleshoot the problem in the eG monitoring console.

3.4.1 Identifying and Diagnosing a CPU Issue in the JVM

In this section, let us consider the case of the Java application, sapbusiness-152:123, which is being
monitored by eG Enterprise. Assume that this application is running on a Tomcat server.

Initially, the application was functioning normally, as indicated by Figure 3.13. There are no high
CPU threads.

94

Chapter 3: Monitoring a Java Application

| System BECTTT I Layers \ Select a Component | Java Applicationizapbuzsiness-152:1123 V| & 4Back

Operating Systemn

| I¥M Internals Toarah (2] v al |

a1 JwM Engine 1 | |
B lava Classes
u: 1 p¥EGInternals I @+ 1vM Garbage Collections u
u'| Application Processes m B Copy
B MarkSweepCompact

u'| Tc

{ 2 I @ 1¥M Threads
a'| Metwark 1
& -

-"ﬂ J¥M Threads 4 STACK TRACE < DETAILS 4 REMOTE CONTROL < HELP]
| B Total threads (Murnber) 40 & @l B Runnable threads (Number) io Q; & ®

M Blocked threads (Number) o Qb & @l B Waiting threads (Murnber) 9 Qb & ®
B Tirmed waiting threads (Number) il Qb & @l B Low cpu threads (Murmber) 40 & ®
M Mediurm cpu threads (Hurmber) [u} & @l M High cpu threads (Murmber) u} Qs & @
B Peak threads (Murnber) 44 & @l B Started threads (Mumber) 47 & ®
B Caermon threads (Mumber) 338 [r @l M Ceadlock threads (Mumber) o Q, | @

Figure 3.13: The Java application being monitored functioning normally

Now, assume that suddenly, one of the threads executed by the application starts to run abnormally,
consuming excessive CPU resources. This is indicated by a change in the value of the High cpu
threads measure reported by the jym Threads test mapped to the jvm Internals layer of the Java
Application monitoring model (see Figure 3.13). As you can see, as long as the sapbusiness
application was performing well, the value of the High cpu threads measure was 0 (see Figure 3.13).
However, as soon as a thread began exhibiting abnormal CPU usage trends, the value changed to 1
(see Figure 3.14).

95

Chapter 3: Monitoring a Java Application

M Layars Select a Carnpanent | Java Applicationisapbusiness-152:123 v & 4Back
I¥M Internals search @ W Al
u-| JWM Engine m
B Java Classes
u'l 1¥M Internals I B+ 1WM Garbage Collections [
u-| Application Processes 1 B Copy
u1 B MarkSweepCompact
Tc
E I @ I1¥M Threads
u-| Metwork m
u'| Operating Systemn m
(@ 1¥M Threads 4 STACK TRACE < DETAILS 4 REMOTE CONTROL € HELP
B Total threads (Humber) 41 v)| W Runnzble threzds (Number) 1z & B
B Blocked threads (Number) o] Q & ® B ‘Waiting threads (Murnber)] Q; & ®
B Tirmed waiting threads (Number) 21 Q & ® B Low cpu threads (Number) 40 & ®
B Mediurn cpu threads (Mumber) o] & ® B High cpu threads (Murnber) al Q; & ®
B Peak threads (Murnber) 44 & ® B Started threads (Mumber) 31 & ®
M Daemon threads (Murmber) 39 (7o) @ x B Deadlock threads (Mumber) o] G M @

Figure 3.14: The High cpu threads measure indicating that a single thread is consuming CPU excessively

To know which thread is consuming too much CPU, click on the diagnosis icon (i.e., the magnifying
glass icon) corresponding to the High cpu threads measure in Figure 3.14. Figure 3.15 then appears
revealing the name of the CPU-intensive thread (SapBusinessConnectorThread) and the
percentage of CPU used by the thread during the last measurement period. In addition, Figure 3.15
also reveals the number of times the thread was blocked, the total duration of the blocks, the number
of times the thread was in waiting, and the percentage of time waited, thereby revealing how
resource-intensive the thread has been during the last measurement period.

Graph v Graph Trend Graph Fix History Fix Feedback

Component egmanager-152-152:123 Measure d By egmanager-152-152

Test UM Thrasds

Jun 12, 2009 18:37:55
SapBusiness SonnectorThread zeos4 RUNMABLE 100,306 77,4346

Figure 3.15: The detailed diagnosis of the High cpu threads measure

Let us now get back to the CPU usage issue. Now that we know which thread is causing the CPU
usage spike, we next need to determine what is causing this thread to erode the CPU resources. To
facilitate this analysis, the detailed diagnosis page of Figure 3.15 also provides the Stack Trace for
the thread. You might have to scroll left to view the complete Stack Trace of the thread (see Figure
3.16).

96

Chapter 3: Monitoring a Java Application

Graph v Graph Trend Graph Fix History Fix Feedback
Component aegmanagar-iSz-152:123 Measure a By Srnerener i o
Test IV Threads
ement |High cpu threads =2
B 1 hour »|From B [Con i =ooo] be rin Te B [Cun iz =00 | ke rin e = = |

Thread zsosa FUNNABLE 100.906 7F7.4346 o o o 14723 22147 17.09

Jsua:ilied:

Figure 3.16: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure

The stack trace is useful in determining exactly which line of code the thread was executing when we
took the last diagnosis snapshot and what was the code execution path that the thread had taken.

To view the stack trace of the CPU-intensive thread more clearly and to analyze it closely, click on
the Elicon in Figure 3.16 or the Stack Trace label adjacent to the icon. Figure 3.17 then appears.

e —

Measurement Time : I Jum 12, 2009 189:41:5¢ V; Measurement:; High cpu threads N Sort By:i Percentage Cpu Time V;

e T | Thread Hame i SapBusinessConnectorThread
Thread State i RUMMABLE
Percentage Percentage 2 Percentage
C'E:EE:;E Cpu Time B::?:_::id BIDC(I;E::;'“E Blocked Waited Wagl‘a:::;me Waited Time
(%) time (%0) ()
289,224 77,426 1} 0.0 u] 42149 52,691 17.07
Stack Trace

corniibc sap.ogic LogicBuilder, createlogiclLogicBuilderjava: 216)
corniibc sap.SapBusinesslogic getlogic(SapBusinessLogicjava:515)
corniibc sap.SapBusinessConnedor. connedToSapBLServer(SapBusinessConnectorjava:i 257)

corniibc sap.SapBusinessConnedornrun(SapBusinessConnectorjavai116)

Figure 3.17: Stack trace of the CPU-intensive thread

As you can see, Figure 3.17 provides two panels. The left panel of Figure 3.17, by default, displays
all the high CPU-consuming threads sorted in the descending order of their CPU usage.
Accordingly, the High cpu threads measure is chosen by default from the Measurement list, and the
Percentage Cpu Time is the default selection in the Sort By list in Figure 3.17. These default
selections can however be changed by picking a different option from the Measurement and Sort By
lists.

97

Chapter 3: Monitoring a Java Application

The right panel on the other hand, typically displays the current state, overall resource usage, and
the Stack Trace for the thread chosen from the left panel. By default however, the right panel
provides the stack trace for the leading CPU consumer.

In the case of our example, since only a single thread is currently utilizing CPU excessively, the
name of that thread (i.e, SapBusinessConnectorThread) alone will appear in the left panel of Figure
3.17. The right panel too therefore, will display the details of the SapBusinessConnectorThread
only. Let us begin to analyze the Stack Trace of this thread carefully.

Stack trace information should always be viewed in a top-down manner. The method most likely to
be the cause of the problem is the one on top. In the example of Figure 3.17, this is
com.ibc.sap.logic.LogicBuilder.createLogic. The line of code that was executed last when the
snapshot was taken is within the createLogic method of the com.ibc.sap.logic.LogicBuilder class.
This is line number 216 of the LogicBuilder.java source file. The subsequent lines of the stack trace
indicate the sequence of method calls that resulted in com.ibc.sap.logic.LogicBuilder.createlLogic
being invoked. In this example, com.ibc.sap.logic.LogicBuilder.createLogic has been invoked from
the method com.ibc.sap.SapBusinessLogic.getLogic. This invocation has been done by line 515 of
SapBusinessLogic.java source file.

To verify if the stack trace is correct in identifying the exact line of the source code that is responsible
for the sudden increase in CPU consumption by the SapBusinessConnectorThread, let us review
the LogicBuilder.java file in an editor (see Figure 3.18).

@ File Edit Yew Search Document Project Tools ‘Window Help

1
m
x

Jed@ ka vl X B AW =S Hadd e
Directory | Clptest | = 1 ! 2 ! — 4-———+ 5 ! 6 ! i : 5 ! ! 0 =
5 public-woid- createlogic()
[E:] Gokul w 3 {
N B long- count-=-0L;
while(!finish)

3 eGurkha

3 agent {

(2 corfig ?IY

S z::‘:gmgmt if{count->-1500000)

(2 lngs :

= 2 count=-0;
l;-] snmpirapd Thread.sleep(l):
[threzhold)
counte ++;
i
catch (Exception- ex)
{
ex.print3tackTrace()
¥
i
}

Figure 3.18: The LogicBuilder.java file

Figure 3.18 indicates line 216 of the LogicBuilder.java file. At this line, a while loop seems to have
been initiated. This code is supposed to loop 1,500,000 times and then sleep waiting for count to
decrease. Instead, a problem in the code — the value of count being reset to 0 at line 222 - is causing

98

Chapter 3: Monitoring a Java Application

the while loop to execute forever, thereby resulting in one of the threads in the JVM taking a lot of
CPU. Deleting the code at line 222 would solve this problem. Once this is done, then the
SapConnectorThread will no longer consume too much CPU; this in turn will decrement the value of
the High Cpu threads measure by 1 (see Figure 3.19).

M Layers Select a Component!Jaua Application: sapbusiness-152:123 Vl & 4Back |

f I¥M Internals search[1@ W Al

u‘l JWM Engine m
Java Classes
& I¥M Internals I @@+ WM Garbage Collections IJ
u‘l Application Processes m B Copy
a'| B MarkSweepCompact
Tc

' P I @ I¥M Threads
u'| Metwork m
u-| Operating System m

..ﬂ J¥M Threads 4 STACK TRACE 4 DETAILS 4 REMOTE CONTROL € HELP
B Total threads (Murmber) 41 & @; B Runnzable threads (Number) 11 Q; & @
M Blocked threads (Nurnber) o Qs & @; B Waiting threads (Murmber) 9 Qb & @
B Tirmed waiting threads (Mumber) 21 Qs & @; M Low cpu threads (Mumber) 41 & @
B Mediurn cpu threads (Number) o] & @; B High cpu threads (Mumber) a Qb & @
B Peak threads (Mumber) 44 & @; B Started threads (Murmber) 29 & @
B Daemon threads (Mumber) = & @i M Deadlock threads (Mumber) o] Q; & @

Figure 3.19: The High CPU threads measure reporting a 0 value

With that, we have seen how a simple sequence of steps bundled into the eG JVM Monitor, help an
administrator in identifying not only a CPU-intensive thread, but also the exact line of code executed
by that thread that could be triggering the spike in usage.

3.4.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM

This section once again takes the example of the sapbusiness application used by Section 3.4.1.
Here, we will see how the eG JVM Monitor instantly identifies blocked threads, and intelligently
diagnoses the reason for the blockage.

If a thread executing within the sapbusiness application gets blocked, the value of the Blocked
threads measure reported by the jvm Threads test mapped to the JVM Internals layer, gets
incremented by 1. When this happens, eG Enterprise automatically raises this as a problem
condition and changes the state of the Blocked threads measure (see Figure 3.20).

99

Chapter 3: Monitoring a Java Application

Select a ComponentiJaua Application:sapbusiness-152:123 VE] 4Back

I¥M Internals search[1O ¥ all
u‘l JVM Engine
J¥M Threads
J¥M Internals lava Classes
u—l application Processes B+ JwM Garbage Collections O
B Copy
% Tep
I B MarkSweepCompact
u‘l MNetwork
a-| Operating Systern

J¥M Threads 4 STACK TRACE < DETAILS 4 REMOTE CONTROL 4 HELP
B Total threads (Humber] 43 i)| B Runnzble threads (Humber) 11 & S
| 1 1
Blacked threads (Mumber) i Qs & ®l B v aiting threads (Murnber) 9 R & @
| 1 1
B Timed waiting threads (Murmber) il Qs & ®l M Low cpu threads (Murnber) 43 & @
| 1 1
B Mediurn cpu threads (Murnber) o & @l M High cpu threads (Mumber) u} R & @
| 1 1
B Peak threads (Mumber) 44 & ®l B Started threads (Murmber) 14 & @
| 1 1
B Daermon threads (Murnber) 41 [T ®l W Deadlock threads (Mumber) o S, | @
| 1 |

Figure 3.20: The value of the Blocked threads measure being incremented by 1

According to Figure 3.20, the eG JVM Monitor has detected that a thread running in the sapclient
application has been blocked. To know which thread this is and for how long it has been blocked,
click on the DIAGNOSIS icon corresponding to the Blocked threads measure. Figure 3.21 will then
appear revealing the name of the blocked thread, how long it was blocked, the CPU usage of the
thread, and the time for which the thread was in waiting.

Details of the threads

Time Thread Mame ThreadID Thread State Cpu | Percentage | Blocked | Blocked | Percentage | Waited | Waited | Percentage
Time Cpu Time Count Time Blocked Time Waited
(Secs) (o) (Secs) | Time (%) (Secs) | Time (%)
Jun 12, 2009 19:21:52 =]
DatabaseConnectorThread 31167 BELOCKED on o o 1 303.156 100 o o o com.ibec connection
javalang String@libebad [DbConnection.jas
owned by: com.ibe connection
ZbjectManagerThread [PoolManager.jav:

Figure 3.21: Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the
blocked thread

Figure 3.21 clearly indicates that the DatabaseConnectorThread running in the sapbusiness
application was blocked 100% of the time. The next step is to figure out who or what is blocking the
thread, and why. To achieve this, we need to analyze the stack trace information of the blocked

thread. To access the stack trace of the DatabaseConnectorThread, click on the = icon in Figure
3.21 or the Stack Trace label adjacent to the icon. Figure 3.22 then appears.

100

Chapter 3: Monitoring a Java Application

[— W

Measurement Time: '.Jun 12, 2009 19:21:52 V Measurement:é Blackead threads | Sort By: | Percentage Blocked tir % |
[DatabaseconnectorThread Thread Name {iDatabaseconnegtorTizad
Thread State i BLOCKED onjava.lang String@llbebad owned by: ObjectManagerThread

Percentage Percentage B Percentage
C'E'S";::;e Cpu Time B'I:t:;l:.etd BIDC(I;‘:::;me Blocked Waited Wag?:::;me Waited Time
(%0) time (%) (30)
n.a 0.0 al 303,156 100 a 0.0 u}

Stack Trace
corn.ibc connectionPooling. DbConnedion. getConnedion(DbConnection. java!126]
carn.ibe connectionPooling. PaolManager getConnecionPoal(PaclManagerjava:220)

cornibe connectionPooling. DatabazeConnecarThread.run(DatabaseConnackorThread.java:114)

Figure 3.22: The Stack Trace of the blocked thread

While the left panel of Figure 3.22 displays the DatabaseConnectorThread, the right panel provides
the following information about the DatabaseConnectorThread:

« The Thread State indicating the thread that is blocking the DatabaseConnectorThread, and the
object on which the block occurred; from the right panel of Figure 3.22, we can infer that the
DatabaseConnectorThread has been blocked on the java.lang.Strin@11bebad object owned by
the ObjectManagerThread.

o The CPU usage of the DatabaseConnectorThread, and the number of times and duration for
which this thread has been blocked and has been in waiting;

« The Stack Trace of the DatabaseConnectorThread.

Now that we have identified the blocked thread, let us proceed to determine the root-cause for this
block. For this purpose, the Stack Trace of the DatabaseConnectorThread needs to be analyzed. As
stated earlier, the stack trace needs to be analyzed in the top-down manner to identify the method
that could have caused the block. Accordingly, we can conclude that the first method in the Stack
Trace in Figure 3.22 is most likely to have introduced the block. This method, as can be seen from
Figure 21, executes the lines of code starting from line 126 contained within the Java program file
named DbConnection.java. In all probability, the problem should exist in this code block only.
Reviewing this code block can therefore shed more light on the reasons for the
DatabaseConnectorThread getting blocked. Hence, let us first open the DbConnection.java file in
an editor (see Figure 3.23).

101

Chapter 3: Monitoring a Java Application

Jezdalbae v

Directory | Cliptest

I E
£ elurkha
a agent

(23 config

(23 configmamt
7 data

2 logs

(23 samptrapd
(2 threshold

management.propert‘ias

!E’ File Edit Wiew Search Document Project Tools Window Help

o

X i EE AW =S HER DN

1 + 2 + 3

4 + 5 + & + iy

[E:] Giokul v|

public-void-getConnection()
{
synchronized- (sync)
i
long-1-=-0L;
while: {!finishl)
{
Lry
i
Thread.zsleep(3600);
'
catch- (Exception-ex)
i
ex.printitackTrace();

¥

Figure 3.23: The DbConnection.java program file

Line 126 of Figure 3.23 is within a synchronized block. The object used to synchronize the accesses
to this block is a variable named “sync”. Looking at the variable declarations at the top of the source
code, we can see that the “sync” variable refers to the static string “test” (see Figure 37).

Wotcomeitiongrs
! [| # 4| bl

package com . 1bc. connectiomPooling

iRpoEl Com o ibs objectPooling. ®
import java utszl Date

public class DECompectian
;
gublic static boolesn

finishl = falms:

public static String symc test”

o P2 g el T b

Figure 3.24: The lines of code preceding line 126 of the DbConnection.java program file

By comparing

information form stack trace and the source we can see that the

DatabaseConnectorThread is stuck entering the synchronized block. Access to the synchronized
block is exclusive — so some other thead is blocking this DatabaseConnectorThread from entering
the synchronized block. Looking at the stack trace again (see Figure 35), we can see the name of the
blocking thread. The blocking thread is the thread named “ObjectManagerThread”.

We can now use the stack trace tool again to see the stack trace of the blocking

ObjectManagerThread.

102

Chapter 3: Monitoring a Java Application

[

Measurement Time :IJun 16, 2010 04:47:58 ;I Measurement :IAII Threads ;I Sort By :IPercentage Cpu Time (%) ;I
Thread-=2 ;I Thread Name i ObjectManagerThread

http 7077 -Pracessard Thread State ¢ TIMED_WAITING

Thread-17

http 707 7-Manitor

http 707 7-Processord P ta P ta P ta
http7077-Processaré Cpu Time ercentad® plocked Blocked Time & ohoorode . Waited Time - SfToMlage
_ Cpu Time Blocked Waited Waited Time

Thread-15 (Secs) Count (Secs) - (Secs)
Thread-3799 o) e () o)
;:reaj';gol 0 o o o o 203 65.304 100

read-
http7077-Processarld

Stack T

DatabaszeConnecarThread ck Trace
Thread-3 java.lang. Thread. sleep(Mative Methad)
StandardManager[/final]

n7077-Pracassor? cormiibcobjedPooling, ObjecdtManager. run(ObjectManagerjavai 26)

hitt
[anagerThread
Thread-3795

RMI TCP Accept-0
Feference Handler
HostConfig[localhost]
Thread-3797

rmain

Thread-2 —
http7077-Processarl
StandardManager[]

Thread-10

Thread-11

Figure 3.25: Viewing the stack trace of the ObjectManagerThread

From here, we can see that the ObjectManagerThread went into a timed waiting state at line number
26 of the ObjectManager.java source code.

Bl ObjectManager.java

EREEEE N EREE R R

1 package com.ibc.objectPooling;

2

3 import com.ibc.connectionPooling.

4 import java.util . Date;

5

& public cla=s=s ObjectManager extends Thread
71

g public static boolean last = fal=e;

9 public =tatic String mysync = "test":
1n public ObjectManager()

11 i

12 thiz.zetHane("CObjectHanagerThread")
13 =tart():

14

15

1e

17 public woid run ()

18 i

149 synchronized (mysync)

20 i

21 long 1 = 0L;

22 while (!last)

23 {

24 try

25 {

2 Thread . =leep(3600)
27

28 catch (Exception ex)

29

an ex. printStackTrace()
31 1

32 ¥

33 1

34 ¥

35

K1

37

Figure 3.26: The lines of code in the ObjectManager.java source file

103

Chapter 3: Monitoring a Java Application

Again, using a text editor, we can see that the ObjectManager thread enters a 3600 second timed
wait at line 26. This sleep call is inside a synchronized block with the local variable “mysync” being
used as the object to synchronize on.

The key to troubleshooting this problem is to look at the variable declarations at the top of each
source code file.

On the surface, it is not clear why the ObjectManager thread, which synchronizes a block using a
variable called “mysync” which is local to this class would be blocked by the DbConnection thread,
which synchronizes on a variable called “sync” that is local to the DbConnection class.

An astute java programmer, however, would know to look at the variable declarations at the top of
each source code file. In that way, one will quickly observe that both the "mysync" variable of the
ObjectManager class and the "sync" variable of the DbConnection class in fact refer to the same
static string: “test”.

T DbConnectionjava
6 ol -|-| als]s] ASAIN] " ST o A e T

1 package com.ibc.objectPooling:

package com.ibo. connectionFooling:

import com.ibo. connectionPooling . #*:

inport jawa.util Date: import com.ibc.objectPooling. %

1
2
3
4 import java.util. Date;
5
6
7
3

public class ObjectManager extends Thread public class DbConnection

public =static boolean last = false:

9 public static String mysync = "test"; public static boolean finishl = false:
12 ?uhllc ObjsctManager() 10 public static String svnc = "test":
1z this. setNamne("ObjectHanagerThread") : 11

13 starti):; 12
+

Figure 3.27: Comparing the ObjectManager and DbConnection classes

So, even though the programmer has given two different variable names in the two classes, the two
classes refer to and are synchronizing on the same static string object “test”. This is why two
unrelated threads are interfering with each other’s execution.

Modifying the two classes — ObjectManager and DbConnection — so that the variables "mysync" and
"sync" point to two different strings by using the new object creator resolves the problem in this case.

We have demonstrated here a real-world example, where because of the careless use of variables,
one could end up in a scenario where one thread blocks another. The solution in this case to avoid
this problem is to define non-static variables that the two classes can use for synchronization. This
example has demonstrated how the eG Java Monitor can help diagnose and resolve a complex
multi-thread synchronization problem in a Java application.

104

Chapter 3: Monitoring a Java Application

3.4.3 ldentifying and Diagnosing a Thread Waiting Situation in the JVM

This section takes the help of the sapbusiness application yet again to demonstrate how the eG JVM
Monitor quickly isolates waiting threads and identifies the root-cause for the thread waits.

Whenever a thread goes into waiting, the value of the Waiting threads measure reported by the jvm
Threads test mapped to the jvm Internals layer gets incremented by 1 (see Figure 3.28).

Select a Component | Java Application:sapbusiness-152:123 v &b 4Back

” .
{ JVM Internals Search[| @ ¥ Al
#1 JVM Engine
M Java Classes

u'l JVM Internals @+ 1vM Garbage Collections O

#1 Application Processes B Copy

u'| B MarkSweepCompact

Tc
g @ IVM Threads
#1 Network
u-| Operating System
Measurements Last Measurement Time : Jun 17, 2009 11:45:58

@ 1VM Threads 4 STACK TRACE € DETAILS 4 REMOTE CONTROL 4 HELP
M Total threads (Number) 329 & @ B Runnable threads (Number) o Q & @
B Blocked threads (Number) o Q & @ B Waiting threads (Number) o Q & @
B Timed vaiting threads (Number) 21 Q & @ B Low cpu threads (Number) 39 & @
B Medium cpu threads (Number) o [)| W High cpu threads (Number) 0 &
B Peak threads (Number) 45 & @ B Started threads (Number) a8 & @
B Daemon threads (Number) 37 & @ B Deadlock threads (Number) o Q & @

Figure 3.28: The Waiting threads

To know which threads are in waiting, click on the DIAGNOSIS icon corresponding to the Waiting
threads measure in Figure 3.28. Figure 3.29 then appears listing all the threads that are currently in
waiting.

105

Chapter 3: Monitoring a Java Application

Details of the threads

Time| Thread Name |ThreadID Thread State Cpu | Percentage | Blocked | Blocked | Percentage | Waited | W™
Time | Cpu Time Count Time Blocked 1
(Secs) (2a) (Secs) | Time (%) d
Jun 17, 2009 11:45:58
http7077- 36 WAITING on 2.125 | 0.0888 17 0.001 u} 198 66
Processor? org.apache.tomcat.util.threads. ThreadPool$ControlRunnable@i66faac
http7077- 18 WAITING on 1.671 | 0.03B 21 0.004 o 124 a7
Processorl org.apache.tomcat.util.threads. ThreadPool$ControlRunnable@Sacsf
http7077- 37 WAITING on 1.437 | 0.0253 i3 o o 75 14
Processorg org.apache.tomcat.util.threads. ThreadPool$ControlRunnable@fbfb30
SessionController 78 WAITING on com.ibc.session.UserSession@3026e o] 0 o o o 2 i8
http7077- 35 WAITING on o o o [} u} i o
Processorg org.apache.tomcat.util.threads. ThreadPool$ControlRunnable@4683c2

Figure 3.29: The detailed diagnosis of the Waiting threads measure

Of the threads listed in Figure 3.29, those that begin with http* are Tomcat’s java threads. For these
threads to be in a waiting state is normal, and hence, these threads can be ignored. Only the
SessionController thread indicated by Figure 3.29 is an application-specific thread. To know why
this thread has been in waiting, you need to study the stack trace of the thread; for this, first scroll to
the left of Figure 3.29. You will then be able to view the stack trace of the thread.

Details of the threads

Cpu | Percentage | Blocked | Blocked | Perc ited ited | Percentage Stacktrace i
Time | Cpu Time Count Time Blocked Time Waited
(Secs) (%) (Secs) | Time (%) (Secs) Time (%)
Stack Trace Q
2.125 0.0888 17 0.001 0 198 66.561 52.85 java.lang.Object.wait(Native Method); java.lang.Object.wait
‘olRunnable@issfaac (Object.java:485);

org.apache.tomcat.util.threads. ThreadPool$ControlRunnable.run |-
(ThreadPool.java:656); java.lang.Thread.run{Thread.java:619);

1.671 0.028 21 0.004 0 124 87.782 44.72 java.lang.Object.wait{Native Mathod); java.lang.Object.wait
‘olRunnable@Sacsf (Object.java:485);
org.apache.tomcat.util.threads. ThreadPocl$ControlRunnable.run
(ThreadPool.java1656); java.lang.Thread.run(Thread.javai619);

1.437 0.0253 i3 0 o] 75 1432.045 S0.24 java.lang.Object.wait{Native Method); java.lang.Object.wait
'olRunnable@fbfbzo (Object.java:485);
org.apache.tomcat.util.threads. ThreadPool$ControlRunnable.run
(ThreadPool.java:656); java.lang.Thread.run{Thread.java:619);

o] o 0 o] o] 2 182.282 100 java.lang.Object.vait{Native Methaod); java.lang.Object.wait
(Cbject.java:485); com.ibc.session.UserSession.createSession
(UserSession.java:215);
com.ibc.session.UserSession.isLiveSession
(UserSession.java:126);
com.ibc.session.SessionTracker.getliveSessions
(SessionTracker.java:153);
com.ibc.session.SessionController.run
(SessionControllerjava:142):

o o] o o o i 1] 0 java.lang.Object.wait{Native Method); java.lang.Object.wait
‘olRunnable@4683c2 (Object.java:485);
org.apache.tomcat.util.threads. ThreadPool$ControlRunnable.run
(ThreadPool.java:656); java.lang.Thread.run{Thread.java:619);

Figure 3.30: Viewing the stack trace of the waiting thread

If you want to view the stack trace more clearly, click on the = icon in Figure 3.30 or the Stack Trace

label adjacent to the icon. Figure 3.31 then appears.

106

Chapter 3: Monitoring a Java Application

http7077-Processor2
SessionCaontrollar
Reference Handler

Heasuren\ent'l’lnle:|]un 17, 2009 11:45:58 W

Thread Name

Thread State

Measurement: | Waiting threads V| Sort By:| Percentage Waited Tin V| 1

: Finalizer

i WAITING on java.lang.ref.ReferenceQueueilock@4cdacs

java.lang.Object.vait{Mative Method)
java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java: 116)
java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java: 122)

java.lang.ref.Finalizer{FinalizerThread.run(Finalizer.java:153)

http7077-Processors
http7077-Processar? Cpu Time P:n:.e;l:::e Blocked Blocked Time Peﬂm'li Waited Waited Time :retmlnl '[inle!
http7077-Processorl (Secs) P e Count (Secs) e o (Secs) o
http7077-Processors (ve) L= ()
http7077-Pracessors 0.078 0.0 23 0.0 0 21 231.735 100

Stack Trace

Figure 3.31: The Thread Diagnosis window for Waiting threads

The left panel of Figure 3.31 lists all the waiting threads, with the thread that registered the highest
waiting time being selected by default. Since we are interested in the user-defined SessionController
thread, select it from the left panel. The right panel will then change as depicted by Figure 3.32

below.

Finalizer
http7 07 7-Processor

Referance Handler

http7 07 7-Processors
http7 077-Processor?
http7077-Processorl
http7077-Processars
http7 07 7-Processors

t Time:| Jun 17, 2009 11:45:5¢ ¥ |

Thread Name

Measurement: Waiting threads W Sort By: | Percentage Waited Tin %

1 SessionController

java.lang.Object.wait{Native Method)
java.lang.Object.vait{CObject.java:485)
com.ibc.session.UserSession.createSession{UserSession.java:215)
com.ibc.session.UserSession.isLiveSession{UserSession.java: 136)
com.ibc.session.SessionTracker.getLiveSessions{SessionTracker.java: 153)

com.ibc.session.SessionController.run{SessionController.java: 142)

Thread State i WAITING on com.ibc.session.UserSession@3035e
Cpu Time LEEETE Blocked Blocked Time EERCEE e ~ Waited Time Petuentag:e
(s) Cpu Time Count (s) Blocked Waited (s 3 ‘Waited Time
(o&) time (%) (%)
0.0 0.0 a 0.0 a 2 182.283 100
Stack Trace

Figure 3.32: The stack trace for the SessionController thread

A close look at the stack trace reveals that the thread could have gone into the waiting mode while
executing the code block starting at line 215 of the UserSession.java program file. To zero-in on the

107

Chapter 3: Monitoring a Java Application

precise code that could have caused the thread to wait, open the UserSession.java file in an editor,
and locate line 215 in it.

public-synchronized- void- createSession()
{
try
{
Fi8yaten. out.println("Started- to-wait-. .. @ "+new- java.util.Date()):
wait();

catch: (InterruptedException:e)
{
Syaten. out.println("Exiting- MainThread...™):
i
}

public-synchronized: void-notifyThreadi)
{
Lry
i
notifyi);

catch: (Exception-e)
i
e.printitackTrace () ;
}
i
¥

Figure 3.33: The UserSession.java file

The code block starting at line 215 of Figure 3.33 explicitly puts the thread in the wait state until such
time that the notify() method is called to change the wait state to a runnable state. This piece of code
will have to be optimized to reduce or even completely eliminate the waiting period of the
SessionController thread.

With that, we have demonstrated the eG JVM Monitor’s ability to detect waiting threads and lead you to the precise

line of code that could have put the threads in a wait state.

3.4.4 |dentifying and Diagnosing a Thread Deadlock Situation in the JVM

In this section, the sapclient application is used one more time to explain how the eG JVM Monitor
can be used to report on deadlock situations in your JVM, and to diagnose the root-cause of the
deadlock.

Until a deadlock situation arises, the Deadlock threads measure reported by the JVM Threads test
will report only 0 as its value (see Figure 3.34).

108

Chapter 3: Monitoring a Java Application

System _Network Application Layers

Select a Component | Jzwvz Application:sapbusiness-152:123

! & 4Back

WM Engine

JVM Internals

Application Processes

Tcp

Network

COperating System

JVM Internals

Java Classes
@+ 1M Garbage Collections
B Copy
B MarkSweepCompact
@ VM Threads

Search l:l o v &l

[Measurements

Last Measurement Time : Aug 28, 2009 20:02:52

-— JVM Threads
B Total threads (Number) 47 & @
B Elocked threads (Number) o] Q & @
B Timed waiting threads (Number)) Q & @
B Medium cpu threads (Number) o] & @
B Fezk threads (Number) 47 m @
B Dzemon threads (Number) 45 & @

4 STACKTRACE ¢ DETAILS € REMOTE CONTROL € HELP
B Runnzable threads (Number) 17 Q & @
B Waiting threads (Mumber) i1 Q & @
B Low cpu threads (Number) 47 & @
B High cpu threads (Number) 0 Q & @
B Started threads (Number) g m @
B Deadlock threads (Number) o Q & @

Figure 3.34: The JVM Threads test reporting 0 Deadlock threads

When, say 2 threads are deadlocked for a particular resource/object, then the Deadlock threads
measure will report the value 2, as depicted by Figure 3.35. Since a deadlock situation arises when
two/more threads try to block each other from accessing a memory object or a resource, the value of

the Blocked threads measure too will increase in the event of a deadlock; in the case of our example
therefore, you will find that the Blocked threads measure too reports the value 2.

Layers \

System Network Application

Select a Component I Jzvz Application:sapbusiness-152:123 & &

4Back

Tests

JWM Engine

JVM Internals

Application Processzes

Tcp

Network

Operating System

m JVM Internals

E3 VM Threads

Java Classes

8+~ 1M Garbage Collections
B Copy
B MarkSweepCompact

Search l:l o v &l

Measurements

Last Measurement Time : Aug 28, 2009 20:06:00

E3 IVM Threads

B Total threads (Mumber) 50 & @
! Blocked threads (Number) 2 Q & @

B Timed waiting threads (Number) 20 Q & @

B Medium cpu threads (Number) 0 & @

B Pezk threads (Number) 51 & @

B Dzemon threads (Mumber) 45 & @

4 STACK TRACE ¢ DETAILS € REMOTE CONTROL € HELP
B Runnable threads (Number) i8 R & @
B Waiting threads (Number) 10 R & @
B Low cpu threads (Number) 50 & @
B High cpu threads (Number) 0 R & @
B Started threads (Number) 35 & @
B Deadlock threads (Number) 2 R & @

Figure 3.35: The Deadlock threads measure value increasing in the event of a deadlock situation

109

Chapter 3: Monitoring a Java Application

To know which threads are in a deadlock, click on the DIAGNOSIS icon corresponding to the Deadlock
threads measure. Figure 3.36 then appears.

Details of the threads
Time Thread Name ThreadID Thread State Cpu |Percentage | Blocked | Blocked | Percentage | Waited | Waited | Percentage
Time Cpu Time Count Time Blocked Time Waited
{Secs) (o) (Secs) | Time (%) (Secs) | Time (94)
Aug 28, 2009 20:07:54 Stack Trace |—
ResourceDataTwo | 345 ELOCKED on o o 1 55.443 | 100 1 o o com.ibc.resources
java.lang.String@ff6S4c {ResourceMonitor.
ovmed by com.ibc.resources
Resourcebatalne {ResourceMonitor.jay

com.ibc.resources.Resol
(ResourceDataTwo.java:

ResourceDataOne | 344 BELOCKED on o o 2 55.443 | 100 1 o o com.ibc.resources
java.lang.String@15a5ecs (Res eMonitor
owned by: com e
ResourcebataTwo {ResourceMonitor.
com.ibc.resources
(ResourceDataOne.java

Figure 3.36: The detailed diagnosis page revealing the deadlocked threads

Figure 3.36 clearly reveals that 2 threads, namely — the ResourceDataTwo and the
ResourceDataOne thread- are in a deadlock currently. To figure out why these two threads are
deadlocked, you would have to carefully review the stack trace of both these threads. For this
purpose, scroll to the left of Figure 3.36 to view the stack trace clearly.

Details of the threads
ID Thread State Cpu | Percentage| Blocked | Blocked | Percentage | Waited | Waited | Percentage Stacktrace
Time | CpuTime Count Time Blocked Time Waited
(Secs) (@) (Secs) | Time (%) (Secs) | Time (%)
Stack Trace l;l
BLOCKED on o o 1 55.443 | 100 1 o o com.ibc.resources.ResourceMonitor.lockFirstResource
java.lang.String@ff654c {Re: eMonitor.j 121);
owned by: com. resource ourceMonitor.lockSecondResource

ResourceDatalne {ResourceMonito 1G4
com.ibc.resources.ResourceDataTwo.run
{ResourceDataTwo.java:58);

ELOCKED on o o z 55.443 | 100 1 o o com.ibc.resources.ResourceMonitor.lockSecondResource
java.lang.String@15a5ecs {ResourceMonitor.java:68);
owned by: com.i sources.ResourceMonitor.lockFirstResource

ResourceDataTwo {ResourceMonitor.java:40];
i s.RescurceDataCne.run

(ResourceDataCne.java:73):

Figure 3.37: Viewing the stack trace of the dadlocked threads in the detailed diagnosis page

To keenly focus on the stack trace, without being distracted by the other columns in Figure 3.36 and
Figure 3.37, click on the = icon in Figure 3.37 or the Stack Trace label adjacent to the icon. Figure 3.38

then appears.

110

Chapter 3: Monitoring a Java Application

[

Measurement Time : Aug 28, 2003 20:07:54 [Measurement : Deadlock threads [+] Sort By : Percentage Cpu Time (%) &
R iroat e Thread Name t ResourceDataOne
ResourceDataTwo Thread State : BLOCKED on java.lang.String@15a3ecS owned by: RescurceDataTwo
Cpu Time Bereenl o Blocked Blocked Time] e = Waited Time Per_centage
{Sacs) Cpu Time AR (Secs) Blocked Waited {Secs) Waited Time
(o) time (%a) (i)
u] 0 2 55.443 100 & o u]

Stack Trace
com.ibc.resources.ResourceMonitar.lockSecondResource(ResourceMonitor.java: 68)
com.ibc.resources.RasourceMonitor.lockFirstR esource(ResourceMeonitor.java40)

com.ibc.resources.ResourceDataOne.run{ResourceDatalne java: 75)

Figure 3.38: The stack trace for the ResourceDataOne thread

The left panel of Figure 3.38 lists the 2 deadlocked threads, with the thread that is the leading CPU
consumer being selected by default — in the case of our example, this is the ResourceDataOne
thread. For this default selection, the contents of the right panel will be as depicted by Figure 3.38
above. From the Thread State, it is evident that the ResourceDataOne thread has been blocked on
an object that is owned by the ResourceDataTwo thread.

If you closely scrutinize the stack trace of ResourceDataOne, you will uncover that once the thread
started running, it executed line 40 of the ResourceMonitor.java program file, which in turn invoked
line 68 of the same file; the deadlock appears to have occurred at line 68 only.

Let us now shift our focus to the ResourceDataTwo thread. To view the stack trace of this thread,
click on the thread name in the left panel of Figure 3.38. As you can see, the Thread State clearly
indicates that the ResouceDataTwo thread has been blocked by the ResourceDataOne thread.
With that, we can conclude that both threads are blocking each other, thus making for an ideal
deadlock situation.

Analysis of the stack trace of the ResourceDataTwo thread (see Figure 3.39) reveals that once
started, the thread executed line 94 of the ResourceMonitor.java file, which in turn invoked line 21 of
the same file; since no lines of code have been executed subsequently, we can conclude that the
deadlock occurred at line 21 only.

Chapter 3: Monitoring a Java Application

X
Measurement Time | Aug 23, 2003 20:07:54 [Measurement ;| Deadlock threads [+ Sort By : Percentage Cpu Time (%) =]
RecolircaDatatne Thread Name : ResourceDataTwo
EesourceDataTwo Thread State : BLOCKED on java.lang.String@ff654c owned by: RescurceDatalne
Percentage Percentage = Percentage
C?;E'I::;e Cpu Time Bé‘:i':::d Bio;ls'::::}'lme Blocked Waited Wa(ltseedc:';me Waited Time
{94a) time (2@) (%)
i} 0 1 55.443 100 1 u} u}
Stack Trace

com.ibc.resources.ResourceManitor.|lackFirstR esource(ResourceMonitor.java: 21)
com.ibc.rasources.ResourceManitor.laockSecondResource(ResaurceManitor.java:94)

com.ibc.resources.ResourceDataTwo.run(ResourceDataTwo.java: 58]

Figure 3.39: The stack trace for the ResourceDataTwo thread

From the above discussion, we can infer both the threads deadlocked while attempting to execute
code contained within the ResourceMonitor.java file. We now need to examine the code in this file to
figure out why the deadlock occurred. Let us therefore open the ResourceMonitor.java file.

e e T e et e

public-void- lockSecondResource ()

{
synchronized- (resourcez)
{
try
i
Thread,sleep(500) ;
}

catch- (InterruptedException: &)

{

e.printitackTrace(] ;

'

lockFirstResource () ;

Figure 3.40: The lines of code executed by the ResourceDataOne thread

If you can recall, the stack trace of the ResourceDataOne thread indicated a problem while
executing the code around line number 68 (see Figure 3.38) of the ResourceMonitor.java file. Figure
3.40 depicts this piece of code. According to this code, the ResourceDataOne thread calls a
lockSecondResource() method, which in turn invokes a synchronized block that puts the thread to

112

Chapter 3: Monitoring a Java Application

sleep for 500 milliseconds; a synchronized method, when called by a thread, cannot be invoked by
any other thread until its original caller releases the method.

Going back to Figure 3.40, at the end of the sleep duration of 500 milliseconds, the synchronized block will
invoke another method named JockFirstResource () . However, note that this method and the
lockSecondResource() method are also called by the ResourceDataTwo thread. To verify this, let us proceed to
review the lines of code executed by the ResourceDataTwo thread (see Figure 3.41).

public-woid- lockFirstResource ()

i

synchronized: (resourcel)
{
Lry
{
Thread. sleep(500) ;
}
catch- (InterruptedException-e)

{

e.printitackTrace();
'

lock%econdBResourcel) ;

Figure 3.41: The lines of code executed by the ResourceDataTwo thread

As per the stack trace corresponding to the ResourceDataTwo thread (see Figure 3.39), the
deadlock creeps in at line 21 of the ResourceMonitor.java file. Figure 3.41 depicts the code around
line 21 of the ResourceMonitor.java file. This code reveals that the ResourceDataTwo thread
executes a lockFirstResource()method, which in turn invokes a synchronized block; within this block,
the thread is put to sleep for 500 milliseconds. Once the sleep ends, the block will invoke the
lockSecondResource () method; both this method and the lockFirstResource () method are also
executed by the ResourceDataOne thread.

From the discussion above, the following are evident:

« The ResourceDataOne thread will not be able to execute the lockSecondResource() method,
since the ResourceDataTwo thread calls this method within a synchronized block — this implies
that the ResourceDataTwo thread will ‘block’ the ResourceDataOne thread from executing the
lockSecondResource() method until such time that ResourceDataTwo executes the method.

« The ResourceDataTwo thread on the other hand, will not be able to execute the
lockFirstResource () method, since the ResourceDataOne thread calls this method within a
synchronized block — this implies that the ResourceDataOne thread will ‘block’ the
ResourceDataTwo thread from executing the lockFirstResource() method until such time that
ResourceDataOne executes the method.

Since both threads keep blocking each other, a deadlock situation occurs.

113

Chapter 3: Monitoring a Java Application

With that, we have demonstrated the eG JVM Monitor’s ability to detect deadlock threads and lead
you to the precise line of code that could have caused the deadlock.

3.4.5 ldentifying and Diagnosing Memory Issues in the JVM

This section takes the example of the sapclient application again to demonstrate the effectiveness of
the eG JVM Monitor in proactively detecting and alerting administrators to memory contentions
experienced by Java applications.

If the usage of a memory pool increases, the eG JVM Monitor indicates the same using the Used
memory measure for that pool reported by the JVM Memory Usage test mapped to the JVM
Engine layer.

" em _MNetwork Applicati i Select 2 Component | Java Application:sapapplication-152:123 LTJ & 4Back
[————
IVM Engine Search[@ Mol
u'| JVM Engine
B J1vM Cpu Usage
u'l JVM Internals @@+ JVM Memory Usage O
u'| Application Processes ® Heap Memory Usage =|
u'| B Memory Pool_Code Cache (Mon-heap memory)
T
2 B Memory Pool_Eden Space (Heap memory)
u'| Metwork B Memory Pool_Perm Gen (Non-heap memory)
. o VLT o)
u_l Operating System B Memory Pool_Survivor Space (Heap memory) L4
B Memory Fool_Tenured Gen (Heap memory)
; B MNon-Heap Memory Usage iﬂ

ast Measurement Time : Aug 27, 20095 7:00:08
@ IVM Memory Usage -Heap Memory Usage 4 HEAP DETAILS < DETAILS 4 REMOTE CONTROL € HELP
B Initial memary (ME] 338 b @l B Us=d memery (ME) 42,3222 & W &
B tvailzble memary (ME] 334.25 b)| B Free memory (ME) 291.9278 b &
B Max free memory (MB) 334.25) @I B Used percentage (Percent]) 12.6618 & A ®

Figure 3.42: The Used memory measure indicating the amount of pool memory being utilized

To know which class is consuming memory excessively, click on the DIAGNOSIS icon
corresponding to the Used memory measure in Figure 3.42. Figure 3.43 then appears listing all the
classes that are using the pool memory, the amount and percentage of memory used by each class,
the number of instances of each class that is currently operational, and also the percentage of
currently running instances of each class. Since this list is by default sorted in the descending order
of the percentage memory usage, the first class in the list will obviously be the leading memory
consumer. In the case of our example, the memory contention in the sapbusiness application has
been caused by the 22% heap memory usage of the com.ibc.object.SapBusinessObject class.

114

Chapter 3: Monitoring a Java Application

Details of JVM Heap Usage

Time Class Name Instance Count Instance Percentage Memory used{MB) Percentage memory Q
siced =
Aug 27, 2009 17:00:08 Heap Detailslgl
com.ibc.object.SapBusinessObject | 129729 14,1368 13.5668 21.3516
[Lzva.lzng.Object; 35391 3.8566 5.8693 15.5324
<constMethodklas= 42178 4.3962 5.9795 9.4105
e 7as4 0.8591 5.9332 9.3378
java.ang.String 209735 22.8552 4.8003 7.555
=<methodKlas=> 42178 4.3962 3.2229 5.0722
[1 5541 1.0397 2.5486 4.6406
“symbolklas= 702435 7.6547 2.8653 4.5158
[c 180000 19.5149 2.7466 4.3226
<constantPoolklas> 3167 0.3451 2.0846 3.2808
<instanceklassklas= 3167 0.3451 1.3359 2.1025
<constantPoclCacheklas> 27435 0.2991 1.2858 2.0235
java.util.HashtzblesEntry 27440 2.9302 0.6281 0.9884
java.util.Vector 26135 2.848 0.5982 0.5414
<methodDataklas> 11632 0.1267 0.5373 0.84586
[Ljava.util.HashtablesEntry: 5713 0.6226 0.4638 0.7378
[s 4352 0.456 0.352 0.5539
[Ljava.util.HashMapsEntry; 4453 0.4853 0.3435 0.5405 il

Figure 3.43: The detailed diagnosis of the Used memory measure

Sometimes, you might want to sort the classes by another column or quickly switch to another
measurement period to analyze the memory usage during that time frame. To achieve this, click on

the Heap Details link or the = button next to it. Figure 53 then appears, allowing you the flexibility

to view memory-consuming classes based on a Sort by option and a Measurement Time of your
choice.

|

Measurement Time : Aug 27, 2005 17:00:08 @ Sort By :Per;entage memery used La
o Nane Instance Instance Memory Percentage memory Q
Count Percentage used used

com.ibc.object.SapBusinessObject 129725 14.1368 13.5668 21.3516
[Ljava.lang.Object; 25391 3.8568 3.8633 15.5224
<constMethodKlas:> 42178 4.5962 5.8795 9.4105
[e 7eo4 0.8591 5.9332 9.2378
java.lang.String 209735 22.8552 4.80035 7.555
<methodklas> 42178 4.58962 3.22Z25 5.0722
[1 S341 1.0397 2.8486 4.6406
<symbaolKlas= 70245 7.6547 2.8653 4.5158 |
Ic 180000 19.56149 2.7466 4.3226
<constantPoolklas> 3167 0.3451 2.0848 3.2808
<instanceklassklzs> 3167 0.3451 1.3359 2.1025
<constantPoclCacheklass 274535 0.29591 i.2858 2.0235
java.util.Hashtable $Entry 27440 2.5902 0.6281 0.5g84
java.util.Vector 26135 2.848 0.55982 0.5414
<methodDataklas > 1163 0.1267 0.3373 0.8456 e
[Ljava.util.HashtablesEntry; 5713 0.6225 0.4688 0.7378
[s 4552 0.4965 0.352 0.55239 Il:l
Tlizars ntil HashhansFrfra: 44572 N aesa N 2435 0 5405 —f

Figure 3.44: Choosing a different Sory By option and Measurement Time

Chapter 3: Monitoring a Java Application

Careful examination of the method that calls the SapBusinessObject (see Figure 3.45) reveals that
an endless while loop is causing an array list named a to be populated with 20,000 instances of the
SapBusinessObject, every 10 seconds! The continuous addition of objects is quiet obviously
depleting the memory available to the JVM.

public-woid- getClonedObiject()
{
while- [!'£inishz)
{
Arraylist-a-=-new-Arraylist():
for(int-i=0;i<20000;1i++)
{
SapBusinesslibject shb =-new- JapBusinessibject (" jawva™ i) ;
a.add(sbo)

LEY
{

Thread.currentThread().sleep(l0000]) ;
'

catch- (Exception-ex)

{

ex.printitackTrace()

H

Figure 3.45: The method that is invoking the SapBusinessObject

This is how the eG JVM Monitor greatly simplifies the process of identifying the source of memory
bottlenecks in a Java application.

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even the most challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learn more visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fithess for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	Chapter 2: Pre-requisites for Monitoring Java Applications
	2.1 Enabling JMX Support for JRE
	2.1.1 Securing the ‘jmxremote.password’ file
	2.1.2 Configuring the eG Agent to Support JMX Authentication

	2.2 Enabling SNMP Support for JRE
	2.3 Managing the Java Application

	Chapter 3: Monitoring a Java Application
	3.1 The Java Transactions Layer
	3.1.1 Java Business Transactions Test

	3.2 The JVM Internals Layer
	3.2.1 JMX Connection to JVM
	3.2.2 JVM File Descriptors Test
	3.2.3 Java Classes Test
	3.2.4 JVM Garbage Collections Test
	3.2.5 JVM Memory Pool Garbage Collections Test
	3.2.6 JVM Threads Test

	3.3 The JVM Engine Layer
	3.3.1 JVM CPU Usage Test
	3.3.2 JVM Memory Usage Test
	3.3.3 JVM Uptime Test
	3.3.4 JVM Leak Suspects Test

	3.4 What the eG Enterprise Java Monitor Reveals?
	3.4.1 Identifying and Diagnosing a CPU Issue in the JVM
	3.4.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM
	3.4.3 Identifying and Diagnosing a Thread Waiting Situation in the JVM
	3.4.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM
	3.4.5 Identifying and Diagnosing Memory Issues in the JVM

	About eG Innovations

