2,

%

=
a &
. VJ{J
.)00
7
%
.;(’%}

%

Jul Aug Sep QOct

eG Java Business Transaction Monitoring

eG Innovations Product Documentation

e

Total Performance Visibility

www.eginnovations.com

Table of Contents

CHAPTER 1: INTRODU CTION i 1
1.1 The eG Java Business Transaction Monitor (BTM) 2
1.2 Pre-requisites for Java Business Transaction Monitoring Using eG Enterprise_. 2
1.3 How does the eG Java BTM Work? .. . 7
1.4 How does the eG Java BTM Communicate withtheeG Agent? 9
1.5 Performance Overhead of the eG Java Business Transaction Monitor 10

CHAPTER 2: INSTALLING AND CONFIGURING EG JAVABTM 11
2.1 InstallingeG JavaBTMona Generic JVMNoOde o i 11

2.1.1 BTM-Enabling a Generic JVM Node Running on a Windows Platform __..........._. 11
2.1.2 BTM-Enabling a Generic JVM Node Running on a Unix Platform ._..__.. 14
2.2 Installing eG Java BTM on an Apache Tomcat Server 18
2.2.1 BTM-Enabling a Tomcat Server Running on a Windows Platform 18
2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform 23
2.3 InstallingeG JavaBTMonan IBMWebSphere 27
2.3.1 BTM-Enabling a WebSphere Server Running on a Windows Platform ____ 27
2.3.2 BTM-Enabling a WebSphere Server Running on a Unix Platform 34
2.4 Installing eG Java BTM on an Oracle Weblogic Server 38
2.4.1 BTM-Enabling a WebLogic Server Running on a Windows Platform 38
2.4.2 BTM-Enabling a WebLogic Server Running on a Unix Platform 45
2.51InstallingeG JavaBTMon GlassFish 50
2.5.1 BTM-Enabling a GlassFish Server Running on a Windows Platform ___..__. 50
2.5.2 BTM-Enabling a GlassFish Server Running on a Unix Platform 58
2.6InstallingeG JavaBTMon JBoss EAP .. 62
2.6.1 BTM-Enabling a JBoss EAP Server Running on a Windows Platform _..... 62
2.6.2 BTM-Enabling a JBoss EAP Server Running on a Unix Platform 67
2.7 InstallingeG JavaBTMon JBoss WildFly i 71
2.7.1 BTM-Enabling a JBoss WildFly Server Running on a Windows Platform 71
2.7.2 BTM-Enabling a JBoss WildFly Server Running on a Unix Platform 76
2.8 Installing eG BTM on a Multi-Server SAP Web Application Server Instance_. 81

CHAPTER 3: MONITORING JAVA BUSINESS TRANSACTIONS 87
3.1JavaBusiness Transactions Test 87
3.2 JavaKey Business Transactions Test 104
3.3 Detailed DIiagnostiCs 118

3.3.1 Configuring User Name and Business Context i, 120

3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Trans-
ACHON il 124

3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown ... 133
3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction 136

3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction
SIOWEd DOWN .. e 138

Table of Figures

Figure 1.1: How @G BTM WoOTKS ? e e e e e e e e 8
Figure 1.2: Communication between the .NET Profilerand the eGAgent 10
Figure 2.1: Downloading the APM Profiler Agentforthe JVMnode 12
Figure 2.2: Contents of the APM Profiler Agent zip 13
Figure 2.3: Downloading the APM Profiler Agent for the Tomcat server 19
Figure 2.4: Contents of the APM Profiler Agent zip 20
Figure 2.5: BTM-enabling the Tomcat server on Windows i 22
Figure 2.6: Editing the catalina.batfile 23
Figure 2.7: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server _.____...__....._...... 26
Figure 2.8: Downloading the APM Profiler Agent for the WebSphere server 28
Figure 2.9: Contents of the APM Profiler AQent Zip i e 29
Figure 2.10: The WebSphere Administration console e 31
Figure 2.11: Clicking on the WebSphere server instance to be BTM-enabled 31
Figure 2.12: The Configuration tab page of the WebSphere server instance to be BTM-enabled_. .. 32
Figure 2.13: Selecting the Process definition option from Java and Process Managementtree 32
Figure 2.14: Configuring the Process definition 33
Figure 2.15: Configuring the JVM arguments for a WebSphere Server on Windows 33
Figure 2.16: Configuring the JVM arguments for a WebSphere Serveron Unix 37
Figure 2.17: Downloading the APM Profiler Agent for the WebLogicserver oiiiiiiiiiiiiaa... 39
Figure 2.18: Contents of the APM Profiler AQent Zip e 40
Figure 2.19: Clicking on the Servers liNK ... e e e e 42
Figure 2.20: Clicking on the server instance to be BTM-enabledl 42
Figure 2.21: Viewing the configuration of the chosen serverinstance oo, 43
Figure 2.22: Configuring the JVM arguments .. . e e . 43
Figure 2.23: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an agent-

based Manner i 45
Figure 2.24: Configuring the JVM arguments for a WebLogic serveron Unix 48
Figure 2.25: Downloading the APM Profiler Agent for the GlassFish server 51
Figure 2.26: Contents of the APM Profiler Agent Zip e 52
Figure 2.27: Clicking on the server-config N0de e 54
Figure 2.28: Clicking on the JVM Options tab pageoo it 54
Figure 2.29: Clicking on the ADD JVM Option button 55
Figure 2.30: Two empty rows inserted in the JVM Options tab page 55
Figure 2.31: Specifying the Java arguments for BTM-enabling the GlassFish server _. 56
Figure 2.32: Editing the start-up script of the GlassFish server instance to BTM-enable the instance 57
Figure 2.33: Adding com.eg to boot delegation framework _ 58
Figure 2.34: Downloading the APM Profiler Agent for the JBoss EAP server oL 63
Figure 2.35: Contents of the APM Profiler Agent zip ... e 64

Figure 2.36: Editing the start-up script to BTM-enable a JBoss EAP server running on Windows _.._.._............ 66

Figure 2.37: Editing the domain.conffile or standalone.conffile _____ 66
Figure 2.38: Editing the start-up script to BTM-enable a JBoss EAP server on Unix that is monitored in an agent-
based MaNNer e 70
Figure 2.39: Editing the domain.conffile or standalone.conffile 71
Figure 2.40: Downloading the APM Profiler Agent for the JBoss WildFly server 72
Figure 2.41: Contents of the APM Profiler Agent zip 73
Figure 2.42: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agent-based

0 T= = 75
Figure 2.43: Editing the domain.conffile or standalone.conffile 76
Figure 2.44: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix thatis monitored in an
agent-based MaNNer e 79
Figure 2.45: Editing the domain.conffile or standalone.conffile 80
Figure 2.46: Download the APM Profiler Agent to the SAP WAS instance 81
Figure 2.47: Navigating to the cluster folder in the <SAP_WAS_INSTANCE_INSTALL_DIR> 82
Figure 2.48: Configuring the BTM portfor a server proCess oot 82
Figure 2.49: The login page of the SAP Netweaver administratortool 83
Figure 2.50: Clicking the VM Additional Parameters link _ e 84
Figure 2.51: Clicking the Add button in the Additional VM Parameterstabpage 84
Figure 2.52: Adding a new VM parameter 85
Figure 2.53: Saving the Changes e 86
Figure 3.1: The test mapped to the Application Transactions layer _ 87
Figure 3.2: Detailed diagnosis of the Slow transactions percentage measure of the Java Business Transactions

LS5 118
Figure 3.3: The Layers tab page indicating that all requests for /Easykart/PaymentPage.jsp were slow_.... 125
Figure 3.4: Detailed Diagnosis of the Slow transactions percentage measure 125
Figure 3.5: Cross-application transaction flow il 126
Figure 3.6: Analyzing the SloW QUETY .. e e 128
Figure 3.7: Tier-wise response time breakup 129
Figure 3.8: Expressing the time spent at every point cut as a percentage of total transaction response time 130
Figure 3.9: A summary of the performance of the JVM node, Address-Validation-Service1:7878 __.._............ 131
Figure 3.10: How the total processing time of the transaction on Address-Validation-Service1:7001 is computed 132
Figure 3.11: Detailed diagnosis of the Avg response time measurec.oiiiiiiiiiiiiiiaaia.. 133
Figure 3.12: The cross-application flow of the ProductStatus.jsp transaction 133
Figure 3.13: An intermediate modular WindoW . 134
Figure 3.14: The call graph of the synchronous call e 135
Figure 3.15: The URL hitby an HT TP call e 136
Figure 3.16: The detailed diagnosis of the Error transactions measure 137

Figure 3.17: The error transaction path revealing where the errorhas occurred 137

Figure 3.18: Error details ... 138

Figure 3.19: The Layers tab page revealing that 100% of the transactions of the pattern /zapstore/returnProduct

A SIOW 139
Figure 3.20: Detailed diagnosis listing the slow transactions of the pattern /zapstore/returnProduct ..._.......... 139
Figure 3.21: Cross-application transaction flow depicting that the problem is with the Web Service call .._....... 140

Figure 3.22: List of remote service calls made by the Shipping-Engine1:7001 server 141

Chapter 1: Introduction

Chapter 1: Introduction

A business transaction represents a type of user request to a web application. For instance, the
following types of requests are considered business transactions for an online retail banking
application:

Logging in

Balance checking

o Funds transfer

Bill payments

Logging out

User experience with a web application not only relies on the successful completion of these user
requests/transactions, but also on their rapid execution. This is why, even if a single transaction
slows down, stalls, or fails, user dissatisfaction with the web application as a whole grows. This in
turn may cause user complaints to increase, support costs to sky rocket, and revenues to dip.

To avoid such disastrous results, web application administrators should monitor every business
transaction closely and promptly identify the slow/stalled/failed transactions. Most importantly,
administrators will have to determine where and why these transactions under-performed — i.e.,
identify the root-cause of poor transaction performance - so that the problem can be quickly resolved
before users begin doubting the stability of the web application.

Root-cause isolation is often the most challenging! This is because, most web applications these
days overlay multi- tier environments characterized by multiple application servers, database
servers, remote services, etc. Every business transaction to such web applications travels through
multiple nodes, using remote calls to external services, to fulfill its purpose. For example, an online
transaction to shop for goods may access a ShopCart web page on a web server. Every time an
item is added to a shopping cart, the web server may make an HTTP/S call to a web application
server to invoke the business logic. The business logic may then make a database call to run a query
for retrieving the total count of goods that that user has shopped for so far. A slowdown in even one
node or a delay in processing even a single remote service call can impact the performance of the
transaction. To accurately isolate where the actual bottleneck lies, administrators should employ an
APM solution that can trace the entire path of every business transaction, measure the total round-
trip time of each transaction, identify the synchronous and asynchronous calls made by the
transaction at various nodes, and compute the time spent by the transaction at each node, for each
call. This can be achieved using the eG Java Business Transaction Monitor (BTM).

Chapter 1: Introduction

1.1 The eG Java Business Transaction Monitor (BTM)

The eG Java BTM employs an advanced ‘tag-and-follow’ technique to trace the complete path of
each business transaction to a web application, end-to-end. When doing so, it auto-discovers the
application servers the transaction travels through, and also automatically ascertains what remote
service calls were made by the transaction when communicating with the servers. In the process,
the eG Java BTM measures the following:

« The total response time of each transaction;
« The time spent by the transaction on each application server;

« The time spent by the transaction for processing every external service call (including
SQL queries);

Using these analytics, the eG Java BTM precisely pinpoints the slow, stalled, and failed transactions
to the web application, enables administrators to accurately isolate where —i.e., on which application
server — the transaction was bottlenecked, and helps them figure out exactly what caused the
bottleneck — an inefficient or errored query to the database? A slow HTTP/S call to another
application server? a time-consuming POJO / JMX method execution? a slow SAP JCO/async call?
By quickly leading administrators to the source of transaction failures and delays, the eG Java BTM
facilitates rapid problem resolution, which in turn results in the low downtime of and high user
satisfaction with the web application.

1.2 Pre-requisites for Java Business Transaction Monitoring
Using eG Enterprise
The following are the pre-requisites for performing Java business transaction monitoring using eG:
» For the eG Java Business Transaction Monitor to function, your eG Enterprise infrastructure
should include:
o An eG Manager of version 6.2.0 (or above)
o eG Agents of version 6.2.0 (or above)

o An eG database on a Microsoft SQL Server 2008 (or above) (OR) An Oracle Database
Server 9i (or above)

« The eG Java Business Transaction Monitor (BTM) can be installed on Java containers
only - i.e., Java applications / J2EE-enabled web, application, and messaging servers. The
details are as follows:

Chapter 1:

Introduction

Supported JVMs

The eGJava BTM can be installed on JVM 1.6 (and above) only, regardless of the JVM
vendor. JVM 1.4 or below is not supported. Only partial support is available to JVM 1.5; this is
because, in JVM 1.5, cross-application transaction tracing cannot be performed since the
HttpURLConnection class cannot be byte-code instrumented to perform cross-JVM tag-and-
follow.

Vendor-specific JVM support is as detailed below:

Oracle Hotspot JVM 1.6 to 12
BEA JRockit 1.6

IBMJVM 1.6t01.8
OpendJDK 1.6t012
SAPJVM1.6t01.8
AzulZing1.6t0 1.8

Azul Zulu1.6t0 1.8

Supported Application Types

Java-based application types

Supported/Unsupported Application Servers

Application Server Supported Versions

Unsupported
Versions

WebSphere Application Server | 7.x, 8.x, 9.x

6.x and below

WebSphere Liberty Profile 8.x

WebLogic Server 9.x, 10.x, 12.x 8.x and below
JBoss 4.x,5.x

JBoss AS/EAP 6,7,7.x

WildFly 8.x,9.x, 10.xto 18

Tomcat 5.x, 6.x, 7.X, 8.x, and 9.x 4.x and below
TomEE 7.X, 8.x

Jetty

9.x

Chapter 1: Introduction

GlassFish 3.x,4.X, 5.x

2.X

Payara 4.x,5.x

Oracle Application Server
(OC4J)

Spring Boot Application with 2.0t02.2
Embedded Tomcat

Spring Boot Application with 2.0t02.2
Embedded Jetty

Spring Boot Application with 2.0t02.2
Embedded Undertow

Any Custom Web Application 6.x 10 9.x
with Embedded Tomcat

Supported Packaged Applications

Oracle Peoplesoft
Oracle JDEdwards
Liferay (with Tomcat) 6.2t0 7.3

Supported Entry Pointcuts

Servlets/Filters 2.5 (and above)
JSPs

Struts 1.x, 2.x

Spring MVC 3.xand 4.x

Web Services - SOAP and REST
Java Server Faces (JSF) 1.xand 2.x

JMS 1.xand 2.x

Supported HTTP Exit Pointcuts

HTTPURLConnection
ApacheHTTPClient 3.x and 4.x

Chapter 1: Introduction

Supported Web Service Exit Points

« SOAP based web services
o Axis1.xand 2.x

o Apache CXF

o Resteasy

o Jersey

Supported Databases

« Oracle 8i,9i, 10g, 11g, 12c
. IBMDB29.x

« MS SQL Server 2005, 2008, 2012, 2016
» PostgreSQL 8.xand 9.x

« MySQL 5.xand 8.0

. HSQLDB

« MariaDB 5.x

o IBM Informix

« Sybase

« SAP HANA

« AWSRDS

o AWS Aurora

« Mongo DB 3.x

Supported Database/ORM Frameworks

« iIBATIS/MyBatis 2.x and 3.x
« Hibernate

o JPA

Supported Database Clusters

o Microsoft SQL Cluster
o Oracle RAC

Chapter 1: Introduction

Note:

o In the cross-applications transaction topology flow map, a Microsoft SQL cluster (if any)
will be represented only as a standalone Microsoft SQL database server.

o Oracle RAC supports a variety of JDBC URL formats. The eGJava BTM currently
captures only those queries issued to an Oracle RAC for just a subset of these
JDBC URL formats. If a Java transaction issues a query to an Oracle RAC for one of the
supported JDBC URL formats, that Oracle RAC component will only be represented as
a standalone Oracle database server in the cross-application transaction topology flow
map.

Supported ESB and Integration Frameworks

« Mule ESB 3.9

» Apache Camel (Only JMS integration)

Supported Drivers

« Oracle- Thin

. DB2

« Microsoft SQL Server

« Connector/J

o jTDS - Type4d

. JDBC2,JDBC2EE, JDBC3, JDBC4

Messaging Exit Pointcuts

« ActiveMQ 5.x
» JBoss Messaging and HornetQ from JBoss
« IBMMQ

« JMS Queues and Topics

Middleware Exit Pointcuts

o RMI using JRMP
o EJB - Stateless session bean (SLSB)
« EJB - Stateful session bean (SFSB)

Chapter 1: Introduction

« Runtime Exec (Process Exec)
. LDAP

» Java Mail

« SAPJCO

o JOLT

Caching Frameworks or In-memory Databases

o« H2

« HSQLDB

« EHCACHE 2.x
« Redis

Elastic Environments

» Standalone Docker

» Standalone Kubernetes

o« AWS ECS (using EC2 Instances)
o AWS EKS (using EC2 Instances)

« The eG Java Business Transaction Monitor (BTM) can be installed on only those Java
containers that use JDK 1.5 or higher.

« Do notinstall the eG Java Business Transaction Monitor (BTM) on a Java container that
is already JTM-enabled.

« For cross application transaction tracing to occur, the Java application being monitored should
run only on JRE 1.6 (or higher).

« For complete visibility into the transaction path, make sure that you:

« BTM-enable each JVM node in the transaction path;

« Manage each JVM node as a separate component in eG;

1.3 How does the eG Java BTM Work?

To be able to track the live transactions to a web application, eG Enterprise requires that a special
eG Java Transaction Profiler be deployed on every JVM node (i.e., web ccserver instance)

Chapter 1: Introduction

through which the transaction travels. The steps for deployment are discussed in Installing and
Configuring eG Java BTM.

Multi-tiered Vs

. . ¢.8

Web Server App Server

Load]

=
Balancer {“‘M

Web Server

App Server Database

B :

a

User Accessing
Website or Web
Application

== 0 Fg ~nZ

Server App Server Database

Byte code instrumentation
injects code into every
WM at load time.

Injected code adds GUID to
each unigue transaction for
tag-and-follow tracing.

Figure 1.1: How eG BTM Works?

The eG Java Transaction Profiler uses byte-code instrumentation to trace transaction path and
measure responsiveness. Using this instrumentation mechanism, the profiler injects Java code into
the JVM on which it is deployed, at load time. The injected code adds a GUID to each unique
transaction on a JVM, so that its path can be accurately traced . In addition, the profiler performs the
following tasks for every unique transaction on a JVM:

« Tracks requests to that transaction;
« Measures the average responsiveness of that transaction to the requests;

« ldentifies the slow, stalled, and error transactions, and computes the count of such
transactions;

« Ascertains the exit calls made by the transaction, the destination of the calls, and measures
the time taken by each call;

« Stores all the aforesaid statistics in memory

The profiler then sends all these statistics to the eG agent. To know how and when the profiler
transmits metrics to the eG agent, refer to Section 1.4.

Chapter 1: Introduction

The eG agent deployed on a remote host or on the BTM-enabled JVM periodically runs a Java
Business Transactions test. This test communicates with the profiler via a configured BTM port,
pulls the metrics stored in memory, and reports them to the eG manager for display in the eG
monitoring console.

1.4 How does the eG Java BTM Communicate with the eG Agent?

The eG agent should be deployed on the JVM that hosts the eG Java BTM. The eG Java BTM
communicates with the eG agent via port number 13700 by default. You can change the default port
by following the steps below:

« Editthe eg_tests.inifile (in the <EG_MANAGER_INSTALL_DIR>\manager\config directory on a
Windows manager, or the /opt/egurkha/manager/config directory on a Unix manager).

« Configure the new port number against the AgentServerSocketPortNo parameter in the
[AGENT_SOCKET_SETTINGS] section of the file. Note that you cannot set any random port
number against the AgentServerSocketPortNo parameter. You have to pick a port number
from the list of port numbers present against the AgentServerSocketPortOrder parameter, and
configure the AgentServerSocketPortNo with that port number only. If you configure a port
number that is not available against AgentServerSocketPortOrder, then the eG Java BTM will
not be able to communicate with the eG agent.

« Finally, save the file.

Typically, once the eG agent is configured with the details of the web site to be monitored, the
eG Java BTM contacts the eG agent and downloads these details from it.

Sends metrics to eG
agent

* ¢ Downloads s,
, " website details *
e from eGagent A
& ‘eGagent gl

EE e

Transmits
| metricsto G
manager

Stores metrics
S
Requests fora

in G database
. _ -
-
transaction

User JVM Node eG Manager eG Database

Chapter 1: Introduction

Figure 1.2: Communication between the .NET Profiler and the eG Agent

Then, when a transaction request for the web application comes in, the eG Java BTM injects a code
in the application code to trace the path of that request. In the process, the eG Java BTM also
collects response time metrics related to that transaction. Every 10 seconds, the eG Java BTM
sends these metrics to the eG agent. The eG agent stores these metrics in memory, until the next
time it runs the Java Business Transactions test. When the test is run, the agent pulls the metrics
stored in memory and sends it to the eG manager.

1.5 Performance Overhead of the eG Java Business Transaction
Monitor

eG BTM leaves a very minimal resource footprint on the application it monitors. Typically, it adds a
mere 2-5% to the application overhead.

10

Chapter 2: Installing and Configuring eG Java BTM

Chapter 2: Installing and Configuring eG Java BTM

The first step towards business transaction monitoring is to BTM-enable the JVM nodes in the
transaction path. For this purpose, eG Enterprise requires that a special eG Application Server
Agent be deployed on every JVM node (i.e., web application server instance) through which the
transaction travels.

The eG Application Server Agent is available as a file named eg_btm.jar on the eG agent host,
which has to be copied to the system hosting the application servers being monitored. You then
need to configure the application server with the path to the eg_btm.jar file to fully BTM-enable the
server.

The detailed steps for deployment on different web application servers have been discussed in this
section.

2.1 Installing eG Java BTM on a Generic JVM Node

The steps for deploying an eG Java BTM on a JVM node will differ based on the platform on which
the target JVM node is running - whether on a Windows platform or a Unix platform.

2.1.1 BTM-Enabling a Generic JVM Node Running on a Windows Platform

If the JVM node is running on a Windows operating system, then follow the steps below to BTM-
enable that node:

1. Login to the JVM node.

2. Open abrowser on the node, connect to the eG manager, and login to the eG admin interface.

3. Manage the JVMnode as a separate component using the eG administrative interface. When
managing, make a note of the Nick name and Port number that you provide.

4. If multiple JVM instances are operating on a single node, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JVM node
- say, C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed Component_NickName>_<Managed Component Port>.

11

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.

For instance, if you have managed the JVM node using the nick name AppServer? and the port
number 8088, the new directory under the btm directory should be named as AppServer1_8088.

If you have managed multiple JVM instances running on a single node, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, open a browser on the JVM node, connect to the
eG manager, and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

Figure 2.1 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JVM node that you want to BTM-enable. Once you locate the node, click the
Download icon corresponding to that node to download the APM Profiler Agent to that node. If
multiple JVM instances on a single node are managed, then you will have to download the
APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOST PORT AGENT IP MONITORING
JAVA ©G Manager WIN-AFFGSOHOM23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 Agent-based Lt

Agent-based

JAVA GlassFish glassfisn132 192168.9.132 4848

JAVA 192168.10.23 9080

JAVA 192168.10.101 9080

JAVA

192168.10.77 9990

[+ [+ [+ [+ ¢ [+ [+ [+ I+ [«

JAVA wildily110 192168.10.110 9090

Figure 2.1: Downloading the APM Profiler Agent for the JVM node

Upon clicking the Download icon in Figure 2.1, a zip file named javaagent_<Nick_name_of _
JVM_node>_<Port_number_of_JVM_node will get downloaded. For instance, if you have
managed the JVM node using the nickname 'AppServer1' and the port number '8088', then the
name of the zip file will be javaagent_AppServer1_8088. Where multiple JVM instances have
been managed, you will be downloading multiple zip files - one each for every JVM instance. The
names of these zip files will automatically carry the nick name and port number you assigned to
the corresponding JVM instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
step 6 above). For example, the zip file named javaagent AppServer1_8088, should be copied
tothe C:\btm\AppServer1_8088 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

12

Chapter 2: Installing and Configuring eG Java BTM

13.

14.

15.

Figure 2.2 depicts the extracted contents of the zip file.

| btrLogging.props PROPS File

| btmOther.props PROPS File

| config.props PROPS File

| custom.props PROPS File

[£:] eg_btm Executable Jar File
E el_lava_BTM_DynamicAttach Windows Batch File
| eG_lava_BTM_DynamicAttach.sh 5H File

| exclude.props PROPS File

| threshold.props PROPS File

Figure 2.2: Contents of the APM Profiler Agent zip

From Figure 2.2, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the JVM node/instance. For that, edit the btmOther.props file in
the sub-directory (of the btm directory) that corresponds to that JVM node/ instance. You will find
the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

13

Chapter 2: Installing and Configuring eG Java BTM

16.
17.

18.
19.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, proceed to edit the start-up script of the JVM node/instance being monitored, and append
the following lines to it:

-DEG_PROPS HOME=<<PATH OF THE SUB-DIRECTORY CONTAINING THE .PROPS FILES>>

"-javaagent:<<PATH OF THE eg btm.jar FILE>>"

For instance, if the eg_btm.jar and .props files have been copied to the C:\btm\AppServer1_8088
directory, the above specification will be:

-DEG_PROPS_HOME=C:\btm\AppServerl 8088

"-javaagent:C:\btm\AppServerl 8088\eg btm.jar”

Note:

The “-javaagent...” entry above should be added as one of the JVM options in the start-up script.

Finally, save the file, and restart the JVM node.

If multiple JVM instances on a single node are monitored, make sure you follow steps 15-18 for
each JVM instance.

2.1.2 BTM-Enabling a Generic JVM Node Running on a Unix Platform

If the target JVM node is running on a Unix operating system, then follow the steps below to BTM-
enable that node:

14

Chapter 2: Installing and Configuring eG Java BTM

11.

. Login to any system in your environment that supports a browser and has network access to the

eG manager.
Open a browser on the system, connect to the eG manager, and login to the eG admin interface.

Manage the target JVM node as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

If multiple JVM instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

Next, log out of the eG admin interface and the system.

Log into the target JVM node. Then, create a btm directory anywhere on the target JVM node -
say, lopt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed_Component_NickName>_<Managed_Component_Port>.
For instance, if you have managed the JVM node using the nick name AppServer1 and the port
number 8088, the new directory under the btm directory should be named as AppServer1_8088.

If you have managed multiple JVM instances running on a single node, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the JVM node. Log back into the system
you used in step 1 above. Open a browser on the system, connect to the eG manager, and login
to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

Figure 2.1 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JVM node that you want to BTM-enable. Once you locate the node, click the
Download icon corresponding to that node to download the APM Profiler Agent to that node. If
multiple JVM instances on a single node are managed, then you will have to download the
APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.1, a zip file named javaagent_<Nick_name_of_
JVM_node>_<Port_number_of_JVM_node will get downloaded. For instance, if you have
managed the JVM node using the nickname 'AppServer1' and the port number '8088', then the
name of the zip file will be javaagent AppServer1 _8088. Where multiple JVM instances have
been managed, you will be downloading multiple zip files - one each for every JVM instance. The

15

Chapter 2: Installing and Configuring eG Java BTM

12.

13.
14.
15.

16.

17.

names of these zip files will automatically carry the nick name and port number you assigned to
the corresponding JVM instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file(s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JVM node at
steps 6 and 7 above. For example, the zip file named javaagent AppServer1_8088, should be
transferred to the/lopt/btm/AppServer1_8088 directory on the target JVM node.

Log out of the system and log back into the JVM node.

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.
Figure 2.2 depicts the extracted contents of the zip file.

From Figure 2.2, it is evident that the zip file contains an eg_btm.jar file and a few property files,

namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the JVM node/instance. For that, edit the btmOther.props file in
the sub-directory (of the btm directory) that corresponds to that JVM node/ instance. You will find
the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

16

Chapter 2: Installing and Configuring eG Java BTM

18.
19.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, proceed to edit the start-up script of the JVM node/instance being monitored, and append
the following lines to it:

-DEG_PROPS HOME=<<PATH OF THE SUB-DIRECTORY CONTAINING THE .PROPS FILES>>

"-javaagent:<<PATH OF THE eg btm.jar FILE>>"

For instance, if the eg_btm.jar and .props files have been copied to the /opt/btm/AppServer1_
8088 directory, the above specification will be:

-DEG_PROPS HOME=/opt/btm/AppServerl 8088

"-javaagent:/opt/btm/AppServerl 8088\eg btm.jar”

Note:

« The “-javaagent...” entry above should be added as one of the JVM options in the start-up
script.

« Also, in Unix environments, when using the agent-based approach, both the agent and the
JVM instance will be running on the same host using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification.

-DEG_LOG HOME=<<Log File Path>>

17

Chapter 2: Installing and Configuring eG Java BTM

20.
21.

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-DEG_PROPS_ HOME=/opt/btm/AppServerl 8088

-DEG_LOG_HOME=/App001/eGBTMLogs

"-javaagent:/opt/btm/AppServerl 8088/eg btm.jar”
Finally, save the file, and restart the JVM node.

If multiple JVM instances on a single node are monitored, make sure you follow steps 17-20 for
each JVM instance.

2.2 Installing eG Java BTM on an Apache Tomcat Server

The steps for deploying the eG Java BTM on a Tomcat server will differ based on the platform on
which the target Tomcat server is running - whether on a Windows platform or a Unix platform.

2.2.1 BTM-Enabling a Tomcat Server Running on a Windows Platform

If the Tomcat server is running on a Windows operating system, then follow the steps below to BTM-
enable that server:

1.
2.

Login to the Tomcat server.
Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

Manage the Tomcat server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable
all the instances, then you will have to manage each instance as a separate component using the
eG administrative interface. When doing so, make a note of the Nick name and Port number
using which you managed each instance.

Next, log out of the eG admin interface. Then, create a btm directory anywhere on the Tomcat
server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-

18

Chapter 2: Installing and Configuring eG Java BTM

folder in the following format: <Managed Component NickName>_<Managed Component
Port>. For instance, if you have managed the Tomcat server using the nick name tomcat1 and
the port number 8080, the new directory under the btm directory should be named as tomcat1_
8080.

6. If you have managed multiple Tomcat server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

7. Once the new sub-directory(ies) is created, open a browser on the Tomcat server, connect to the
eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

9. Figure 2.3 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the Tomcat server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to it. If
multiple Tomcat server instances on a single host are managed, then you will have to download
the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

@ This page alows

e administrator to download APM Profiler Agent.

‘Show GUIDs

APM TYPE COMPONENT TYPE INICK NAME HOST NAME/IP HOST PORT AGENT IP MONITORING

JAVA WIN-AFFGSOHOM23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 gent-based

JAVA 192168.9.132 4848 localhost

JAVA 1BM WebSphere Liberty 192.168.10.101 2080 localhost

A
A

JAVA 18M WebSphere Applicati.. websphere23 1921681023 9030 localhost Age
A
A

JAVA JBoss AS/EAP 192.168.10.77 9990 localhost

sed

JAVA SAP Web Application 10.168.10.35 50000 localhost Agent-based

JAVA Tomeat 192.168.10.105 2080 localhost Agent-based

JAVA Oracle WebLogic 19.168.10.45 700 localhost Agent-based

I+ | [+ & [¢ & [& [+ [«

JAVA WildFly JBoss wildfly110 192168.10.110 9990 localhost Agent-based

Page of1 Displaying 1 -9.f 9

Figure 2.3: Downloading the APM Profiler Agent for the Tomcat server

10. Upon clicking the Download icon in Figure 2.3, a zip file named javaagent_<Nick_name_of_
Tomcat_server>_<Port_number_of_Tomcat_server will get downloaded. For instance, if
you have managed the Tomcat server using the nickname 'tomcat1' and the port number '8080',
then the name of the zip file will be javaagent tomcat1_8080. Where multiple Tomcat server
instances have been managed, you will be downloading multiple zip files - one each for every
instance. The names of these zip files will automatically carry the nick name and port number you
assigned to the corresponding server instance.

19

Chapter 2: Installing and Configuring eG Java BTM

11.

12.
13.

14.

15.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent tomcat1_8080, should be
copied to the C:\btm\tomcat1_8080 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.4 depicts the extracted contents of the zip file.

_| btmleogging.props PROPS File

| btmOCther.props PROPS File

| config.props PROPS File

| custom.props PROPS File

[£ eg_btm Executable Jar File
(& eld_lava_BTM_Dynamichttach Windows Batch File
| eG_lava_BTM_DynamicAttach.ch 5H File

| exclude.props PROPS File

| threshold.props PROPS File

Figure 2.4: Contents of the APM Profiler Agent zip

From Figure 2.4, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the Tomcat server/instance. For that, edit the btmOther.props file
in the sub-directory (of the btm directory) that corresponds to that Tomcat server/ instance. You
will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business

20

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request’ comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the Tomcat server/server instance with the path to the eg_btm.jar
and .props files. This can be done, in one of the following ways:

« Through the Tomcat control panel;

» Through the Tomcat start-up script

To use the control panel, do the following:

21

Chapter 2: Installing and Configuring eG Java BTM

19.

« First, open the Tomcat Control Panel.

General | LogOn | Logging | Java | Startup | Shutdown

[] use default
Java Virtual Machine:

C:\jdk7jre\bin'serverjvm.dil
Java Classpath:
C:'Program Files (x86)\Apache Software Foundation{Tomecat 7.0_Tomcat

Java Options:

-Diava.util.logging. config. file =C:\Program Files (x86) \Apache Softwa
—javaagent: C:'btm\tomcat1_8080eg_btm.jar
DEG_PROPS_HOME:C:\btm\tomcat1_8080

Initial memory pool: 2048 MEB
Maximum memory pool: | 2048 MB
Thread stack size: KB

Figure 2.5: BTM-enabling the Tomcat server on Windows
« Select the Java tab page in Section 2.2 above.

« Add entries of the following format to the Java Options section of 2.2:

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE PROPS FILES>>

For instance, if the .props files and the eg_btm.jar had been copied to C:\btm\tomcat1_8080,
the above specification will be:

-javaagent:C:\btm\tomcatl 8080\eg btm.jar

—-DEG_PROPS_HOME=C:\btm\tomcatl 8080
« Clickthe Apply and OK buttonsin 2.2.
« Restart the Tomcat service.

« Where multiple Tomcat server instances on a host are to be monitored, repeat steps 15, 16,
and 18 for each of the server instances.

On the other hand, if you want to configure using the Tomcat start-up script, follow the steps
below:

22

Chapter 2: Installing and Configuring eG Java BTM

« Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

« Insert the lines of code indicated by 2.2 to BTM-enable the Tomcat server.

lsrch Docurment Project ool Browser ZC Wmdew Help
F | & * | | 2 2 & | A8 we w =] | 3[EE & 2

Prot==mmlemmcpmmme e pm e e pr e G pm e p e Y el e G o]

:juliflasspathDone

" goto neJuliConfig

“SCATALIMA_BASEN‘conf\logging.properties® gots moduliConfig
HEIG=-Djava.uril.logging.config. file="%CATALINA BASEY\conf\logging.propercies™

set "JAVA OFTS=%JAVA OPTS¥ ILOGGING CONFIGE™

1f not "SLOGGING_MARNAGERA™ == "" goto noJuliManager

HG_MANAGER=-Djava.util.logglng. sanager=org. apache, juls, ClassloaderLogManages
nager
. OPTS=%JAVR OPISt TLOGGING MANRGER:™

rem —-—--- Execute The Reguested Command - - - -——
echo Ueing CATALINR BASE: "3CATALINA BASER"
echo Using CATALINA MOME: “ACATALINA HOMEW®
vy CATALINAR_THMPDIR: "3CATALIMA TMPDIRY™
== ““gebug™~ goto use_jdi
ing JRE_FEOME: "3JRE_HOMER"
goto Jave_dir_displayed

suse_5dk

Figure 2.6: Editing the catalina.bat file
« Save the file and restart the Tomcat server.

« Where multiple Tomcat server instances on a host are to be monitored, repeat steps 15, 16,
and 19 for each of the server instances.

2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform

If the target Tomcat server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open abrowser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target Tomcat server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

4. If multiple Tomcat server instances are operating on a single host, and you want to monitor each
of those instances, then you will have to manage each instance as a separate Tomcat server
component using the eG administrative interface. When doing so, make a note of the Nick name
and Port number using which you managed each instance.

5. Next, log out of the eG admin interface and the system.

23

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.
15.

16.

Log into the target Tomcat server. Then, create a btm directory anywhere on the target server -
say, lopt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed_Component_NickName>_<Managed _Component_Port>.
For instance, if you have managed the Tomcat server using the nick name tomcat1 and the port
number 8080, the new directory under the btm directory should be named as fomcat1_8080.

If you have managed multiple Tomcat server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the Tomcat server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.3 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the Tomcat server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple Tomcat server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.3, a zip file named javaagent_<Nick_name_of_
Tomcat_server>_<Port_number_of_Tomcat_server will get downloaded. For instance, if
you have managed the Tomcat server using the nickname 'tomcat1' and the port number '8080',
then the name of the zip file will be javaagent tomcat1_8080. Where multiple Tomcat server
instances have been managed, you will be downloading multiple zip files - one each for every
instance. The names of these zip files will automatically carry the nick name and port number you
assigned to the corresponding Tomcat server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the Tomcat server
at steps 6 and 7 above. For example, the zip file named javaagent tomcat1_8080, should be
transferred to the/opt/btm/tomcat1_8080 directory on the target Tomcat server.

Log out of the system and log back into the Tomcat server.
Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.4 depicts the extracted contents of the zip file.

From Figure 2.4, it is evident that the zip file contains an eg_btm.jar file and a few property files,

24

Chapter 2: Installing and Configuring eG Java BTM

17.

18.

namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the Tomcat server/instance. For that, edit the btmOther.props file
in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will find
the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

25

Chapter 2: Installing and Configuring eG Java BTM

19.

20.

21.

Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files.
This can be done by editing the start-up script of the Tomcat server. For that, first open the start-
up script.

Insert the following lines in the script (as depicted by Figure 2.7) to BTM-enable the server.

if ["$S1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="S$JAVA OPTS - javaagent:<<PATH TO THE eg btm.jar>> - DEG_PROPS
HOME=<<PATH TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>
fi

For instance, if the eg_btm.jar file and .props files have been copied to the tomcat1_8080 folder
within the /opt//btm folder, then your specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS -javaagent:/opt/btm/tomcatl 8080/eg btm.jar -DEG PROPS
HOME=/opt/btm/tomcatl 8080

fi

o B e e e e e e e e St i i et S e e e e Tt ey T
done

Get ztandard environment variables
FAGDIR="dirnams “$ERG""

Only set CATALINA HOME if not already set
[=z "PCAIALINR HOME®]| && CATALINA HOME="cd “SFRGDIR/..= »/dev/oull: pwd”

Copy CATALINA BASE from CATALINA HOME if not already set
[-z "CATALINA BRZE® | &s CRTALINR BRSE="§CRTRLINA HOME®

Enaure that any user defined CLASSPATH wariables are not used of STAETUpR,
but allow them to be specified in secenv.sh, in rare case when it is needed.

CLASSFATH=

if [-r "fCAIALINA BASE/bin/setenv.sh™]; then
« "4CATALINA_BASE/bin/setenv.sh”

elif [-r "¢CATALINA HOME/bin/setenv.sh®]: then
» “BCARIALINA HOME/bin/setenv.an®

i

if ["§#1" = "stert” -o "§1" = "run" |: then
port JAVA OFTS5="§JAVA OFIS -javaagent:/opt/btm/cemeatl BOBOVeg

For Cygwin, ensure peths are in UNIX formst before anything is touched
if fcygwin: then
[-n "8JAVA_HOME"]| @& JAVA_HOME='cygpath --unix "§JAVA_HOME"'
[-n "§JBRE_HOME"] && JRE_BAOME='cygpath —-unix "§JRE_BOME™"
[-n "sCATALINA_HOME" | && CATALINA_HOME='cygpath nix "SCRATALINA_HOME"®
[=n "SCRIALINA BASE" | s& CATALINA BASE='cygpath =--unix “SCATALINA BRSE"
[-n "§CLASSEATH" | && CLASSPAIH='cygpath --path --unix "CLASSPATHE""
fi

Figure 2.7: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server

In Unix environments, if the eG agent is deployed on the same host as the Tomcat server, then

26

Chapter 2: Installing and Configuring eG Java BTM

22.
23.

both the agent and the server will be running using different user privileges. In this situation, by
default, the eG Java BTM logs will not be created. In order to create the same, insert the following
entry after the -DEG_PROPS_HOME specification and before the closing quotes .

-DEG LOG HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
allinstances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

if ["S$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS -javaagent:/opt/btm/tomcatl 8080/eg btm.jar -DEG PROPS
HOME=/opt/btm/tomcatl 8080 -DEG LOG HOME=/App001/eGBTMLoOgs

fi

Finally, save the file and restart the Tomcat server.

Where multiple Tomcat server instances on a host are to be monitored, repeat steps 17 to 22 for
each of the server instances.

2.3 Installing eG Java BTM on an IBM WebSphere

The steps for deploying the eG Java BTM on a WebSphere server will differ based on the platform
on which the target WebSphere server is running - whether on a Windows platform or a Unix

platform.

2.3.1 BTM-Enabling a WebSphere Server Running on a Windows Platform

If the WebSphere server is running on a Windows operating system, then follow the steps below to

BTM-enable that server:

1.
2.

Login to the WebSphere server.

Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

27

Chapter 2: Installing and Configuring eG Java BTM

3. Manage the WebSphere server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

4. If multiple WebSphere server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which you managed each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the
WebSphere server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you
name this sub-folder in the following format: <Managed Component_NickName>_<Managed_
Component_Port>. For instance, if you have managed the WebSphere server using the nick
name WebSphere1 and the port number 9080, the new directory under the btm directory should
be named as WebSphere1 9080.

6. If you have managed multiple WebSphere server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

7. Once the new sub-directory(ies) is created, open a browser on the WebSphere server, connect
to the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

9. Figure 2.8 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the WebSphere server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebSphere server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOSTPORT AGENT IP MONITORING

JAVA WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 ®

JAVA 192168.9.132

4848

JAVA 192.168.10.105 8080

JAVA 10.168.10.45 700

¢ ¢ ¢ [+ [+ ¢ [+ [+ [+ [«

JAVA 192168.10.110 9990

Figure 2.8: Downloading the APM Profiler Agent for the WebSphere server

28

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.
13.

14.

15.

Upon clicking the Download icon in Figure 2.8, a zip file named javaagent_<Nick_name_of _
WebSphere_server>_<Port_number_of_WebSphere_server will get downloaded. For
instance, if you have managed the WebSphere server using the nickname "WebSphere1' and the
port number '9080', then the name of the zip file will be javaagent_ WebSphere1_9080. Where
multiple WebSphere server instances have been managed, you will be downloading multiple zip
files - one each for every instance. The names of these zip files will automatically carry the nick
name and port number you assigned to the corresponding server instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent WebSphere1_9080, should be
copied to the C:\btm\WebSphere1_9080 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.9 depicts the extracted contents of the zip file.

| btrnLogging.props PROPS File

| btrnOther.props PROPS File

_| config.props PROPS File

| custom.props PROPS File

[£ eg_btm Executable Jar File
(& ed_lava_BTM_Dynamichttach Windows Batch File
| e5_Java_BTM_DynamichAttach.sh SH File

| exclude.props PROPS File

| threshold. props PROPS File

Figure 2.9: Contents of the APM Profiler Agent zip

From Figure 2.9, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the WebSphere server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that
WebSphere server/ instance. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

29

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

#
BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the WebSphere server with the path to the eg_btm.jar and .props
files. For this, first login to the WebSphere administration console. When Figure 2.10 appears,
click on the WebSphere Application Server link in the right panel.

30

Chapter 2: Installing and Configuring eG Java BTM

WabSphere.

Views: | Al tasks

Welcome
i Guided Acthities
=l Sarvars

5 Sener Types

Wab servers
Bl Applications
+ Services
[Resources
B Securky
Bl Environment
& Systam adminirstion
Bl Users and Groups
= Menitaring and Tuning
& Treubleshoeting
L Servics integration
B uDD1

wabSphera application servers
WabSphere MQ servers

Welcome

Walcome

=0

Integrated Sclutions Conzsale provides a commen administrative consale for multiple products, The table lists the product suites that
can be administered through this installation. Select 3 preduct suite to view more infermation.

Version
B.5.5.0

About this Integrated Selutions Consale — [

Integrated Solutions Console,
B.5.5.0
Build Numbser: gm131%.01

Build Dake: 5/14/13

LICENSED MATERIALS PROPERTY

OF 18M

Figure 2.10: The WebSphere Administration console

18. This will invoke Figure 2.11. In the right panel of Figure 2.11, click on the link representing the

WebSphere.

Views: | All tasks

v

Wekome

3 Guided Activiies

(=) Servers.

5 Sener Troes

wabSphere applcacian servers
wabSphare MQ servers

(8 Applcations.

3 Senvces

(s Bmsources

G Security

(8 Enviranmant.

G System administration

(8 Users and Groups

G Monzoring and Tuning

(3 Troubleshosting

(@ Service intagration

/uDDI

WebSphere server instance that you want to BTM-enable.

Appcaion servars T

Applicatin sarvers For Rl hlp ot
Use this page to view 2 list of the application servers In your snviranmaent and the status of each of thess servers. You can also use this page to changs sclect a field label of list
the status of a specific applicstion server marker when the help cursar is
@ Preferences dizplayed.

Bl oot st s
Name & Node 2 Host Name 2 version & s

You can administer the following resources: wpm
server 2GOP136Hods01 <GDP138. Mas.eGinnovations.com | ND £.5.5.0 gommand for last action

Total 1

Figure 2.11: Clicking on the WebSphere server instance to be BTM-enabled

19. Figure 2.12 will then appear.

31

Chapter 2: Installing and Configuring eG

Java BTM

WebSghero. [

View: [&Il tasks v |
Application servers
wekome
Application sarvers > sarvarl
) Guided Activiies
=) Servers

Use this page to configure an application server An application server is a server that provides services required to run entarprise applications.

Clese page

Fiald halp

For fiald halp information,
select a field label or list
marker when the help cursor

! Run in development mode
(3 System adminiztration
ol

Parallel start
&) Users and Groups

@ Monitering and Tuning | Start compenents as needed

[# Troubleshasting Access to internal server classes

Allow ¥

3] Service intagration

(# UDD1

Classloader rhcv

Class loading mode

Ri {1 nFiguration i
[| Runtime | | Configuratie iz displayed.
WebSphere application servers Page help
WebSphere MQ servers Mars information about this
Wieh servers , Eage
Eenera Container Settings
[+ Applcations Nama
Session management
3l Services [servent |
SIP Container Settings
|2/ Basources Node name
Web Container Settings
@) Security [ecDP136Nodens |
Portlet Container Settings
(%] Ervironmant

Server-specific Application Settings

EJB Container Settings

=
=
®
=
® Container Services
=

Business Process Services

nstall Jication:

Server

Meszaging engines

Messagi ing inbound tran

Clazses loaded with parent class loader first v

5 MO link § _

£1B service

| Apply || 0K | Reset | | Cancal

Server Infrastructure

@ Java and Process Management
@ Administration

Java SOk

Communications

Figure 2.12: The Configuration tab page of the WebSphere server instance to be BTM-enabled

20. Keep scrolling down the right panel of Figure 2.13 until you find the Server Infrastructure
section. Expand the Java and Process Management node in that section, and click on the

Process definition link within.

WebSphere.

View: | All tasks Ad [Run in developmant meds

o

Welcome

(6 Guided Activiies

Parallel start
Start companents as needed
o servers

Access to internal server classes
S Server Types:

Server-specific Application Settings

Classloader ia alicy

Elass loading mode

I POrIGT Containar Sotmngs
B EJB Container Settings
8 Container Services Field help
For field help information,
salect a field labsl or list
marker when the halp cursor

B Business Process Services

is displayed.
Installed apglications Page help
Mors information pbout this
Server pace

Messaging engines
[T ing enging inbound trar

‘sbSghere 199 ink inbound tranzperts

[classes loaded with parent class loader first

S1B carvice

B Environment

_éoply || O || Reset || Cancel |

[System administracion
[Users and Groups.

[Monitoring and Tuning
i Troubleshesting

[Servica integration

FE UDDI

Server Infrastruct

B Java and Process Management

Clazz loader

Erocess definition
Process sxscytion
B Administration

Java SOKs

o

@ Ports

[Mezzaging

[Erabled EA)
o
Meritering (PMI}
and Diagnostic Advicor Confiqurati
Security

Barsetha dnmnsin

Figure 2.13: Selecting the Process definition option from Java and Process Management tree

21.

Figure 2.14 will then appear. From the Additional Properties section, select Java Virtual

32

Chapter 2: Installing and Configuring eG Java BTM

Machines.

WebSphers.

Views | 4l tasks . |
C—
wekome
1d halp
- — Application servers > sarver] > Proces Fie
7 Guided Activiie: sercerl e dafinition For fiald help Information,
Uss this pags to configurs @ process definition. A process definition defines the command line Information necessary to start or Initialize a process. Salect a fiald label or lizt
marker when the help curser
Configuration = displayed.
Page help
More information sbook thi
)
Additional Prop
i Applications Executsble name
0 Servize [
o Fmeares Euscutabls rgumants
@ Secrty
& Envionment

8 System admistration

& Users and Groups Start command

8 Monitoring and Tuning
B Treublshesting
[# Servica integration

Start command arguments

[uDot

Stop command

Skop commsnd srguments

working directery
[${user_nsTaLL_roOT}

Executable barget bype -

Figure 2.14: Configuring the Process definition

22. When Figure 2.15 appears, scroll down its right panel until the Generic JVM Arguments text
box comes into view.

WebSphere.

Verbose class losding
¥ verbose garbage collection

Verbose I
Initial hasp size

1024 Ve
Masimum hesp size

1024 | v

¥ Run Heref

HProf Argumants

Debug Mods

Debug arguments
T T e r—————r—

 Users and Groups

) Monicaring and Tuning o e s
& Traubleshoating DEG_PROPS_HOME: C: \bbm! Websphere 1_5080

) Service integration

@ uoot
] Executable JaR file name

O isable 31T

Operating system name

[sindos

[2pply | [OK | [Reset | [Cancel

Figure 2.15: Configuring the JVM arguments for a WebSphere Server on Windows

23. Here, specify the following:

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

33

Chapter 2: Installing and Configuring eG Java BTM

24.
25.

For instance, if the eg_btm.ar file and .props files have been copied to the
C:\btm\Websphere1_9080 directory, the above specification will be:

-javaagent:C:\btm\WebSpherel 9080\eg btm.jar
—-DEG_PROPS_HOME=C:\btm\Webspherel 9080

Save the changes and restart the WebSphere server.

Where multiple instances of WebSphere are monitored, make sure you perform step 15- 24
above for each WebSphere server instance.

2.3.2 BTM-Enabling a WebSphere Server Running on a Unix Platform

If the target WebSphere server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1.

Login to any system in your environment that supports a browser and has network access to the
eG manager.

Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

Manage the target WebSphere server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

If multiple WebSphere server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate WebSphere
server component using the eG administrative interface. When doing so, make a note of the Nick
name and Port number using which you managed each instance.

Next, log out of the eG admin interface and the system.

Log into the target WebSphere server. Then, create a btm directory anywhere on the target
server - say, lopt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed Component NickName>_ <Managed
Component_Port>. For instance, if you have managed the WebSphere server using the nick
name tomcat1 and the port number 8080, the new directory under the btm directory should be
named as tomcat1_8080.

If you have managed multiple WebSphere server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.

34

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.
15.

16.

17.

Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the WebSphere server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.8 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the WebSphere server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebSphere server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.8, a zip file named javaagent_<Nick_name_of_
WebSphere_server>_<Port_number_of_WebSphere_server will get downloaded. For
instance, if you have managed the WebSphere server using the nickname 'WebSphere1' and the
port number '9080', then the name of the zip file will be javaagent WebSphere1_9080. Where
multiple WebSphere server instances have been managed, you will be downloading multiple zip
files - one each for every instance. The names of these zip files will automatically carry the nick
name and port number you assigned to the corresponding WebSphere server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file(s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the WebSphere
server in steps 6 and 7 above. For example, the zip file named javaagent WebSphere1_9080,
should be transferred to the/opt/btm/WebSphere1_9080 directory on the target WebSphere
server.

Log out of the system and log back into the WebSphere server.

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.
Figure 2.9 depicts the extracted contents of the zip file.

From Figure 2.9, it is evident that the zip file contains an eg_btm.jar file and a few property files,

namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the WebSphere server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

35

Chapter 2: Installing and Configuring eG Java BTM

18.

19.

20.

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the WebSphere server with the path to the eg_btm.jar and .props
files. For this, first login to the WebSphere administration console. When Figure 2.10 appears,
click on the WebSphere Application Server link in the right panel.

This will invoke Figure 2.11. In the right panel of Figure 2.11, click on the link representing the
WebSphere server instance that you want to BTM-enable.

36

Chapter 2: Installing and Configuring eG Java BTM

21.

22.

23.

24.

25.

26.

Figure 2.12 will then appear.

Keep scrolling down the right panel of Figure 2.13 until you find the Server Infrastructure
section. Expand the Java and Process Management node in that section, and click on the
Process definition link within.

Figure 2.14 will then appear. From the Additional Properties section, select Java Virtual
Machines.

When Figure 2.15 appears, scroll down its right panel until the Generic JVM Arguments text
box of Figure 2.15 comes into view.

_Poply | _OK |[Reset | | Cancel|

Figure 2.16: Configuring the JVM arguments for a WebSphere Server on Unix
Here, specify the following:

-javaagent :<<PATH TO THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_btm.ar file and .props files have been copied to the
lopt/egurkhallib/btm/Websphere1_9080 directory, the specification will be: :

-javaagent:/opt/btm/WebSpherel 9080/eg btm.jar
-DEG_PROPS_HOME=/opt/btm/WebSpherel 9080

Moreover, in Unix environments, if the eG agent is deployed on the same host as the WebSphere
server, then both the agent and the server will be running using different user privileges. In this

situation, by default, the eG Java BTM logs will not be created. In order to create the same, insert
the following entry after the -DEG_LOG_HOME specification .

-DEG_LOG HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -

37

Chapter 2: Installing and Configuring eG Java BTM

DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
allinstances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-javaagent:/opt/btm/WebSpherel 9080/eg btm.jar
-DEG_PROPS_HOME=/opt/btm/WebSpherel 9080

-DEG_LOG_HOME=/App001/eGBTMLogs
27. Save the changes and restart the WebSphere server.

28. Where multiple instances of WebSphere are monitored, make sure you perform step 17- 27
above for each WebSphere server instance.

2.4 Installing eG Java BTM on an Oracle WebLogic Server

The steps for deploying the eG Java BTM on a WebLogic server will differ based on the platform on
which the target WebLogic server is running - whether on a Windows platform or a Unix platform.

2.4.1 BTM-Enabling a WebLogic Server Running on a Windows Platform

If the WebLogic server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login tothe WeblLogic server.
2. Open abrowser on the server, connect to the eG manager, and login to the eG admin interface.

3. Manage the WebLogic server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

4. If multiple WebLogic server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which you managed each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the WebLogic
server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed Component NickName>_<Managed Component
Port>. For instance, if you have managed the WebLogic server using the nick name weblogic1

38

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.

and the port number 70071, the new directory under the btm directory should be named as
weblogic1_7001.

If you have managed multiple WebLogic server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, open a browser on the WebLogic server, connect to
the eG manager, and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

Figure 2.17 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the WebLogic server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebLogic server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOST PORT AGENT IP MONITORING
JAVA ©G Manager WIN-AFFGSOHOM23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 Agent-based Lt

Agent-based

JAVA GlassFish glassfisn132 192168.9.132 4848

JAVA 192168.10.23 9080

JAVA 192168.10.101 9080

JAVA

192168.10.77 9990

[+ [+ [+ [+ ¢ [+ [+ [+ I+ [«

JAVA wildily110 192168.10.110 9090

Figure 2.17: Downloading the APM Profiler Agent for the WebLogic server

Upon clicking the Download icon in Figure 2.17, a zip file named javaagent_<Nick_name_of_
WebLogic_ server>_ <Port_ number_ of _WebLogic_ server will get downloaded. For
instance, if you have managed the WebLogic server using the nickname 'weblogic1' and the port
number '7001', then the name of the zip file will be javaagent weblogic1_7001. Where multiple
WebLogic server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent weblogic1_7001, should be
copied to the C:\btm\weblogic1_7001 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

39

Chapter 2: Installing and Configuring eG Java BTM

13.

14.

15.

Figure 2.18 depicts the extracted contents of the zip file.

| btrLogging.props PROPS File

| btmOther.props PROPS File

| config.props PROPS File

| custom.props PROPS File

[£:] eg_btm Executable Jar File
E el_lava_BTM_DynamicAttach Windows Batch File
| eG_lava_BTM_DynamicAttach.sh 5H File

| exclude.props PROPS File

| threshold.props PROPS File

Figure 2.18: Contents of the APM Profiler Agent zip

From Figure 2.18, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the WeblLogic server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that WebLogic server/ instance.
You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

40

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the WebLogic server/server instance with the path to the eg_
btm.jar and .props files. The procedure to achieve this varies, depending upon the following:

o Whether you want to BTM-enable a stand-alone WebL ogic server/server instance

« Whether you want to BTM-enable the Admin server of a WebLogic cluster

To BTM-enable a stand-alone WebLogic server/server instance, first login to the WebLogic
Administration console. Then, follow the steps detailed below:

a1

Chapter 2: Installing and Configuring eG Java BTM

« When Figure 2.19 appears, click on the Servers link in the right panel.

ORACLE webLogic Server Administration Console 12¢

Change Center) Home LogOut Preferences [Record Help Welcome, weblogic | Connected to: base_domain_JAVAT
view changes and restarts Hame ~Summary of Environment =Summary of Servers - AdminServer = Summ.ary of Ervironment
Cenfigurstion aditing is enabled. Future Suimimary of Environiment

changes will automatically be activated as you
modify, add or delete ibems in this domain.

WebLogic Server can host your applications on maltiple server instances, each of which can run on a different computer and specify its cwn network address. You can also group servers into clusters to ensure that

D P your applications are always available even if one server instance fails,
base_domain_JAVAT Use this section of the Administration Console to create, configure, and control servers and dusters.
1 Environment.

i Deplayments Section Description

Senvices Servers A server is an instance of WeblLogic Server that runs in its own Java Virtual Machine (VM) and has its own configuration,
Security Real

. I“‘" i ';I_"I“ Clusters & cluster is a deployment in which multiple Weblogic Server instances (servers) run simultaneously and work together to provide increased scalability and reliability. & cluster appears to dients to
TRErOpErRbaY be a single WebLogic Server instance. The servers that constitute a duster can rum on the same maching, or be located on different machines,

[Diagnostics

& virtual host is a set of host names to which Weblogic Server instances (servers) or dusters respand, When you use virtual hosting, you use ONS to specify one or mare host names that map to the
Virtual Hosts § . § :
1P address of & server or cluster, You alsa specify which Web applications are served by each virtual host.

Moratable | 1gocabable Target is & target that is active on st most one server of a cluster ak & time.

Targets

Coherence | o coh server is d-al n dedicated VM ble f d hed dat
str\!fs -oherence server is a stand-alone cache server, a dedicate VM instance responsabpie far mainta: ning and managing cached data,

Coherence | & Coherence clisster is a group of Caherence nodes that share a group address which allows them o commisnicate. Coherence nodes can be applications, modiles, of application servers (Weblagic

Clasters Server instandes or stand-alone cache servers), Coherence dusters enable applications to share data management and cadhing servces among server instances and clusters hosting the applications
that need access to them.

m

How do L

« Create Managed Servers & machine is the logical representation of the computer that hosts one or mone Weblogic Server instances (servers). Weblogic Server uses eonfigured machine names to determine the optimum
Machines

server in a duster to which certain tasks, such as HTTP session replication, are delegated. The Administration Server uses the machine definition in conjunction with the Node Manager apelication to
Start and stop servers start remote servers.

o Create a duster Werk £ Wark Manager defines a set of request classes and thread esnstraints that manage work performed by Weblagic Servers. 128E Apgplications, Web Application Madules, E1Bs, and RMI applications
& Configure default network connections Managers can specify a named work manager to use for managing their work requests,
» Configure startup classes :L"?::w‘:'d Startup and shutdown dasses are Java programs that you create to provide custom, system-wide senvices for your applications. You add the dasses to the WebLogic Server dass path and then
Y configure them to load and run when a server starts or shuts down.
Classes
System Status =
Maalth of B 9 [

Figure 2.19: Clicking on the Servers link

« Figure 2.20 will then appear. Here, click on the server instance to be BTM-enabled.

ORACLE webLogic Server administration Consale 12¢

Pr——— @) Home LogOut Preferences [Record Help Q Wekome, weblogic | Connected to: base_domain_IAVA7
View changes and restarts Herme = Surrrmary of Enviranment =Summary o Servers »AdminSerrer =Summary of Envirmment > Summary of Servers
Configuration editing is enabled. Future Summary of Servers
changes will automatically be activated as you
modify, add or delete items In this domain. ‘Configuration | Control
Domain Structure
base_domain_JAVA7 A server Is an instance of WebLogic Server that runs in its own Java Vistual Machine (JWM) and has its own configuration.
B-Environment This page summarizes each server that has been configured in the current Weblogic Server domain,
- Deployments
#-Services
1-Secunity Realms Q
- Interoperability
&1 Dingnestics b Customize this tabie
Servers (Filtered - More Columns Exist)
New | [Cione | [Deite Shawing 1to 1oF 1 Previous | Next
| Name & Cluster Hachine State Health Listen Port
) RUNNING & oK 7001
How do L. =]

Showing 1ta1of 1 Previous | Next
= Create Managed Servers
»_Clone Servers

Figure 2.20: Clicking on the server instance to be BTM-enabled

« Figure 2.21 will then appear.

42

Chapter 2: Installing and Configuring eG Java BTM

== p———

@ Fome Log Out Preferences 2] Record Help qQ, Welcome, weblogic | Connected to: base_domain_JAVAZ

Change Center

e T Homs >Surmemary of Environment >Summary of Servers »AdminServar >Summary of Envircnment >Summary of Servers »AdminServer

Configuration editing is enabled. Future Settings for AdmnServer

changes will automatically be activated as you

mediFy, add or delete rtems in this demain, Configuration | Protocols | Logging | Debug | Momitoring | Control | Deployments | Services | Security | Mates

General | Cluster | Sendtes | Keystores | SSL Federabion Serviees | Deployment | Migration | Tusing | Overload | Health Moritoring | Server Start | Web Serviees

Save

Use this page to configure general features of this server such 03 default network commuenications

View INDI Tree &

Tame: AdminServer An alphanumeric name for this server instance. ~ More Info.

Machine: (iane) he W erver hast computer (machine) on which this server is meant ta
un

Cluster: (standalone) e cluster, or group of WebLogic Server instances, to which this server
belongs, Mere Info..

4] Listen Address: The 1 or DS name this server uses to listen for incoming
conne sore Info

Listen Port Enabled be reached th

Spacifies whethes this server can be ough the default plain-test {non
S5L) listen port. More Info...

* Start and stop servers

+ Canfigure WLDF diagnestic velume Listen Port: 7001 The ot TP part hat s serves s o Betenfo ey (ron-55) coning
connections. Mare Info
b SSL Listen Port Enabled Indicates whether the server can be reached through the default SSL listen
Health of Rusning Servers port. - Mose Info,
[Failed (0) 7002 Hore
I Gitical (0 frfe..
Overloaded (0) _)
i " 5] Chient Cert Proxy Enabled spesfies whethes the HitpClustersendet prosies the elient certificate in a specia

Figure 2.21: Viewing the configuration of the chosen server instance

« Keep scrolling down the right panel of Figure 2.21 until the Arguments text box comes into
view (see Figure 2.22).

Dagnost
Java Home: ome directory (path n the machine running Node Manager) to use when
is server, More Info..
Java vendor: The Java Vendor value to use when starting this server For example, BEA, S
et More Infc...
BEA Home: The BEA home directary (path on the machine running Hode Manager) to use when
st More Tnfe.
How do 1

Root Directory:
e startup arguments for Managed

Class Path:

System Status

Health of Running Servers

I Failed (0)

I Critical (0 Arguments: ts tarting th er. More Info...
Overloaded (0) -javaagen weblogicl 7801\=g_btm.dar -
e DEG_PROPS_HOME:C: \bta\weblogicl_7801

I Waming (0 | ! -

o

Security Policy File: the m Hode
Infe.
User Hame: The user name to use when boat Hore Info
Password: p d of the . he server and perform server heaith
9. More Info
Confirm Password:

Figure 2.22: Configuring the JVM arguments

« Inthe Arguments text box, specify the following lines:

-javaagent:<Path to eg btm.jar file>
-DEG_PROPS HOME=<Path to the folder containing the .props files>

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\weblogic1_
7001 directory, the above specification will be:

43

Chapter 2: Installing and Configuring eG Java BTM

-javaagent:C:\btm\weblogic 7001\eg btm.jar

-DEG_PROPS_HOME=C:\btm\weblogic_ 7001

« Finally, save the changes and restart the WebLogic server.

19. Where multiple instances of WebLogic are monitored, make sure you perform step 15-18 above

20.

for each WebLogic server instance.

To BTM-enable the Admin server of a WebLogic cluster, you need to edit the start-up script of the
Admin server. For that, follow the steps below:

« Login to the Admin server, open the start-up script, and insert the following lines init:

set EG JAVA OPTIONS ADMIN SERVER="-javaagent:<Path to eg btm.jar file> -DEG PROPS
HOME=<Path to the folder containin .props files>"

if "%SERVER NAMES%"=="AdminServer" (
set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA OPTIONS=%JAVA OPTIONS% %$JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags $EG JAVA OPTIONS%

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\WebLogic_
7001 directory, the above specification will be:

set EG_JAVA OPTIONS ADMIN SERVER="-javaagent:c:\btm\WebLogic 7001\eg btm.jar -DEG
PROPS HOME=c:\btm\WebLogic 7001"

if "SSERVER NAMES"=="AdminServer" (

set EG JAVA OPTIONS=%EG JAVA OPTIONS ADMIN SERVER$

)

set JAVA OPTIONS=%JAVA OPTIONS% %$JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags %EG JAVA OPTIONS%

Chapter 2: Installing and Configuring eG Java BTM

astT POST_CLASSPATH-RAROTAS\XqQrl.jar

@REM FROFILING SUFFOAT
set JAVA_FROFILE=
get SERVER_CLASS=webloglc.Server

set JAVA_PROPERTIES=%JAVA_FROFERTIES% WLF_JAVA_ FROFERTIES%

if “SPRODUCTION MODEA"=="true" (
aer JAVA OFTIONS= -Dweblogic.FroducticnModeEnabled=true tJAVA OPTIONSR

)
@REM == Setup properties o that we can save stdout and stderr to files

if HOT "%WLS_STDOUT_LOGE"=="" |

echo Logging WLS stdout to %WLS STDOUT_LOGE

set JAVA_OFTIONS=-4JAVA_OFTIONS% -Dweblogic.Stdout-¥WLS_STDOUT_LOGH
)

if WOT “4WLS_STDERR_LOGR"=="" |

echo Logging WLS scderr to ®WLS_STDERR LOGH
aer JAVA_OPFTIONS=%JAVR_OFTIONSY -Dweblogic.Stderr=¥WLS_STDERR_LOGR

Figure 2.23: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in
an agent-based manner

« Finally, save the file and restart the Admin server.
2.4.2 BTM-Enabling a WebLogic Server Running on a Unix Platform

If the target WebLogic server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open abrowser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target WeblLogic server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

4. If multiple WebLogic server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate WebLogic
server component using the eG administrative interface. When doing so, make a note of the Nick
name and Port number using which you managed each instance.

45

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.

Next, log out of the eG admin interface and the system.

Log into the target WebLogic server. Then, create a btm directory anywhere on the target server
- say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed Component_NickName>_<Managed Component
Port>. For instance, if you have managed the WebLogic server using the nick name weblogic1
and the port number 70071, the new directory under the btm directory should be named as
tomcat1_8080.

If you have managed multiple WebLogic server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the WebLogic server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.17 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the WebLogic server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebLogic server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.17, a zip file named javaagent_<Nick_name_of_
WebLogic_ server>_ <Port_ number_ of WebLogic_ server will get downloaded. For
instance, if you have managed the WebLogic server using the nickname 'weblogic1' and the port
number '7001', then the name of the zip file will be javaagent _weblogic1_7001. Where multiple
WebLogic server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding WebLogic server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file(s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the WeblLogic
server in steps 6 and 7 above. For example, the zip file named javaagent weblogic1_ 7001,
should be transferred to the/opt/btm/weblogic_7001 directory on the target WebLogic server.

Log out of the system and log back into the WebLogic server.

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

46

Chapter 2: Installing and Configuring eG Java BTM

15.

16.

17.

Figure 2.18 depicts the extracted contents of the zip file.

From Figure 2.18, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the WeblLogic server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will
find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:
In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a

Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

47

Chapter 2: Installing and Configuring eG Java BTM

18.

19.

20.

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the WebLogic server/server instance with the path to the eg_
btm.jar and .props files. The procedure to achieve this varies, depending upon the following:

« Whether you want to BTM-enable a stand-alone WebLogic server/server instance

« Whether you want to BTM-enable the Admin server of a WebLogic cluster

To BTM-enable a stand-alone WebLogic server/server instance, first login to the WeblLogic
Administration console. Then, follow the steps detailed below:

o When Figure 2.19 appears, click on the Servers link in the right panel.
« Figure 2.20 will then appear. Here, click on the server instance to be BTM-enabled.
» Figure 2.21 will then appear.

« Keep scrolling down the right panel of Figure 2.21 until the Arguments text box comes into
view (see Figure 2.22).

Arguments:
-javaagent:/opt/btm/weblogic_700l/eqg btm.jar
-DEZ_PROPS _HOME=/opt/btm/weblogicl 7001

Figure 2.24: Configuring the JVM arguments for a WebLogic server on Unix
« Inthe Arguments text box, specify the following lines:

-Jjavaagent:<Path to eg btm.jar file>

-DEG_PROPS HOME=<Path to the folder containing the .props files>

For instance, if the eg_btm.jar file and .props files are extracted into the /opt/btm/weblogic1_
7001 directory, the specification will be:

-javaagent:/opt/btm/weblogicl 7001/eg btm.jar

-DEG_PROPS HOME=/opt/btm/weblogicl 7001

« Additionally, in Unix environments, if the eG agent is deployed on the same host as the

48

Chapter 2: Installing and Configuring eG Java BTM

21.

22.

WeblLogic server, then both the agent and the server will be running using different user
privileges. In this situation, by default, the eG Java BTM logs will not be created. In order to
create the same, insert the following entry after the -DEG_PROPS_HOME specification .

-DEG LOG HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-javaagent:/opt/btm/weblogicl 7001/eg btm.jar
-DEG_PROPS HOME=/opt/btm/webLogic 7001

-DEG_LOG_HOME=/App001/eGBTMLogs

« Finally, save the changes and restart the WebLogic server.

Where multiple instances of WeblLogic are monitored, make sure you perform steps 17-20 above
for each WebLogic server instance.

To BTM-enable the Admin server of a WebLogic cluster, you need to edit the start-up script of the
Admin server. For that, follow the steps below:

«» Login to the Admin server, open the start-up script, and insert the following lines init:

set EG JAVA OPTIONS ADMIN SERVER="-javaagent:<Path to eg btm.jar file> -DEG PROPS
HOME=<Path to the folder containin .props files>"

if "$SERVER NAMES$"=="AdminServer" (
set EG_JAVA OPTIONS=%EG JAVA OPTIONS ADMIN SERVERS
)

set JAVA OPTIONS=%JAVA OPTIONS% %JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag® -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags %EG JAVA OPTIONS%

For instance, if the eg_btm.jar file and .props files are extracted into the /Jopt/btm/webLogic1_
7001 directory, then your specification will be as follows:

49

Chapter 2: Installing and Configuring eG Java BTM

EG_JAVA OPTIONS ADMIN SERVER="-javaagent:/opt/btm/webLogic 7001/eg btm.jar -DEG
PROPS HOME=/opt/btm/webLogic 7001"

« If the eG agent and the Admin server are co-hosted on the same Unix host, then to create the
log files, insert the following entry after the -DEG_PROPS_HOME specification and before the
closing quotes.

-DEG_LOG_HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

EG_JAVA OPTIONS_ ADMIN SERVER="-javaagent:/opt/btm/weblogicl 7001/eg btm.jar -DEG_
PROPS HOME=/opt/btm/webLogic_ 7001 -DEG_LOG_ HOME=/App001/eGBTMLogs"

if ["${SERVER NAME}" = "AdminServer"] ; then
EG _JAVA OPTIONS=" S EG _JAVA OPTIONS ADMIN SERVER}"
fi

SAVE_JAVA OPTIONS="${JAVA OPTIONS} ${EG_JAVA OPTIONS}"

« Finally, save the file and restart the Admin server.

2.5 Installing eG Java BTM on GlassFish

The steps for deploying the eG Java BTM on a GlassFish server will differ based on the platform on
which the target GlassFish server is running - whether on a Windows platform or a Unix platform.

2.5.1 BTM-Enabling a GlassFish Server Running on a Windows Platform

If the GlassFish server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to the GlassFish server.

2. Open abrowser on the server, connect to the eG manager, and login to the eG admin interface.

50

Chapter 2: Installing and Configuring eG Java BTM

3. Manage the GlassFish server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

4. If multiple GlassFish server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which you managed each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the GlassFish
server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed Component_NickName>_<Managed _Component
Port>. For instance, if you have managed the GlassFish server using the nick name
WebSphere1 and the port number 9080, the new directory under the btm directory should be
named as WebSphere1 9080.

6. If you have managed multiple GlassFish server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

7. Once the new sub-directory(ies) is created, open a browser on the GlassFish server, connect to
the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

9. Figure 2.25 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the GlassFish server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple GlassFish server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

@ This page allows the administator to download APM Profie Agent.

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOSTPORT AGENT IP MONITORING
JAVA

WIN-AFFGSOHOM23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23

JAVA

glas: 192168.9.132 4848

JAVA 192168.10.23 2080 #

JAVA 192168.10.101 2080

JAVA

EAP 192168.10.77 9990

JAVA sapwas 19.168.10.35 50000

JAVA tomeat 192.168.10.105 8080

JAVA w45 10.168.10.45 700

JAVA wildfly110 192168.10.110 9990

¢ ¢ ¢ [+ [+ ¢ [+ [+ [+ [«

Page of1 Displaying 1 -9.f

Figure 2.25: Downloading the APM Profiler Agent for the GlassFish server

51

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.
13.

14.

15.

Upon clicking the Download icon in Figure 2.25, a zip file named javaagent_<Nick_name_of _
GlassFish_ server>_ <Port_ number_ of _GlassFish_ server will get downloaded. For
instance, if you have managed the GlassFish server using the nickname 'GlassFish1' and the port
number '4848', then the name of the zip file will be javaagent _GlassFish1_4848. Where multiple
GlassFish server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent GlassFish1_4848, should be
copied to the C:\btm\GlassFish1_4848 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.26 depicts the extracted contents of the zip file.

| btrnLogging.props PROPS File

| btrnOther.props PROPS File

_| config.props PROPS File

| custom.props PROPS File

[£ eg_btm Executable Jar File
(& ed_lava_BTM_Dynamichttach Windows Batch File
| e5_Java_BTM_DynamichAttach.sh SH File

| exclude.props PROPS File

| threshold. props PROPS File

Figure 2.26: Contents of the APM Profiler Agent zip

From Figure 2.26, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the GlassFish server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that GlassFish server/ instance.
You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

52

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

#

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business

Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the GlassFish server with the path to the eg_btm.jar and .props
files. To achieve this, you can use one of the following two ways:

« Through the GlassFish Administration console

« By editing the start-up script of the GlassFish server instance

If you choose to use the GlassFish Administration console, then first, login to the console. Then,
follow the steps detailed below:

o When Figure 2.27 appears, click on the server-config node in the tree-structure in the left
panel.

53

Chapter 2: Installing and Configuring eG Java BTM

Home About
User: admin Domain: domain

Server: 192 168 8.251

GlassFish™ Server Open Source Edition

* [g JoBC
* gt JMS Resources
» [INDI
= JavaMail Sessions
@4 Resource Adapter Configs
v g4/ Configurations
> g defaull-config
[> s
&y Admin Service
& Connector Service
(& EJB Container
L] HTTP Service
& JVM Sedtings
* gt Java Message Service
& Legger Settings
| Menitaring
-8 Metwork Config
= & ORB
L Security
A System Properties
* 5 Thread Pools
d¢ Transaction Service
> @ Vinual Servers
{8 Web Container

@, 2dmin Senvice
& Connector Service

& £48 Container

@, HTTP Service

S JVM Settings

& Java Message Service
% Logger Settings

o Monitoring

Q Network Listeners

R Protocols

@ Transponts

2 ore

Q Security

A System Properties

& Thread Pools

:': Transaction Service
@ Virtual Servers

3 web Container

Figure 2.27: Clicking on the server-config node

« From the options listed in the right panel of Figure 2.27, select the JVM Settings option.
Figure 2.28 will then appear. Select the JVM Options tab page in Figure 2.28.

Home About.
User: admin Domain: domain1 Server: 192.168.8 251

GlassFish™ Server Open Source Edition

‘B JDBC

» 2 JMS Resources General | Path Setings JVM Options Profiler
JNDH -

"l JVM General Settings

JavaMail Sessions
3 Resource Adapter Configs
T * Indicates. required field
* [default-config
> g4 serverconfig
i Admin Service

Change the general configuration settings for the Java Vinual Machine (JVM). Seme of these settings control interactions with a Java Plaform Debugger Architecture (JPDA) debugger

Configuration Name: server-canfi

& Connector Service Java Home: * ${com sun aas javaRoot)
" Path to the directory in which the Java Development Kit is installed
& EJB Container ¥ P
» @ HTTP Service Javac Options:

Command line options 1o pass to the javac compiler

Debug: Enabled
Start server in debug mode ready for JPDA-based debugger

» gt Java Message Senvice
& Logger Settings
mm Monitoring Debug Options: agenllib.i 5P _sockel server=y. susp Laddres
» @ Network Config JPDA options passed to JVM when debugging is enabled

* & ORB RMI Compile Options: P -poa -alwaysgenerate -keepgenerated -g
» g Secury —keepgenerated saves generated source for stubs and lies
/3 System Properties Bytecode Preprocessor:

* 5 Thread Pools

& Transaction Service
> @ Vinual Servers

3 Web Container

Figure 2.28: Clicking on the JVM Options tab page

Chapter 2: Installing and Configuring eG Java BTM

« Figure 2.29 will then appear. You now need to add two new JVM options. For this, click
on the Add JVM Option button in Figure 2.29, twice.

Home ~ About
User: admin Domain: domain1 Server: 132 168.8 251

GlassFish™ Server Open Source Edition

* | JoBC
» gt JMS Resources
> [y JNDI
{51 JavaMail Sessions
& Resource Adapter Configs
v g Configurations
» [default<onfig
» g4 serverconfig
& Admin Service
& Connector Service
@ EJB Container
» @ HTTP Sewice
|
* gt Java Message Service
> Logger Settings
| Manitaring
» @, Network Config
» & ORB
» g Secutty
/3 System Properties
» o Thread Pools
& Transaction Service
» @ Vinual Servers
{2y Web Container
(@ Update Tool

: | General ‘ Path Settings | JVM Options | Profilar

JVM Options

Manage JVM options for the server Values contalning one or more spaces must be enclosed in double quates. ["value sting’)

Configuration Name: server-config

2 12) @ Delete

| Select | Value -
“Djava awt headiess=true

Djava security.poli sun aas i policy

~Dfelix fileinstall disableConfigSave=false.

“Dosgl shel telnet maxconn=1

-Dielix fileinstall. poll=5000

-Djava endorsed dirs=${com sun aas installRootymodules/endorsed¥{path separator}${com. sun aas installRoof]
-Dosgi shell telnet port=6666

-Doom cte wstx retumiullForDefaultNamespace=true
XX. +UnlockDiagnostieVMOptions

~Doom.sun enterprisa config config_environment_factory_class=com sun enterprise config serverbeans. Appsar]

~Djava ext dirs=${com sun aas | 7
-Djavax aml accessE stemalSchema=all
-Dygash args=—nointeractive

XX MaxPermSize=192m

P Sun. 1 4l {path.sepq

Figure 2.29: Clicking on the ADD JVM Option button

« Two empty rows will then be inserted, as depicted by Figure 2.30.

User: admin Domain: domain1 Server: 192 168 8 251

GlassFish™ Server Open Source Edition

» g J0BC
» gt JVS Resources
* (g JNDI
&= JavaMail Sessions
£ Resource Adapter Configs
+ g8 Configurations
» [default-config
» [serverconfig
& Adnmin Service
& Connector Service
{3 EJB Container
» @ HTTP Service
i
» gt Java Message Service
i Logger Settings
|m Monitoring
» @, Network Config
» & ORB
» g Secuity
/3 System Properties
» g Thread Pools
¢ Transaction Service
» @ Virual Servers
[y Web Container

-] Upaale Tool

General \ Path Settings JVM Options. | Profiler

JVM Options

Manage JVM options for the senver. Values conlaining one or more spaces must be enclosed in double quates ("value string’).

Configuration Name: server-config

EZIERN @ Delete

| Select | Value -

-Djava awt headless=true

~Djava secusity policy=${com. sun.aas Jserver policy

-Dfelix fileinstall disableConfigSave=false

~Dosgi. chell telnet maxconn=1

~Difelix fileinstall poll=5000

“Djava.endorsed dirs=S{com sun aas instaliRootjimodules/endorseds{palh separalor}Sicom sun aas InstallRool]
“Dosgi. shel telnel port=6666

“Beom pace=tru

XX +UnlockDiagnosticVMOptions.

Doom sun enterprise config config_environment_faciory_class=com sun enterprise config serverbeans Appser]
-Djava. ext.dirs=${com. sun.aas. i X sun. aas,)i {path sepa
-Djavax xml accessEtemalSchema=all

Figure 2.30: Two empty rows inserted in the JVM Options tab page

Specify each of the following lines in each of the empty rows, as indicated by Figure 2.31:

-javaagent:<Path to eg btm.jar file>

-DEG_PROPS HOME:<Path to the folder containing .props files>

55

Chapter 2: Installing and Configuring eG Java BTM

For instance,

if the eg_ btm.jar file and .props files are extracted

into the

C:\btm\GlassFish1_4848 directory, the above specification will be:

-javaagentC:\btm\GlassFishl 4848\eg btm.jar

-DEG_PROPS_HOME:C:\btm\GlassFishl 4848

Home _ About
User: admin Domain: domaini Server: 192 168.8 251

GlassFish™ Server Open Source Edition

'e JOBC
L= JMS Resources
+ g JNDI
= JavaMail Sessions
§h Resource Adapter Configs
v [Configurations
* B default-config
* [serverconfig
fa Admin Service
£y Connector Service
(% EJB Container
- @ HTTP Service
& JVM Settings
> gt Java Message Service
§i Lagger Settings
I+ Manitoring
» @ Network Config
» = ORB
"] Security
A System Properties
» & Thread Pools
o Transaction Service
3 ﬂ Virtual Servers
@ Web Container
{8 Update Toal

General Path Settings | JUM Options Profiler

JVM Options

Manage JVM options for the server Values containing one or more spaces must be enclosed in double quotes ("valt

Configuration Name: server-config

82) (8. imuvng' Delete

| Select| Value
-javaagent:C\btm\GlassFish1_4848\eg_btm.jar

se string”

“

|-DEG_PROPS_HOME:C:\biy ish1_4848

-Dijava.awt. headless=true

-Djava. security policy=${com. sun. aas.instanceRoat}/config/server. policy
-Dielix fileinstall disableConfigSave=false

-Dosgl. shell telnet maxconn=1

-Dielix fleinstall poll=5000

0. 5UN. 3as. i

-Djava. endorsed. dirs=§{com.sun aas. i ip i
-Dosgi shell telnet port=6666

-Dicom. cte. wstx retumNullForDefaultNamespace=true
-XX_+UnlockDiagnosticV MOptions

-Dcom sun enterprise config config_envi _tactory_class=com sun ise config

Appsen|

-Dijava. ext. dirs=§{;
-Djavax xm accessExemalSchema=all

sun.aas.j i Ip P 15 sun. 8as. i

¥{path sepa

Figure 2.31: Specifying the Java arguments for BTM-enabling the GlassFish server

« Finally, save the changes.

« Where multiple instances of GlassFish are monitored, make sure you perform steps 15-

18above for each GlassFish server instance.

19. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script

of the GlassFish server instance, then follow the steps below:

« Open the start-up script and enter the following lines in it, as depicted by Figure 2.32.

<jvm-options>-javaagent:<<Path to eg btm.jar file>></jvm-options>

<jvm- options>- DEG ROPS HOME=<<Path of the folder containing .props files>></jvm-

options>

56

Chapter 2: Installing and Configuring eG Java BTM

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\GlassFish1_
4848 directory, the above specification will be:

<jvm-options>-javaagent:C:\btm\GlassFishl 4848\eg btm.Jjar</jvm-options>

<jvm-options>-DEG PROPS HOME=C:\btm\GlassFishl 4848</jvm-options>

F-——3==-—1--——#-—=—@-—=#-=--3-———4-———d-——#----§-— 4= =G F-—-—J-———4-—— B R —@-———4-———[-———f-—=—l-———d-=—=j-———f-———F-———f-———g-—-—f-——-G---—f---—f-—

35— "java Nt . dirs=§ [com. SUn . 888,] aVARAOT] S1ik/ Nt [pAth. SEPAXATAr] § [Com. SUA . 884, JavaRkoot] SJEe/1ib/ents [path. SEPAFATAE | § [OB, SUR . 485, InATanceRoGT]
— nay

3—'\:|a rax.¥ml.accessExternalSchema=all<s optionak

>=Dgoah. arge=-=nointeractive</ 1w sptiona>

S=JI0:MaNParniize=1028/
n=>-Djsvax.management.builder.initial=com.sun. ='||:‘:;-1== vd,admin. AppServerdBeanServerBuilder</jvm-optiona>
na>=D3dk.corba.allowlutpucStreamSubclasa=true</vm-optional

-Doom. sun . enterprlse . security. n't'hsuut.bcurﬂ.[{e;,a lag=alasd) opticnax

-fileinscall .bundles, sl:arlT“a‘uLe'n:-..:.ec E-Op

23
>-DEe1ix. FL161NSTALL , 10g. LEw el=2¢/JvE-opt
na>-Doagi.shell.celnec.ip=127.0.0.1</Jvm-option

2 h.additionald s..iBu:r‘leaI-Sta':-::a apache.felix.shell, org.apache.felix.gogo.runtize, org.apache. felix.gogo.shell, org.apache. felix.,
felix. °he_11 remote, org. apache. felix, fileinatall</ jrn-oprionss

fivm-optionay
yStore=f [com. sun.aas. instanceRoot | /config/keyatore. jka</ Jvm-opticnal

ers=org.spache.derby.jdbe.ClientDriver</jvm-optiona>
onzr=0javax.net.sal. trustStore=§ {com. sun.aas . inatanceRoot }/config/cacerts. jka</ 7vm-optiona®
"P.N'ILE ’J‘E IEE'_I CLASS_LOADIRG=Crue<,]vm-optlonal

ionss

VerT maY-ConnecTions="I50">»

20.

Figure 2.32: Editing the start-up script of the GlassFish server instance to BTM-enable the instance
« Then, save thefile.

« Where multiple instances of GlassFish are monitored, make sure you perform steps 15, 16,
and 19 above for each GlassFish server instance.

Next, add the package com.eg in the boot delegation framework. If the Equinox OSGI container
is used, then edit the <<GLASSFISH__ INSTALL
DIR>>\glassfish\osgi\equinox\configuration\config.ini file to add the package “com.eg.*. If the
Felix OSGI container is wused, then edit the <<GLASSFISH_ INSTALL_
DIR>>\glassfish\osgi\felix\configuration\config.properties file to add the "com.eg.*". Figure 2.33
depicts how to add this package to the config file.

57

Chapter 2: Installing and Configuring eG Java BTM

loment Project Teols Browser Window Help

BX|v o |% @i 4 wEES DEE DIk

org.osgi. framework. systen. package e’
5 (extra-systen-paciages)

Rlthouagh Eclipselink ispores chese packages, in typleal GlassFish installacion
Oracle JOBC driver may no
§ java.ext.dirs and the bootdslegation helps thers.

eclipaelink.bootdelegationmoracle.agl, cracle.agl.®

& need To wse bDootdelegacion except for the [ollowing issues:

¥-1. Eclip ink

4., BetBeans profiler packages =xist in pacent class loader {s=e isaue #EELZ)
5., ETrace exists in bBootclasspath.

org.0sgl. framework. bootdelegation=4 {eclipselink . boocdelegationl,

com. sun.btrace, com.sun.btrsce.s, %

bt available as a bundle, 0 we ask user ©o ilnscall it

F oY~ Y e p———" Y p——
L] then the opticn appliss

only Lf the new code 13 made subject Too goch ion by the copyeight

holder.

L]

L]

¥ Frapework config properties,

L

exXtra-system-packages=§{jre-§{java.specification.veraion}} §{intecnal-)dk-pkga-for-gf}, org-glasafiah

1n

org.oetbeans. Lib.profiler, E:g.netreuns.l;b.p:c!1Le:.‘,c::.:g.‘

The 0561 R4.2 spec says boot delegaticn uses the boot class loader by defaulc. We need

Figure 2.33: Adding com.eg to boot delegation framework

21. Finally, save the file and restart the Glassfish application server.

2.5.2 BTM-Enabling a GlassFish Server Running on a Unix Platform

If the target GlassFish server is running on a Unix operating system, then follow the steps below to

BTM-enable that server:

eG manager.

interface. When managing, make a note of the Nick name and Port number that you provide.

each of those instances, then you will have to manage each instance as a separate GlassFish
server component using the eG administrative interface. When doing so, make a note of the Nick

name and Port number using which you managed each instance.

5. Next, log out of the eG admin interface and the system.

58

Login to any system in your environment that supports a browser and has network access to the

Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

Manage the target GlassFish server as a separate component using the eG administrative

If multiple GlassFish server instances are operating on a single host, and you want to monitor

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.
15.

Log into the target GlassFish server. Then, create a btm directory anywhere on the target server
- say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed Component_NickName>_<Managed Component
Port>. For instance, if you have managed the GlassFish server using the nick name GlassFish1
and the port number 4848, the new directory under the btm directory should be named as
GlassFish1_4848.

If you have managed multiple GlassFish server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the GlassFish server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.25 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the GlassFish server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple GlassFish server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.25, a zip file named javaagent_<Nick_name_of _
GlassFish_ server>_ <Port_ number_ of _ GlassFish_ server will get downloaded. For
instance, if you have managed the GlassFish server using the nickname 'GlassFish1' and the port
number '4848', then the name of the zip file will be javaagent GlassFish1_4848. Where multiple
GlassFish server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding GlassFish server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the GlassFish
server in steps 6 and 7 above. For example, the zip file named javaagent GlassFish1_4848,
should be transferred to the/opt/btm/GlassFish1_4848 directory on the target GlassFish server.

Log out of the system and log back into the GlassFish server.
Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.26 depicts the extracted contents of the zip file.

59

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

From Figure 2.26, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM-enable the GlassFish server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will
find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request’ comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

60

Chapter 2: Installing and Configuring eG Java BTM

19.

20.

21.

22.
23.

24.

Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this,
you need to edit the start-up script of the GlassFish server.

The first step towards this end is to open the start-up script. Then, insert the following lines in it:

<jvm-options>-javaagent:<<Path to the eg btm.jar file>> </jvm-options>

<jvm- options>- DEG_PROPS_HOME=<<Path_to_ the folder containing .props_files>></jvm-

options>

For instance, if the .props files had been copied to the lopt/btm/GlassFish1_4848 directory, the
above specification will be:

<jvm-options>-javaagent:/opt/btm/GlassFishl 4848/eg btm.jar</jvm-options>

<jvm-options>-DEG PROPS HOME=/opt/btm/GlassFishl 4848</jvm-options>

In Unix environments, if the eG agent is deployed on the same host as the GlassFish server, then
both the agent and the server will be running using different user privileges. In this situation, by
default, the eG Java BTM logs will not be created. In order to create the same, insert the following
entry after the -DEG_PROPS_HOME specification .

<jvm-options>-DEG LOG HOME=<<LogFile Path>></jvm-options>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
allinstances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

<jvm-options>-javaagent:/opt/btm/GlassFishl 4848/eg btm.jar</jvm-options>
<jvm-options>-DEG_PROPS HOME=/opt/btm/GlassFishl 4848</jvm-options>

<jvm-options>-DEG LOG HOME=/App001/eGBTMLogs</jvm-options>
Then, save the file.

Where multiple instances of GlassFish are monitored, make sure you perform steps 17-22 above
for each GlassFish server instance.

Next, add the package com.eg in the boot delegation framework. If the Equinox OSGI container
is used, then edit the <<GLASSFISH__ INSTALL

61

Chapter 2: Installing and Configuring eG Java BTM

25.

DIR>>/glassfish/osgi/equinox/configuration/config.ini file to add the package “com.eg.*". If the
Felix OSGI container is wused, then edit the <<GLASSFISH_INSTALL_
DIR>>/glassfish/osgi/felix/configuration/config.properties file to add the "com.eg.*". In these files,
look for the entry that begins with the org.osgi.framework.bootdelegation. Append the following
string to that entry:

,com.eg.*

Finally, save the file and restart the Glassfish application server.

2.6 Installing eG Java BTM on JBoss EAP

The steps for deploying the eG Java BTM on a JBoss EAP server will differ based on the platform on
which the target JBoss EAP server is running - whether on a Windows platform or a Unix platform.

2.6.1 BTM-Enabling a JBoss EAP Server Running on a Windows Platform

If the JBoss EAP server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1.
2.

Login to the JBoss EAP server.
Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

Manage the JBoss EAP server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

If multiple JBoss EAP server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which you managed each instance.

Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JBoss
EAP server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name
this sub-folder in the following format: <Managed Component_NickName>_ <Managed _
Component_Port>. For instance, if you have managed the JBoss EAP server using the nick
name JBoss7 and the port number 9990, the new directory under the btm directory should be
named as JBoss?1_ 9990.

If you have managed multiple JBoss EAP server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using

62

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.
13.

which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, open a browser on the JBoss EAP server, connect to
the eG manager, and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

Figure 2.34 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss EAP server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss EAP server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

PPPPPPP

WIN-AFFGSOHOM23 2020 #

192168.9.132 4848
102168.10.23 2080

192.168.10.101 9080

192168.10.77 9990

12.168.10.35 50000

[[+ [+ [+ [+ & % ¢ [+ [

Figure 2.34: Downloading the APM Profiler Agent for the JBoss EAP server

Upon clicking the Download icon in Figure 2.34, a zip file named javaagent_<Nick_name_of_
JBossEAP_server>_<Port_number_of_JBossEAP_server will get downloaded. For
instance, if you have managed the JBoss EAP server using the nickname 'JBoss1' and the port
number '9990', then the name of the zip file will be javaagent JBoss1 9990. Where multiple
JBoss EAP server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent JBoss1 9990, should be
copied to the C:\btm\JBoss1_9990 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.35 depicts the extracted contents of the zip file.

63

Chapter 2: Installing and Configuring eG Java BTM

14.

15.

| btmLogging.props PROPS File

| btmOther.props PROPS File

| config.props PROPS File

| custom.props PROPS File

| £ eg_btm Executable Jar File
(& ed_lava_BTM_Dynamichttach Windows Batch File
| eG_Java_BTM_DynamicAttach.sh SH File

| exclude.props PROPS File

| threshold.props PROPS File

Figure 2.35: Contents of the APM Profiler Agent zip

From Figure 2.35, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the JBoss EAP server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that JBoss
EAP server/ instance. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

64

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props
files. To achieve this, you need to edit the start-up script of the JBoss EAP server. The first step
towards that is to open the start-up script.

Then, in the file, enter the following lines, as depicted by Figure 2.36.

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\JBoss1_9990
directory, the above specification will be:

-javaagent:C:\btm\JBossl 9990\eg btm.jar

-DEG_PROPS HOME:C:\btm\JBossl 9990

65

Chapter 2: Installing and Configuring eG Java BTM

e et Tt Sttt ettt et etk Sty el T [et it Teieiuiet Tomtetel Satetet Sttt Temietel Teteteter ettt Sttt et Seier Tty St Tttt
ren §

rem # Speciiy optioma to pass to the Java VM. Hote, there are some additicmal

rem # optiona that are alwaya passed by run.bat.

rem §

rem # JVH memory allocation pool parameters - modify as appropriate.
get "JAVA OFIS=-XmalG -XmxlG -MM:MaxPermSize-25Em"

rem § Pre
et "JAVA_OFTS=AJAVA_CFTS4 -Djava.net.preferlPviStack=true”

rem § Set the Jboss.modules.policy-permissions Property Lo True by default.

&t "JAVA OPT3=%JAVA OFT3% -Dvibgas.modules.policy-permissions=trus CRiRRCTTetvyaguarit e ppn=la il n g kAN i e e

] DEG_PROFS HOME:C:'\.ibtm\J

rem # Make Byreman classes visible in all module loaders
rem § This is necessary te inject Byteman rules ince AST deployments
set “JAVA_OFTS=AJAVA_OFT34 -Djboas.modules.system.pkgs=org.jbess.byteman, com. singulerity, com.eg”

TEN § SA.L'c].E JPOA EE'I:'EIDQB for FEMOTE Z0CKET ﬂ‘_’I‘.‘L‘IWlElI]'
rem set "JAVA_OFT3=%JAVA_OPTS% -agentlib:idwp=transport=dt_socket,address=ET87, serversy, suspend=n"

Figure 2.36: Editing the start-up script to BTM-enable a JBoss EAP server running on Windows

19. Where multiple instances of JBoss EAP are monitored, make sure you perform steps 15-18
above for each JBoss EAP server instance.

20. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home\bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home\bin directory.

rem set "PROFILER=%JB0SS_HOME\binjbos s-profiler properties”

rem #

rem # Specify the location of the Java home directory (itis recommended that
rem # this abways be sef). If sel, then “3%JAVA_HOME\binljava™ will be used as
rem # the Java VM executable. ofherwise, 36 JAVA%" will be used (see below)
rem #

rem set "JAVA_HOME=Clophjdk1.6.0_23

rem #

rem # Specify the exact Java VM exscutable to use - only used if Javia_HOME is
rem # not set. Defaultis Java”

rem &

rem set "JAVA=Clophjdk1.6.0_23\bin\java™

rem &

rem # Specify oplions o pass o the Java V. Note, there are some additional
rem # options that are always passed by run.bat

rem#

rem # JVM memory allocation podl parameters - modify as appropriate.
set "JAVA_OPTS=Xms1G -Xmx1G J0CMaxPermSize=256m"

rem # Prefer IPwd
set "JAVA_OPTS=%JAVA_OPTS% -Diava net preferPvdStack=true™

rem # Setthe jboss modules. policy-permissions propery to true by default
set "JAVA_OPTS=%JAVA_OPTS% -Djboss modules policy-permissions=true -werbose:gc X +PrimtGCDetails XX +PrimtGCDate Stamps -Xloggo Cliboss. log

rem # Make Byleman classes visible in all module loaders

b el "JAVA_OPTS=%JAVA_OPTS% -Djboss modules system pkgs=org jboss byteman BT
rem # Sample JPDA seltings for remote socket debugging
rem sel “JAVA_OPTS=%JAVA_OFTS3% -agentlib jdwp=trans port=di_s ocket address=8787 server=ysuspend=n"
rem # Sample JFDA settings for shared memory debugging
rem et “JAVA_OPTS=%JAVA_OFPTS% -agentlib jdwp=trans port=dt_shmem, address=jboss sener=y suspend=n"
1l <

Figure 2.37: Editing the domain.conf file or standalone.conf file

21. Append ",com.eg" to the following line in the file, as depicted by Figure 2.37:

set "JAVA OPTS=%JAVA OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

66

Chapter 2: Installing and Configuring eG Java BTM

22.

Finally, save the file. and restart the JBoss EAP server.

2.6.2 BTM-Enabling a JBoss EAP Server Running on a Unix Platform

If the target JBoss EAP server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1.

Login to any system in your environment that supports a browser and has network access to the
eG manager.

Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

Manage the target JBoss EAP server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

If multiple JBoss EAP server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate JBoss EAP
server component using the eG administrative interface. When doing so, make a note of the Nick
name and Port number using which you managed each instance.

Next, log out of the eG admin interface and the system.

Log into the target JBoss EAP server. Then, create a btm directory anywhere on the target
server - say, lopt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed Component NickName>_ <Managed
Component_Port>. For instance, if you have managed the JBoss EAP server using the nick
name JBoss7 and the port number 9990, the new directory under the btm directory should be
named as JBoss1_9990.

If you have managed multiple JBoss server instances running on a single host, then you will have
to create multiple sub-directories under the btm directory - one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the JBoss EAP server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.34 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the JBoss EAP server that you want to BTM-enable. Once you locate the server, click the

67

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.
15.

16.

17.

Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss EAP server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.34, a zip file named javaagent_<Nick_name_of_
JBossEAP_server>_<Port_number_of_JBossEAP_server will get downloaded. For
instance, if you have managed the JBoss EAP server using the nickname 'JBoss1' and the port
number '9990', then the name of the zip file will be javaagent JBoss1_9990. Where multiple
JBoss EAP server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding JBoss EAP server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JBoss EAP
server in steps 6 and 7 above. For example, the zip file named javaagent JBoss1 9990, should
be transferred to the/opt/btm/JBoss1_9990 directory on the target JBoss EAP server.

Log out of the system and log back into the JBoss EAP server.
Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.35 depicts the extracted contents of the zip file.

From Figure 2.35, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the JBoss EAP server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

68

Chapter 2: Installing and Configuring eG Java BTM

18.

19.

20.

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props
files. To achieve this, you need to edit the start-up script of the server. The first step towards that
is to open the start-up script.

Then, in the file, enter the following lines, as depicted by Figure 2.38.

JAVA OPTS="$JAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG PROPS HOME=<<PATH TO
LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the eg_btm.jar file and the .props files are extracted into the /opt/btm/JBoss1_
9990 directory, the above specification will be:

JAVA OPTS="S$SJAVA OPTS -javaagent:/opt/btm/JBossl 9990/eg btm.jar -DEG PROPS
HOME=/opt/btm/JBossl 9990"

69

Chapter 2: Installing and Configuring eG Java BTM

21.

T e e Ty e | 5 7-- T T T T R e e |
ULES _SYSTEM PEGS"™ = "x*]: then
SYSTEM _PHG5="0rg.)boss.byteman®

Uncomment the following line to prevent menipulation of JWM opticna
by shell scripts.

#

#PRESERVE JAVA OFTS=trus

" = "x" |; then

"§JAVA_OFTS -Djbosa.modules.systen. pkga=4Jb

THVR, "¢JAVA_OPTS -Djboss.modules.policy-permisainn
elae

echo "JAVA_OFTS already set in environment; overriding default settings with values: SJAVA OFTS"
i

§ Sample JPDR settings for remote socket debugging
#JMVA_OFTS="5JAVA_OFTS -agentlib:jdwp=transpert=dt_socket,address=2747, server=y, suspend=n"

Sample JPOA settinge for shared memory debugging
#JAVR OFTS="§

JAVL_OPTS -agentlib:jdwp=transpert=dt_shmes, serversy, suspendsn, address=ibass”

Uncomment to not uase JBoas Modules lockleas mode
#JAVA_OPIS="§JAVA_OPIS -Djboas.modules.lockless=false”

Uncomment to gather JBoss Modules metrics
#JAVA_OFTS="5JAVA_OFTS -Diboss.modules.metrica=true®

VA OPTS="5JAVA OPI3 -javaagent:/opt/btm/JBossl_S0%0/eg_btm jar -DEG_PROPS HOME=/opt,/btam/IBossl_8980"

Figure 2.38: Editing the start-up script to BTM-enable a JBoss EAP server on Unix that is monitored in an
agent-based manner

In Unix environments, if the eG agent is deployed on the same host as the JBoss EAP server,
then both the agent and the server will be running using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification, but before the closing quotes.

-DEG_LOG HOME=<<LogFile Path>>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
allinstances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

JAVA OPTS="SJAVA OPTS -javaagent:/opt/btm/JBossl 9990/eg btm.jar -DEG_PROPS_
HOME=/opt/btm/JBossl 9990 -DEG_LOG_ HOME=/App001/eGBTMLogs"

22. Then, save thefile.

70

Chapter 2: Installing and Configuring eG Java BTM

23. Where multiple instances of JBoss EAP are monitored, make sure you perform steps 17-22
above for each JBoss EAP server instance.

24. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home/bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home/bin directory.

rem sel PROFILER=-%JB0SS_HOME®Diniboss-profiler properties

rem #

rem # Specify the exact Java VM executable to use - only used if JAVA_HOME is
rem # not set Default is Java”

rem #

rem set "JAVA=Cloptidkl 6.0_23\bin\java”

rem #
rem # Specify opfions o pass o the Java VI, Note, there are some additional
rem # oplions that are always passed by run bat

ons property to frue by default
0dules Policy-permis Sions=true -verbos &:gc -X0 =PrintGCDetalls -0C+PANGCDate Stamps -00gocCiboss log|

rem # Make Byteman classes visible in all module loaders
m s Thi. les into, P

> kew “JAVA_OPTS=%JAVA_OPTS% -Diboss modules system. pkgs=org.jboss byteman SRR

rem # Sample JPDA settings for remote socket debugging
rem set JAVA_OPTS=%JAVA_OPTS% -30entib jOwp=transport=d_socket address=8787 Server=y,suspend=n-

rem # Sample JPDA settings for shared memary debugging
rem set JAVA_OPTS=%JAVA_OPTS% -30entib jawp=transport=gl_shmem,address=jboss s ener=y,suspend=n-

1K

Figure 2.39: Editing the domain.conf file or standalone.conf file

25. Append",com.eg" to the following line in the file, as depicted by Figure 2.37:

set "JAVA OPTS=%JAVA OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

26. Finally, save the file and restart the JBoss EAP server instance.
2.7 Installing eG Java BTM on JBoss WildFly

The steps for deploying the eG Java BTM on a JBoss WildFly server will differ based on the platform

on which the target JBoss WildFly server is running - whether on a Windows platform or a Unix
platform.

2.7.1 BTM-Enabling a JBoss WildFly Server Running on a Windows Platform

If the JBoss WildFly server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to the JBoss WildFly server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

71

Chapter 2: Installing and Configuring eG Java BTM

3. Manage the JBoss WildFly server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

4. If multiple JBoss WildFly server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which you managed each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JBoss
WildFly server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name
this sub-folder in the following format: <Managed Component_NickName>_ <Managed
Component_Port>. For instance, if you have managed the JBoss WildFly server using the nick
name WildFly1 and the port number 9990, the new directory under the btm directory should be
named as WildFly1_9990.

6. If you have managed multiple JBoss WildFly server instances running on a single host, then you
will have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

7. Once the new sub-directory(ies) is created, open a browser on the JBoss WildFly server, connect
to the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

9. Figure 2.40 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss WildFly server that you want to BTM-enable. Once you locate the server, click
the Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss WildFly server instances on a single host are managed, then you will
have to download the APM Profiler Agent separately for each of the managed instances.

BUSINESS TRANSACTION MONITORING

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOSTPORT AGENT IP MONITORING
JAVA

WIIN-AFFGSOHON23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 Agent-based

JAVA 192168.9.132 4848

JAVA 192.168.10.105 8080

¢ ¢ ¢ [+ [+ ¢ [+ [+ [+ [«

i
i
i
i
d
i
i
i
i

JAVA w45 10.168.10.45 700

JAVA wildfly110 192168.10.110 9990

Figure 2.40: Downloading the APM Profiler Agent for the JBoss WildFly server

72

Chapter 2: Installing and Configuring eG Java BTM

10.

11.

12.
13.

14.

15.

Upon clicking the Download icon in Figure 2.40, a zip file named javaagent_<Nick_name_of _
WildFly_server>_<Port_number_of_WildFly_server will get downloaded. For instance, if
you have managed the JBoss WildFly server using the nickname 'WildFly1' and the port number
'9990', then the name of the zip file will be javaagent WildFly1_9990. Where multiple JBoss
WildFly server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent WildFly1_9990, should be
copied to the C:\btm\WildFly1_9990 directory .

Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.41 depicts the extracted contents of the zip file.

| btrnLogging.props PROPS File

| btrnOther.props PROPS File

_| config.props PROPS File

| custom.props PROPS File

[£ eg_btm Executable Jar File
(& ed_lava_BTM_Dynamichttach Windows Batch File
| e5_Java_BTM_DynamichAttach.sh SH File

| exclude.props PROPS File

| threshold. props PROPS File

Figure 2.41: Contents of the APM Profiler Agent zip

From Figure 2.41, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the JBoss WildFly server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that JBoss
WildFly server/ instance. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

73

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

#

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business

Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and
.props files. To achieve this, you need to edit the start-up script of the JBoss WildFly server. The
first step towards that is to open the start-up script.

Then, in the file, enter the following lines, as depicted by Figure 2.42.

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_btm.jar file and the .props files are extracted into the C:\btm\WildFly1_
9990 directory, the above specification will be:

-javaagent:C\btm\WildFlyl 9990\eg btm.jar

74

Chapter 2: Installing and Configuring eG Java BTM

19.
20.

21.

—-DEG_PROPS_HOME=C:\btm\WildFlyl 9990

T |
E 1 I B
Tem 4
rem § Default is to not load a JBoss Profiler configuration file.
rem &
Tem set “FROFILER=4JBOSS_HCMEW\bin\jboss-profiler.properties”
Tem §
commended that
va" will be uzed a3
rexm &
Tem ¢ Specify options to pass to the Java VM. Note, there are some additional
Tem # cpticns that are always passed by run.bat.
Tem #
Tem ¢ I pool parameters - modify aa appropriate.
aet "IN X1024M -XX:MaxPermSize=256M"
4
Tem ¢ Sanple JPOA Setrings for shaved memory debugging -

Figure 2.42: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agent-

Then, save the file.

based manner

Where multiple instances of WildFly are monitored, make sure you perform steps 15-19 above

for each WildFly server instance.

Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_

Home\bin directory.

If the JBoss server is running in standalone mode, open the

standalone.conf file in the JBoss_Home\bin directory.

75

Chapter 2: Installing and Configuring eG Java BTM

rem # Specify the location ofthe Java home directory (it is recommended that
rem # this always be sef). If set, then "%JAVA_HOME®%\bin\java™ will be used as
rem # the Java VM executable; otherwise, "%JAVA%" will be used (see below)
rem#

rem set "JAVA_HOME=C:\ophjdk1.6.0_23"

rem#

rem # Specify the exact Java VM executable to use - only used if JAVA_HOME is
rem # not set Defaultis Java”

rem #

rem set "JAVA=C\optijdk1.6.0_23\bin\java™

rem#

rem # Specify options to pass fo the Java VM, Mote, there are some additional
rem # options that are always passed by run,bat

rem #

rem # JVM memory allocation pool parameters - modify as appropriate
set"JAVA_OPTS=-Xms1024M -Xmx 10240

rem # Prefer IPvd
sel"JAVA_OPTS=%JAVA_OPTS% -Djava.nel preferlPvd Stack=trug”

rem # Setthe jboss modules policy-permissions property to true by default
sel"JAVA_DPTS=%JAVA_OPTS% -Djboss modules.policy-permissions=lrue -verbose:ge -X00+PrintGCDetails -0 +PrintGCDaleStamps -Xlogge Cjboss log”

rem # Make Byleman classes visible in all module loaders
fom 8 Thic i yin injes Bteman niles ints AST danl il
boo [set-Java_OPTS=%JAVA_OPTS% -Djboss modules system pkgs=org jboss. byteman,com.edf |

rem # Sample JPDA settings for remote socket debugging
rem set"JAVA_DPTS=%JAVA_OPTS% -agentiib:jdwp=transpor=di_socket address=87387 server=y suspend=n"

ram # Sample JPDA settings for sharad memaory debugging
rem set "JAVA_OPTS=%.JAVA_OPTS% -agentiib;dwp=transport=dt_shmem, 5=|b0SS, SeNver=y.

rem # Use JBoss Modules lockless mode
rem set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules lockless=true”

Figure 2.43: Editing the domain.conf file or standalone.conf file
22. Append ",com.eg" to the following line in the file, as depicted by Figure 2.43:

set "JAVA OPTS=%JAVA OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

23. Finally, save the file and restart the JBoss WildFly server.

2.7.2 BTM-Enabling a JBoss WildFly Server Running on a Unix Platform

If the target JBoss WildFly server is running on a Unix operating system, then follow the steps below
to BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target JBoss WildFly server as a separate component using the eG administrative
interface. When managing, make a note of the Nick name and Port number that you provide.

4. If multiple JBoss WildFly server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate JBoss
WildFly server component using the eG administrative interface. When doing so, make a note of
the Nick name and Port number using which you managed each instance.

5. Next, log out of the eG admin interface and the system.

76

Chapter 2: Installing and Configuring eG Java BTM

11.

12.

13.
14.
15.

Log into the target JBoss WildFly server. Then, create a btm directory anywhere on the target
server - say, lopt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed Component NickName>_ <Managed_
Component_Port>. For instance, if you have managed the JBoss WildFly server using the nick
name WildFly1 and the port number 9990, the new directory under the btm directory should be
named as WildFly1_9990.

If you have managed multiple WildFly server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has been managed in eG.

Once the new sub-directory(ies) is created, log out of the JBoss WildFly server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

. Figure 2.40 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the JBoss WildFly server that you want to BTM-enable. Once you locate the server, click
the Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss WildFly server instances on a single host are managed, then you will
have to download the APM Profiler Agent separately for each of the managed instances.

Upon clicking the Download icon in Figure 2.40, a zip file named javaagent_<Nick_name_of_
WildFly_server>_<Port_number_of_WildFly_server will get downloaded. For instance, if
you have managed the JBoss WildFly server using the nickname 'WildFly1' and the port number
'9990', then the name of the zip file will be javaagent WildFly1 9990. Where multiple JBoss
WildFly server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding JBoss WildFly server instance.

Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JBoss WildFly
server in steps 6 and 7 above. For example, the zip file named javaagent_WildFly1_9990, should
be transferred to the/opt/btm/WildFly1_9990 directory on the target JBoss WildFly server.

Log out of the system and log back into the JBoss WildFly server.
Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Figure 2.41 depicts the extracted contents of the zip file.

77

Chapter 2: Installing and Configuring eG Java BTM

16.

17.

18.

From Figure 2.41, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

Next, proceed to BTM- enable the JBoss WildFly server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as the Designated_Agent.

Note:

In case a specific Designated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request’ comes in as the Designated_Agent, then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eG agent.

Finally, save the btmOther.props file.

78

Chapter 2: Installing and Configuring eG Java BTM

19.

20.

21.

Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and
.props files. To achieve this, you need to edit the start-up script of the server. The first step
towards that is to open the start-up script.

Then, in the file, enter the following lines, as depicted by Figure 2.44.

JAVA OPTS="$JAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG_PROPS_HOME=<<PATH TO
LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the eg_btm. jar file and .props files are extracted into the /opt/btm/WildFly1_
9990 directory, the above specification will be:

JAVA OPTS="S$JAVA OPTS -javaagent:/opt/btm/WildFlyl 9990/eg btm.jar -DEG PROPS
HOME=/opt/btm/WildFlyl 9990"

echo “JAVA OFTS already set in envircmment: overriding default settings with values: SJAVA OFTS"
fi
Sample JPDA sertings for remoteé socket debugging

#IAVA_OFTS="sJAVA_OFT3 -agentlib:jdwp=transport=dt_socket, address=8787, server=y, suspend=n"

Sample JPOA settings for shared memcry desbugging
#TAVA_OPTS="§JAVA_OPTS -agentlib:jdwp=transport=dr_shmem, serversy, suspends=n, addresa=jboas™

Uncomment to not use JBoss Modules lockless mode
#JAVA OFTS="¢JAVA OFIS =Djboss.modulesa.locklessa=false™

4§ Uncomment to gather JBoas Modules metrics
#JAVA_OFTS="sJAVA_OFTS -Djboss.modules.metrica=true”

Uncomment this To run with 2 Security manager enabled
SECMER="trus"

Uncomment thiz in order to be able to run Wildfly on FreeBSD
when j get “epol. r function not implemented®™ message in dmeag cutpuc
hannels.spl.SelectorProvider=sun.nis.ch. PollslecrorProvider®

¥ A 1 gent:/opt/bte/ HildFlyl 9580 /eq btm jar -DEG FROPS HOME=/opt/equrkha/lib/btm/HildFlyl S99

Figure 2.44: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix that is monitored in
an agent-based manner

In Unix environments, if the eG agent is deployed on the same host as the JBoss WildFly server,
then both the agent and the server will be running using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification, but before the closing quotes.

-DEG_LOG_HOME=<<LogFile Path>>

79

Chapter 2: Installing and Configuring eG Java BTM

22.
23.

24.

25.

26.

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
allinstances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

AVA OPTS="$JAVA OPTS -JAVA OPTS="S$SJAVA OPTS -javaagent:/opt/btm/WildFlyl 9990/eg
btm.jar -DEG_PROPS_HOME=/opt/btm/WildFlyl 9990 -DEG LOG HOME=/App001/eGBTMLogs"

Then, save the file.

Where multiple instances of WildFly are monitored, make sure you perform steps 17-22 above
for each WildFly server instance.

Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home/bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home/bin directory.

rem set -PROFILER=%JB055_HOME %\Dinyjboss-profiler properties

55 to the Java VM. Mote, there are some additional
ays passed by run.ba

/M memory allocation pool parameters - modify as appropriate
A_OPTS=-Xms 16 -Xmx1G -XX MaxPermSize=256m

rem # Prefer IPva
set "JAVA_OPTS=%JAVA_OPTS% -Djava.net preferlPvdStack=true”

rem # Setthe jb. dules. policy- pe ault
D true -verbose:gc XX +PrintGCDetails JOU+PrntGCDateStamps -Xloggce Cjboss log|

ample JPDA setting:

rem# S ared memory g
rem set "JAVA_OPTS=3%JAVA_OPTS% -agentib j

ansport=dt_shmem,address=jboss senversy,suspend=n

Figure 2.45: Editing the domain.conf file or standalone.conf file
Append ",com.eg" to the following line in the file, as depicted by Figure 2.43:

set "JAVA OPTS=%JAVA OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

Finally, save the file and restart the JBoss WildFly server.

80

Chapter 2: Installing and Configuring eG Java BTM

2.8 Installing eG BTM on a Multi- Server
SAP Web Application Server Instance

In a multi-server environment, two/more Java server processes run within a single SAP WAS
instance.. For the eG agent to monitor business transactions to a ,multi-server SAP WAS instance,
you need to BTM-enable each server Java process in that instance, separately.

To achieve this, follow the steps detailed below.

1. First, login to the SAP WAS instance to be BTM-enabled.

2. Open abrowser on that instance and connect to the eG management console.

3. Login to the eG admin interface.

4. Follow the Agents -> BTM Profiler Download menu sequence in the eG admin interface.

5. Figure 2.46 will appear listing the servers that can be instrumented for APM by eG. In this list,

locate the SAP Web Application server instance that you want to BTM-enable. Once you locate
the server instance, click the Download icon corresponding to that instance to download the
APM Profiler Agent to that instance.

BUSINESS TRANSACTION MONITORING

@ This page allows the administrator to download APM Prefiler Agent

APM TYPE COMPONENT TYPE NICK NAME HOST NAME/IP HOST PORT AGENT IP MONITORING
JAVA &G Manager WIN-AFFGSOHOM23 WIN-AFFGSOHOM23 2020 WIN-AFFGSOHOM23 s

JAVA SAP Web Application sapwas 19.168.10.35 50000 localhost

v [[[

JAVA Oracle WebLogic wi4s 10.168.10.45 7001 localhost

Figure 2.46: Download the APM Profiler Agent to the SAP WAS instance

6. A zip file named javaagent_<Nick_name_of SAPWAS _instance>_<Port_number_of_
SAPWAS _ instance will get downloaded. For instance, if you have managed the
SAP WAS instance using the nickname 'sapwas' and the port number '50000', then the name of
the zip file will be javaagent_sapwas_50000. Extract the contents of this file to any location on the
SAP WAS instance.

7. Next, navigate to the cluster folder of the SAP WAS instance. Within this folder, you will find
Java server process-specific sub-folders. Create a folder named btm under each of these sub-
folders.

81

Chapter 2: Installing and Configuring eG Java BTM

(D) |1 = Computer = oedDek(C) = = s = 540 = M2 e - cter - v 1] [[seach st

Orgarize Incdudeinlbrary ~ Sharewth = New folder

e Favortss Nams - Date modfed Type | sce |
B Deshiop S04 615[2017 1:Z3PM Pl folder
8 Doweloads bin 41572017 11:03AM e folder
I Recent Places bootstrzp 6/15[2017 11:08 AN Fie fokder
B AS[Z0IB416PM Fie folder
o3 Lbranes change 6/15/2017 11:20 M Fil fokder
“ ::m; L] 6/15[2017 1130 AN File folder 1 Go to cluster folder of the corresponding
=) chres serverd 4J6[20183:23PM Fie foldar instance
H videss server] 4j6[2018 3:23MM File folder
temp 6/15/2017 11:02 AM File folder
18 Computer hakspot_compler 1711:028M HOTSPOT_COMPL.., 0KB
&, Local Dek (1) cigmgrChangelog.0 Text Document

¢ CND Drive (D:) GRMSX chass_prefetch.st

Instance. proparties. 4612018 1:37 PM
i Network

L stance. properties. bk 42018 11:33 40 2. Create a 'btm’ folder in each of the Java server process-specific
hernelProparties. bin 462018 137 EINFie a7ve folders - i.e., server(, server! in this example
offing _Jog properties 6/15/2017 11:30AM PROPERTIES Fils 116
saplogging config /I5[2017 1130 AN CONFIG Fle 118
8 version.bin 452018 12:16PM BINFie 18818

Figure 2.47: Navigating to the cluster folder in the <SAP_WAS_INSTANCE_INSTALL DIR>

9. Copy the contents of the javaagent_sapwas_50000 zip to the btm folder of each of the Java
server process-specific folders (indicated by Figure 2.47).

10. Next, follow the steps below for each Java server process:
o Edit the btmOther.props file in the btm folder of the Java server process.

.btmﬂ ther.props - Notepad |- O] x| I
Fle Edt Fomat view Hep FILE NEEDS TO BE EDITED FOR EACH SERVER
E"#*###‘##‘#########I*#######‘###ﬁﬂ*###########*##‘#‘####‘#################‘##d*#‘###*###‘##‘#‘#*#*#‘#‘###*################‘d*#‘##‘############# -
#‘###‘##‘##‘##

77777777 > BTM Connection Properties

b B e S
[
#

i+ Below property is BTM Server socket Port, through which ee agent Communicates
Restart is r'equwed, ‘\‘F any changes in this property

£ Default pore is "13931 Configure unigue BTM port for the current server.
e For e.g., for server0 file, you can configure as
iTM_PDrt=13930‘ 13930 and for serverl file, you can configure as
O A 3. .

i+ Below property is used to specify IP address of eG agent which collectes BTM Data.
pefault is Mone
.

&
Designated_Agents=
I

R R A R R R R R R R A R B R R A
ﬁffffffff ---------------- > Below properties are used by BTM serwver for profiling any Business Transaction
#i;;i;;;‘;;‘ﬁ:d-hi-*;ﬂ;;ﬂ;;;;;;;;;;;;###################iﬁ‘####################H‘########H!###
:#########

[

- E

Figure 2.48: Configuring the BTM port for a server process

82

Chapter 2: Installing and Configuring eG Java BTM

o In the btmOther.props file, search for the BTM_Port parameter. Once found, specify a
unique BTM port for the Java server process.

Typically, each Java server process in a multi-server SAP WAS instance is assigned a node
index - eg., the node index for server0 is 0, for server1 is 1, for server2 is 2, and so on. When
configuring a BTM port for a Java server process, its recommended that the node index of that
server process be set as the last digit of the BTM port number. For instance, the BTM port for
serverQ can be 13930, server1 can be 13931, server2 can be 13932 and so on.

o Finally, save the file.

o Repeat this procedure for every server process in the SAP WAS instance.

11. Next, connect to the SAP Netweaver administrator tool by providing the URL: http://<IP_
address_of_tool>:<Port_number_of_tool>/nwa/sysinfo

Enter NWA credentials
and click logon

User”
Password *

Log On

;

Figure 2.49: The login page of the SAP Netweaver administrator tool

12. Alogin screen then appears (see Figure 2.49). Login to the system information application using
administrator or j2ee_admin credentials. Upon successful login, Figure 2.50 will appear.

83

Chapter 2: Installing and Configuring eG Java BTM

System Information: System Information Restore Default View | ¢PBack Fowardep Histoy, | Home | Help | LogOf
Search: (G

Eaorics TRRett 3, GoTo, Support Details

System Information | Components Info

Instances

More Actions « [@l& 4]
Name Host
¥
Database egsapsolman
scs egsapsoiman
02 (Instance 10222130) ‘egsapsolman

l.select instance

[Details about 02 (Instance 1D222190)

Instance Number. 02
222190

Nodes Count 2

Root Directory. Colusnsap\SMJ02

0s: Windows Server 2008 R2 (amd&4) 6.1

HTTP Port 50200

HTTPS Port

Teinet Port

P4 Port

VM Name:

VM Vendor

VM Java Version

VM Runtime Version:

Kemel Version

VM Memory Parameters

P.

2. click VM Additional Parameters

Figure 2.50: Clicking the VM Additional Parameters link

13. Select the instance to be BTM-enabled from the list of Instances in Figure 2.50. Then, click the
VM Additional Parameters link indicated by Figure 2.50. This will openthe Additional
VM Parameters tab page (see Figure 2.51). Click the Add button in that tab page to add a new
VM parameter.

Java System Properties: Overview Restore Default View | 49Back Forward@p History , | Home | Help | Log OFf
Favoriles , Related Links , GoTo Support Details search:[|[&o]
Templates
[[Show Advanced Properties | | [More Actions 4 |
Name
N ZATPL_AIO
* 1222190

Details about 10222190

Kemel | Services | Applications WM Environment Memory VM Paramelers System VM Parameters _* Additional VM Parameters
ve | Restore Default | | move |(Modiy] | (Show Details [F&4
Name Default Calculated Value Custom Calculated Value Enabled Inherited B
Bl
-verbose:ge) 1)
-Xss2m [T 5]
XX:+DisableExplicGC [)
| .XX:«DumpDetailedClassStatisticOnOutoMemory [z =]
2 i) -

XX:+HeapDumpONOtOMemoryEmor

click add

Figure 2.51: Clicking the Add button in the Additional VM Parameters tab page

14. Figure 2.52 will then appear.

84

Chapter 2: Installing and Configuring eG Java BTM

15.

16.

17.
18.

Add JVM Additional Parameter

List of Supported JVM Additional Parameters

Figure 2.52: Adding a new VM parameter

Specify the following in the Name text box in Figure 2.52:
-javaagent:<Path_to_eg btm.jar_file>

Here, you can specify the full path to the eg_btm.jar file that is in the btm folder of any of the
Java server processes in the target instance.

Then, in the Value text box, specify the following:

EG_PROPS_HOME=<Path_to_the_btmQther.props_file>,EG_LOG_HOME=<Path_to_the_
btmLogging.props_file>

The path to these files will be different for each Java server process in the instance. Hence, when
referring to the server process-specific sub-folder that contains these files, your path specification
should include the ${NODE_INDEXj} variable. This variable represents the node index of a Java
server process - e€g., the node index of server process serverQ is 0, for server1 itis 1, and so on.
SAP WAS will automatically substitute this variable with the node index of the corresponding
server process, at runtime. A sample specification is provided below:

EG _PROPS_HOME=C:\usr\sap\SMJ\J02\j2ee\cluster\server${NODE_INDEX}\btm,EG _LOG _
HOME=C:\usr\sap\SMJ\J02\j2ee\cluster\server${NODE_INDEX}\btm

Finally, click the Add button in Figure 2.52 to add the new VM parameter.

When Figure 2.52 appears, click the Save button to save the changes. A Confirmation

85

Chapter 2: Installing and Configuring eG Java BTM

message box (see Figure 2.53) will appear prompting you to confirm whether you want to restart
the server now or later. Click Later in the message box and then click the Back button indicated
by Figure 2.53.

<« C | ® Not secure | 192.168.9.213:5020 es/sap.com/tc~| i dfF ppapplicationlD=com sap.itsam.problems javasysteminfosisLocal=.. & % | B

ved successfully. In order for changes to take effect, restart InsTInGg

Figure 2.53: Saving the changes

19. Restart the Java server processes that have been BTM-enabled.

Chapter 3: Monitoring Java Business Transactions

Chapter 3: Monitoring Java Business Transactions

Once the eG Application Server Agent is installed and configured on the JVM nodes, it will start
tracking transaction requests and storing transaction path and metrics in memory.

To collect these metrics, you then need to configure the eG agent to run the Java Business
Transactions test. To focus on only those transactions you deem important, you can optionally
configure the eG agent to run the Key Java Business Transactions test.

The metrics reported are then captured into an Application Transactions layer. This layer will appear
as the first layer of the monitoring model of the application server that is BTM-enabled.

ﬂl Application Transactions

ot ﬁ Java Business Transactions B

X [Easykart/StorelLocator sp
JEasykarm/BrowssProducts jsp
[Easykart/CheckOrderStatus . jsp

o [EasykartjAddToCart jsp

+ [EasyKart/Login.jsp

o [Easykart/PaymentPage jsp

« [Easykart/Search jip

« [EasyKart/ShippingPage jsp

& Weblogic Container

@ v

ﬂ Network

@) Operating System

Figure 3.1: The test mapped to the Application Transactions layer

This chapter discusses how to configure these tests and details the metrics reported by each test.

3.1 Java Business Transactions Test

The responsiveness of a transaction is the key determinant of user experience with that transaction;
if response time increases, user experience deteriorates. To make users happy, a Java business
transaction should be rapidly processed by each of the JVM nodes in its path. Processing
bottlenecks on a single JVM node can slowdown/stall an entire business transaction or can cause
serious transaction errors. This in turn can badly scar the experience of users. To avoid this,

87

Chapter 3: Monitoring Java Business Transactions

administrators should promptly identify slow/stalled/errored transactions, isolate the JVM node on
which the slowness/error occurred, and uncover what caused the aberration on that node — is it
owing to SQL queries executed by the node? Or is it because of external calls — eg., async calls,
SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business Transactions test
helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests
received by that JVM, and groups requests based on user-configured pattern specifications. For
each transaction pattern, the test then computes and reports the average time taken by that JVM
node to respond to the transaction requests of that pattern. In the process, the test identifies the
slow/stalled transactions of that pattern, and reports the count of such transactions and their
responsiveness. Detailed diagnostics provided by the test accurately pinpoint the exact transaction
URLs that are slow/stalled, the total round-trip time of each transaction, and also indicate when such
transaction requests were received by that node. The slowest transaction in the group can thus be
identified.

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in
SQL query processing, the test also reports the average time the transactions of each pattern took to
execute SQL queries. If a majority of the queries are slow, then the test will instantly capture the
same and notify administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know
which are the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node,
highlights transactions that are under-performing, and takes administrators close to the root-cause
of poor transaction performance.

Target of the Test : A BTM-enabled JVM

Agent deploying the test : Aninternal/remote agent

Output of the test : One set of results for each grouped URL
Test parameters:

Configurable parameters for the test

Parameter Description
Test Period How often should the test be executed.
Host The host for which this test is to be configured.

BTM Port Specify the port number specified as BTM_Port in the btmOther.props file on the JVM

88

Chapter 3: Monitoring Java Business Transactions

Parameter Description
node being monitored. If the JVM is being monitored in an agent-based manner, then
the btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.
Max URL Segments This test groups transaction URLs based on the URL segments count configured for

Excluded Patterns

monitoring and reports aggregated response time metrics for every group. Using this
parameter, you can specify the number of URL segments based on which the
transactions are to be grouped.

URL segments are the parts of a URL (after the base URL) or path delimited by
slashes. Soif you had the URL.:
http://www.eazykart.com/web/shopping/sportsgear/login.jsp, then
http://www.eazykart.com will be the base URL or domain, /web will be the first URL
segment, /shopping will be the second URL segment, and /sportsgear will be the third
URL segment, and /login.jsp will be the fourth URL segment. By default, this
parameter is set to 3. This default setting, when applied to the sample URL provided
above, implies that the eG agent will aggregate response time metrics to all transaction
URLs under /web/shopping/sportsgear. Note that the base URL or domain will not be
considered when counting URL segments. This in turn means that, if the JVM node
receives transaction requests for the URLs such as
http://www.eazykart.com/web/shopping/sportsgear/login.jsp,
http://www.eazykart.com/web/shopping/sportsgear/jerseys.jsp,
http://www.eazykart.com/web/shopping/sportsgear/shoes.jsp,
http://www.eazykart.com/web/shopping/sportsgear/gloves.jsp, etc., then the eG
agent will track the requests and responses for all these URLSs, aggregate the results,
and present the aggregated metrics for the descriptor /web/shopping/sportsgear. This
way, the test will create different transaction groups based on each of the third-level
URL segments — eg. /web/shopping/weddings, /web/shopping/holiday,
/web/shopping/gifts etc. —and will report aggregated metrics for each group so created.

If you want, you can override the default setting by providing a different URL segment
number here. For instance, your specification can be just 2. In this case, for the URL
http://www.eazykart.com/web/shopping/login.jsp, the test will report metrics for
the descriptor web/shopping.

By default, this test does not track requests to the following URL patterns:

* ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.Iwfn, *ffil, *.fon, *.pfm, *.pfb, * std,
*.pro, *.xsf, *jpg, *jpeg, *jpe, *jif, “ffif, *jfi, “jp2, *j2k, *jpf, *.jpx, *jpm, *jxr,
*hdp, *.wdp, “mj2, *.webp, *.gif, *png, *.apng, *mng, *tiff, “tif, *.xbm, *.bmp,
*dib, *.svg, *.svgz, *mpg, *.mpeg, *.mpeg2, *.avi, *wmv, *.mov, *.rm, *.ram,
*.swf, *flv, *.0gq, *webm, *mp4, *.ts, *mid, *midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.09g, *mp3, *.mp4, *.css, *Js, *.ico, *.cur, /equrkha*

If required, you can remove one/more patterns from this default list, so that such

89

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Method Exec Cutoff
(MS)

SQL Execution
Cutoff (MS)

Healthy URL Trace

Max Healthy URLs
per Test Period

Max Slow URLs per
Test Period

Max Stalled URLs

patterns are monitored, or can append more patterns to this list in order to exclude them
from monitoring.

From the detailed diagnosis of slow/stalled/error transactions, you can drill down and
perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which
the transaction calls the methods. By configuring a Method Exec Cutoff, you can make
sure that methods that have been executing for a duration greater the specified cutoff
are alone listed when performing execution analysis. For instance, if you specify 5
here, then the Execution Analysis window for a slow/stalled/error transaction will list
only those methods that have been executing for over 5 milliseconds. This way, you
get to focus on only those methods that could have caused the slowness, without
being distracted by inconsequential methods. By default, the value of this parameter is
set to 250 ms.

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By configuring a SQL Execution
Cutoff (MS), you can make sure that queries that have been executing for a duration
greater the specified cutoff are alone listed when performing query analysis. For
instance, if you specify 5 here, then for a slow/stalled/error transaction, the SQL
Queries window will display only those queries that have been executing for over 5
milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10 ms.

By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed
diagnosis capability for healthy transactions as well, then set this flag to Yes.

This parameter is applicable only if the Healthy URL Trace flag is set to ‘Yes’.
Here, specify the number of top-n transactions that should be listed in the detailed
diagnosis of the Healthy transactions measure, every time the test runs. By default,
this is set to 50, indicating that the detailed diagnosis of the Healthy transactions
measure will by default list the top-50 transactions, arranged in the descending order of
their response times.

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of the Slow transactions measure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of the Slow transactions measure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Specify the number of top-n transactions that should be listed in the detailed diagnosis

20

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

per Test Period

Max Error URLs per
Test Period

Show HTTP Status

Show Cookies

Show Headers

Enable Thread CPU
Monitoring

of the Stalled transactions measure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of the Stalled transactions measure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of the Error transactions measure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of the Error fransactions measure will by
default list the top-10 transactions, in terms of the number of errors they encountered.

If you want the detailed diagnosis of this test to report the HTTP response code that
was returned when a transaction URL was hit, then set this flag to Yes. This will enable
you to instantly identify HTTP errors that may have occurred when accessing a
transaction URL. By default, this flag is set to No, indicating that the HTTP status
code is not reported by default as part of detailed diagnostics.

An HTTP cookie is a small piece of data sent from a website and stored on the user's
computer by the user's web browser while the user is browsing. Most commonly,
cookies are used to provide a way for users to record items they want to purchase as
they navigate throughout a website (a virtual "shopping cart" or "shopping basket"). To
keep track of which user is assigned to which shopping cart, the server sends a cookie
to the client that contains a unique session identifier (typically, a long string of random
letters and numbers). Because cookies are sent to the server with every request the
client makes, that session identifier will be sent back to the server every time the user
visits a new page on the website, which lets the server know which shopping cart to
display to the user. Another popular use of cookies is for logging into websites. When
the user visits a website's login page, the web server typically sends the client a cookie
containing a unique session identifier. When the user successfully logs in, the server
remembers that that particular session identifier has been authenticated, and grants the
user access to its services. If you want to view and analyze the useful information that
is stored in such HTTP response cookies that a web server sends, then set this flag to
Yes. By default, this flag is set to No, indicating that cookie information is not reported
by default as part of detailed diagnostics.

HTTP headers allow the client and the server to pass additional information with the
request or the response. A request header is a header that contains more information
about the resource to be fetched or about the client itself. If you want the additional
information stored in a request header to be displayed as part of detailed diagnostics,
then set this flag to Yes. By default, this flag is set to No indicating that request
headers are not displayed by default in the detailed diagnosis.

If this flag is set to Yes, then this test will additionally report the average time for which

91

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Enable Thread
Contention
Monitoring

Advanced Settings

POJO Method
Tracing Limit and
POJO

Method Tracing
Cutoff Time

the transactions of a pattern were utilizing the CPU resources. This will point you to
transaction patterns that are CPU-intensive, and will thus help you right-size your
JVMs. By default however, this test will not report the average CPU time of transaction
patterns. This is because, by default, the Enable Thread CPU Monitoring flag is set to
No for this test.

If this flag is set to Yes, then this test will additionally report the following:

« The average time for which the transactions of a pattern were waiting, before they

resumed execution;

« The average time for which the transactions of a pattern were blocked from

execution by another transaction;

If transactions of a pattern are found to be much slower than the rest or are stalling,
then the aforesaid metrics will help administrators determine what could have caused
the slowness - is it because the transactions were waiting for too long? or is it because
they were being blocked for too long?

By default however, this test will not report the metrics described above, because the
Enable Thread Contention Monitoring flag is set to No by default.

To optimize transaction performance and conserve space in the eG database, many
restraints have been applied by default on the agent’s ability to collect and report
detailed diagnostics. Depending upon how well-tuned your eG database is and the level
of visibility you require into transaction performance, you may choose to either retain
these default settings or override them. If you choose not to disturb the defaults, then
set the Advanced Settings flag to No. If you want to modify the defaults, then set the
Advanced Settings flag to Yes.

These parameters will appear only if the Advanced Settings flag is set to ‘Yes’.
Typically, if the Monitoring Mode of this test is set to Profiler, then, as part of the
detailed diagnostics of a transaction, eG reports the execution time of every POJO,
non-POJO, and recursive (i.e. methods that call themselves) method call that a JVM
node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to
collect detailed measures related to POJO method calls do not impact the overall
responsiveness of the monitored transaction, eG, by default, collects and reports the
execution time of only the following POJO method calls:

o Thefirst 1000 POJO method calls made by the target JVM node for that transaction;
(OR)

92

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Non-POJO Method
Tracing Limit

Recursive Method
Tracing Limit

o The POJO method calls that were made by the target JVM node within 10 seconds

from the start of the monitored transaction on that node;

Accordingly, the POJO Method Tracing Limit is set to 1000 by default, and the POJO
Method Tracing Cutoff Time is set to 10 (seconds) by default. Of these two limits,
whichever limit is reached first will automatically be applied by eG for determining when
to stop POJO tracing. In other words, once a JVM node starts processing a
transaction, the agent begins tracking the POJO method calls made by that node for
that transaction. In the process, if the agent finds that the configured tracing limit is
reached before the tracing cutoff time is reached, then the agent will stop tracking the
POJO method calls, as soon as the tracing limit is reached. On the other hand, if the
tracing limit is not reached, then the agent will continue tracking the POJO method
calls until the tracing cutoff time is reached. At the end of the cutoff time, the agent will
stop tracking the POJO method calls. For instance, if the JVM node makes 1000
POJO method calls within say, 6 seconds from when it began processing the
transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call,
and report the execution time of each of the 1000 calls alone. On the other hand, if the
JVM node does not make over 1000 POJO method calls till the 10 second cutoff
expires, then the eG agent continues tracking the POJO method calls till the end of 10
seconds, and reports the details of all those that were calls made till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you
want to impose on the agent and on the transaction, you can increase / decrease the
POJO Method Tracing Limit and POJO Method Tracing Cutoff time specifications.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, when reporting the detailed diagnosis of a transaction on a particular JVM
node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes
for that transaction. This is why, the Non-POJO Method Tracing Limit parameter is set
to 7000 by default. If you want, you can change the tracing limit to enable the test to
report the details of more or fewer non-POJO method calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the non-POJO
method that could have caused the transaction to slowdown on a particular JVM node,
it may also marginally increase the overheads of the transaction and the eG agent.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. A
recursive method is a method that calls itself. By default, when reporting the detailed
diagnosis of a transaction on a particular JVM node, this test reports the execution time
of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,

93

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Exception
Stacktrace Lines

Included Exceptions

Ignored Exceptions

SQL, etc.) that the target JVM node makes for that transaction. This is why, the
Recursive Method Tracing Limit parameter is set to 1000 by default. If you want, you
can change the tracing limit to enable the test to report the details of more or fewer
recursive method calls made by a JVM node. While a high value for this parameter may
take you closer to identifying the recursive method that could have caused the
transaction to slowdown on a particular JVM node, it may also marginally increase the
overheads of the transaction and the eG agent.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. As
part of detailed diagnostics, this test, by default, lists the first 10 stacktrace lines of
each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the
Exception Stacktrace Lines parameter is set to 70 by default. If required, you can have
this test display more or fewer stacktrace lines by overriding this default setting.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« Allunhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a
transaction, such a transaction, by default, will not be counted as an Error transaction
by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL
exceptions that have already been handled programmatically, occur. This can be
achieved by configuring a comma-separated list of these exceptions in the Included
Exceptions text box. Here, each exception you want to include has to be defined using
its fully qualified exception class name. For instance, your Included Exceptions
specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be included are
configured, then this test will count all transactions in which such exceptions are
captured as Error transactions.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« Allunhandled exceptions;

94

Chapter 3: Monitoring Java Business Transactions

Parameter Description

« Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled
exceptions (or handled SQL exceptions), as they may not pose any threat to the
stability of the transaction or to the web site/web application. To achieve this,
administrators can configure a comma-separated list of such inconsequential
exceptions in the Ignored Exceptions text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For
instance, your Excluded Exceptions specification can be as follows:
java.sqgl.SQLException,java.io.FileNotFoundException. Note that wild card
characters cannot be used as part of your specification. Once the exceptions to
be excluded are configured, then this test will exclude all transactions in which such
exceptions are captured from its count of Error transactions.

Ignored Characters This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, eG excludes all transaction URLs that contain the \' character from monitoring.
If you want eG to ignore transaction URLs with any other special characters, then
specify these characters as a comma-separated list in the Ignored Characters text box.
Forinstance, your specification can be: \\,&,~

Max Grouped URLs This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. This test

per Measure Period groups URLs according to the Max URL Segments specification. These grouped URLs
will be the descriptors of the test. For each grouped URL, response time metrics will be
aggregated across all transaction URLSs in that group and reported.

When monitoring web sites/web applications to which the transaction volume is
normally high, this test may report metrics for hundreds of descriptors. If all these
descriptors are listed in the Layers tab page of the eG monitoring console, it will
certainly clutter the display. To avoid this, by default, the test displays metrics fora
maximum of 50 descriptors —i.e., 50 grouped URLs alone — in the eG monitoring
console, during every measure period. This is why, the Max Grouped URLs per
Measure Period parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring
console, the eG BTM follows the below-mentioned logic:

« Top priority is reserved for URL groups with error transactions. This means that eG
BTM first scans URL groups for error transactions. If error transactions are found in
50 URL groups, then eG BTM computes the aggregated response time of each of
the 50 groups, sorts the error groups in the descending order of their response time,

and displays all these 50 groups alone as the descriptors of this test, in the sorted

95

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

order.

. Onthe other hand, if error transactions are found in only one / a few URL groups —
say, only 20 URL groups —then, eG BTM will first arrange these 20 grouped URLs in
the descending order of their response time. It will then compute the aggregated
response time of the transactions in each of the other groups (i.e., the error-free
groups) that were auto-discovered during the same measure period. These other
groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped
URLSs from this sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the
20 error groups are first displayed (in the descending order of their response time),
followed by the 30 ‘error-free’ groups (also in the descending order of their response
time).

At any given point in time, you can increase/decrease the maximum number of
descriptors this test should supportby modifying the value of the Max Grouped
URLSs per Measure Period parameter.

Max SQI Queries per This parameter will appear only if the Advanced Settings flag is set to ‘Yes’.

Transaction

Timeout

DD Frequency

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By default, eG picks the first 500
SQL queries executed by the transaction, compares the execution time of each query
with the SQL Execution Cutoff configured for this test, and displays only those queries
with an execution time that is higher than the configured cutoff. This is why, the Max
SQL Queries per Transaction parameter is set to 500 by default.

To improve agent performance, you may want the SQL Execution Cutoff to be
compared with the execution time of a less number of queries — say, 200 queries.
Similary, to increase the probability of capturing more number of long-running queries,
you may want the sql execution cutoff to be compared with the execution time of a
large number of queries — say, 1000 queries. For this, you just need to modify the Max
SQL Queries per Transaction specification to suit your purpose.

By default, the eG agent will wait for 1000 milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can
change this timeout value, if required.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can maodify this frequency, if you so desire. Also, if you intend to disable the

96

Chapter 3: Monitoring Java Business Transactions

Parameter Description

detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measures reported by the test

Measurement Description xsiatsurement Interpretation

All transactions Indicates the total number | Number By comparing the value of this
of requests received for measure across transaction patterns,
transactions of this pattern you can identify the most popular
during the last transaction patterns. Using the
measurement period. detailed diagnosis of this measure, you

can then figure out which specific
transactions of that pattern are most
requested.

For the Summary descriptor, this
measure will reveal the total number of
transaction requests received by the
target JVM during the last
measurement period. This is a good
indicator of the transaction workload on

that JVM.
Avgresponse time | Indicates the average time | Msecs Compare the value of this measure
taken by the transactions across patterns to isolate the type of

97

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

of this pattern to complete
execution.

transactions that were taking too long
to execute. You can then use the
detailed diagnosis of the All
transactions measure of that group to
know how much time each transaction
in that group took to execute. This will
lead you to the slowest transaction.

For the Summary descriptor, this
measure will reveal the average
responsiveness of all the transaction
requests received by the target JVM
during the last measurement period. An
abnormally low value for this measure
for the Summary descriptor could
indicate a serious processing
bottleneck on the target JVM.

Healthy transactions

Indicates the number of
healthy transactions of
this pattern.

Number

By default, this measure will report the
count of transactions with a response
time less than 4000 milliseconds. You
can change this default setting by
modifying the thresholds of the Avg
response time measure using the eG
admin interface.

For the Summary descriptor, this
measure will report the total number of
healthy transactions on the target
JVM.

Healthy transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is healthy.

Percent

To know which are the healthy
transactions, use the detailed
diagnosis of this measure. For the
Summary descriptor, this measure will
report the overall percentage of healthy
transactions on the target JVM.

Slow transactions

Indicates the number of
transactions of this pattern
that were slow during the
last measurement period.

Number

By default, this measure will report the
number of transactions with a
response time higher than 4000
milliseconds and lesser than 60000

98

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

milliseconds. You can change this
default setting by modifying the
thresholds of the Avg response time
measure using the eG admin interface.

A high value for this measure is a
cause for concern, as too many slow
transactions means that user
experience with the web application is
poor. For the Summary descriptor, this
measure will report the total number of
slow transactons on the target JVM.
This is a good indicator of the
processing power of the target JVM.

response time - avg

duration for which the

Slow transactions Indicates the average time | Msecs For the Summary descriptor, this

response time-avg | taken by the slow measure will report the average
transactions of this pattern response time of all the slow
to execute. transactions on the target JVM.

Slow transactions Indicates what percentage | Percent Use the detailed diagnosis of this

percentage of the total number of measure to know which precise
transactions of this pattern transactions of a pattern are slow. You
is currently slow. can drill down from a slow transaction

to know what is causing the slowness.
For the Summary descriptor, this
measure will report the overall
percentage of slow transactions on the
monitored JVM.

Error transactions Indicates the number of Number A high value is a cause for concern, as
transactions of this pattern too many error transactions to a web
that experienced errors application can significantly damage
during the last the user experience with that
measurement period. application. For the Summary

descriptor, this measure will report the
total number of error transactons on the
target JVM. This is a good indicator of
how error-prone the target JVMis.

Error transactions Indicates the average Msecs The value of this measure will help you

discem if error transactions were also

99

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

transactions of this pattern
were processed before an
error condition was

slow. For the Summary descriptor,
this measure will report the average
response time of all error transactions

percentage

of the total number of
transactions of this pattern
is stalling.

detected. on the target JVM.
Error transactions Indicates what percentage | Percent Use the detailed diagnosis of this
percentage of the total number of measure to isolate the error
transactions of this pattern transactions. You can even drill down
is experiencing errors. from an error transaction in the detailed
diagnosis to determine the cause of the
error. For the Summary descriptor,
this measure will report the overall
percentage of transactions of this
pattern on the target JVM that is
currently experiencing errors.
Stalled transactions | Indicates the number of Number By default, this measure will report the
transactions of this pattern number of transactions with a
that were stalled during the response time higher than 60000
last measurement period. milliseconds. You can change this
default setting by modifying the
thresholds of the Avg response time
measure using the eG admin interface.
A high value is a cause for concern, as
too many stalled transactions means
that user experience with the web
application is poor. For the Summary
descriptor, this measure will report the
total number of stalled transactons on
the target JVM.
Stalled transactions | Indicates the average time | Msecs For the Summary descriptor, this
response time - avg: | taken by the stalled measure will report the average
transactions of this pattern response time of all stalled
to execute. transactions on the target JVM.
Stalled transactions | Indicates what percentage | Percent Use the detailed diagnosis of this

measure to know which precise
transactions of a pattern are stalled.
You can drill down from a stalled
transaction to know what is causing

100

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

that transaction to stall. For the
Summary descriptor, this measure will
report the overall percentage of
transactions of this pattern on the
target JVM that is stalling.

for which transactions of
this pattern were utilizing
the CPU.

Slow SQL Indicates the number of Number For the Summary descriptor, this
statements executed | slow SQL queries that measure will report the total number of
were executed by the slow SQL queries executed by all
transactions of this pattern transactions to the target JVM.
during the last
measurement period.
Avg slow SQL Indicates the average Msecs If there are too many slow transactions
statement time execution time of the slow of a pattern, you may want to check
SQL queries that were run the value of this measure for that
by the transactions of this pattern to figure out if query execution
pattern. is slowing down the transactions. Use
the detailed diagnosis of the Slow
transactions measure to identify the
precise slow transaction. Then, drill
down from that slow transaction to
confirm whether/not database queries
have contributed to the slowness.
Deep-diving into the queries will reveal
the slowest queries and their impact on
the execution time of the transaction.
Avg CPU time Indicates the average time | Msecs Compare the value of this measure

across transaction patterns to
accurately identify the CPU-intensive
transaction patterns.

For the Summary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM used the CPU.

Note:

This measure is reported only under
the following circumstances:

101

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

« The Enable Thread CPU Monitoring

flag of this test is set to Yes;

« The target application server's JVM
implementation supports CPU time
monitoring of threads; to verify JVM
support for CPU time monitoring,
use the procedure described in the
Verifying JVM Support for CPU
Time and Thread Contention

Monitoring.

Avg block time

Indicates the average
duration for which
transactions of this pattern
were blocked and could
not execute.

Msecs

If the Avg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not prolonged
blocking is causing transactions of that
pattern to slow down or stall.

For the Summary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM were blocked.

Note:

This measure is reported only under
the following circumstances:

« The Enable Thread Contention
Monitoring flag of this test is set to

Yes;

« The target application server's JVM
implementation supports thread
contention monitoring; to verify JVM
support for thread contention

monitoring, use the procedure

102

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

described in the Verifying JVM
Support for CPU Time and Thread

Contention Monitoring topic.

Avg wait time

Indicates the average
duration for which
transactions of this pattern
were waiting before they
resumed execution.

Msecs

If the Avg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not a very high
waiting time is what is causing the
transactions to slow down/stall.

For the Summary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM were waiting.

Note:

This measure is reported only under
the following circumstances:

« The Enable Thread Contention
Monitoring flag of this test is set to

Yes;

« The target application server's JVM
implementation supports thread
contention monitoring; to verify JVM
support for thread contention
monitoring, use the procedure
described in the Verifying JVM
Support for CPU Time and Thread

Contention Monitoring topic.

Total transactions
per minute

Indicates the number of
transactions of this pattern
that are executed per
minute.

Number

For the Summary descriptor, this
measure will report the total number of
transactions that were executed per
minute. This is a good indicator of the
transaction processing ability of the

103

Chapter 3: Monitoring Java Business Transactions

Measurement

Unit Interpretation

Measurement Description

target application server.

Error transactions Indicates the number of Number A very low value is desired for this
per minute error transactions of this measure.

pattem that are executed Compare the value of this measure

across transaction patterns to find that
pattern of transactions that is
experiencing errors frequently.

per minute.

For the Summary descriptor, this
measure will report the total number of
error transactions that were executed
per minute.

3.2 Java Key Business Transactions Test

For any business-critical application, some transactions will always be considered key from the point
of view of user experience and business impact. For instance, in the case of a retail banking web
application, fund transfers executed online are critical fransactions that have to be tracked closely for
delays / errors, as problems in the transaction will cost both consumers and the company dearly.
Using the Java Key Business Transactions test, administrators can perform focused monitoring
of such critical transactions alone.

For each transaction URL pattern configured for monitoring on a JVM node, this test reports the
count of requests for that transaction pattern, and the count and percentage of transactions of that
pattern that were slow / stalling / error-prone. Detailed diagnostics provided by the test highlight the
slow / stalled / error transactions of a pattern, and pinpoint the precise reason why that key
transaction slowed down / stalled / encountered errors - is it because of an inefficient database
query? is it because of a processing bottleneck on the JVM node? or is it owing to slow remote
service calls? This way, the test enables you to quickly detect inconsistencies in the performance of
your critical business transactions and accurately isolate its root-cause, so that you can fix the issues
well before users notice them.

Target of the Test : A BTM-enabled JVM
Agent deploying the test : Aninternal/remote agent

Output of the test : One set of results for each URL pattern configured for monitoring.

Test parameters:

104

Chapter 3: Monitoring Java Business Transactions

Configurable parameters for the test

Parameter Description

Test Period How often should the test be executed.

Host The host for which this test is to be configured.

BTM Port Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node being monitored. If the JVM is being monitored in an agent-based manner, then
the btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.

URL Patterns Provide a comma-separated list of PatternName:URL Pattern pairs to be monitored.

Key Excluded
Patterns

Method Exec Cutoff
(MS)

The PatternName can be any name that uniquely identifies the pattern. These
PatternNames will be the descriptors of this test. For the URLPattern, you can either
provide the exact URL to be monitored , or can provide a pattern. For instance, if you
want to monitor requests to distinct and specific web pages - say, login.jsp and
payment.jsp of a web application - then you can specify the exact URL of these web
pages as your URL PATTERNS. In this case your specification will
be,Login:/web/login.jsp,Payment:/web/payment.jsp. On the other hand, if you want
to monitor requests to all payment-related web pages in a web application - say,
payment.jsp, creditcardpayment.jsp, debitcardpayment.jsp, onlinepayment.jsp,
and more - and you want the metrics to be grouped under a single head called
Payment, then you can specify a pattern instead of the exact URL. In this case, your
URL PATTERNS specification will be Payment:*payment®. The leading "' in the
specification signifies any number of leading characters, while the trailing ™' signifies
any number of trailing characters. This means that the specification in our example will
track requests to all pages with names that contain the word payment. Your

URL Pattern can also be *expr or expr*or *expr1*expr2*or expr1*expr2, etc.

By default, this test does not track requests to the following URL patterns:

*ttf, *.oftf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.Iwfn, *ffil, *.fon, *.pfm, *.pfb, *.std,
*pro, *xsf, *jog, *jpeg, *joe, *jif, *ffif, *jfi, *.jp2, *j2k, *jof, *jpx, *jom, *jxr,
*hdp, *wdp, *mj2, “webp, *.gif, *.png, *.apng, *mng, *tiff, *“tif, *xbm, *bmp,
*dib, *.svg, *svgz, *mpg, “mpeg, “mpeg2, *avi, *wmyv, *mov, *.rm, *.ram,
*swf, *flv, *.ogg, “webm, *.mp4, *ts, “mid, *midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.0gg, *mp3, *mp4, *.css, *Js, *.ico, *.cur, /equrkha*

If required, you can remove one/more patterns from this default list, so that such
patterns are monitored, or can append more patterns to this list in order to exclude them
from monitoring.

From the detailed diagnosis of slow/stalled/error transactions, you can drill down and
perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which

105

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

SQL Execution
Cutoff (MS)

Healthy URL Trace

Max Healthy URLs
per Test Period

Max Slow URLs per
Test Period

Max Stalled URLs
per Test Period

Max Error URLs per

the transaction calls the methods. By configuring a Method Exec Cutoff (MS), you can
make sure that methods that have been executing for a duration greater the specified
cutoff are alone listed when performing execution analysis. For instance, if you specify
5 here, then the Execution Analysis window for a slow/stalled/error transaction will
list only those methods that have been executing for over 5 milliseconds. This way,
you get to focus on only those methods that could have caused the slowness, without
being distracted by inconsequential methods. By default, the value of this parameter is
set to 250 ms.

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By configuring a SQL Execution
Cutoff (MS), you can make sure that queries that have been executing for a duration
greater the specified cutoff are alone listed when performing query analysis. For
instance, if you specify 5 here, then for a slow/stalled/error transaction, the SQL
Queries window will display only those queries that have been executing for over 5
milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10 ms.

By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed
diagnosis capability for healthy transactions as well, then set this flag to Yes.

This parameter is applicable only if the Healthy URL Trace flag is set to ‘Yes’.
Here, specify the number of top-n transactions that should be listed in the detailed
diagnosis of the Healthy transactions measure, every time the test runs. By default,
this is set to 50, indicating that the detailed diagnosis of the Healthy transactions
measure will by default list the top-50 transactions, arranged in the descending order of
their response times.

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of the Slow transactions measure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of the Slow transactions measure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of the Stalled transactions measure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of the Stalled transactions measure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Specify the number of top-n transactions that should be listed in the detailed

106

Chapter 3: Monitoring Java Business Transactions

Parameter Description

Test Period diagnosis of the Error transactions measure, every time the test runs. By
default, this is set to 70, indicating that the detailed diagnosis of the Error
transactions measure will by default list the top-10 transactions, in terms of the
number of errors they encountered.

Show HTTP Status If you want the detailed diagnosis of this test to report the HTTP response code that

Show Cookies

Show Headers

Enable Thread CPU
Monitoring

was returned when a transaction URL was hit, then set this flag to Yes. This will enable
you to instantly identify HTTP errors that may have occurred when accessing a
transaction URL. By default, this flag is set to No, indicating that the HTTP status
code is not reported by default as part of detailed diagnostics.

An HTTP cookie is a small piece of data sent from a website and stored on the user's
computer by the user's web browser while the user is browsing. Most commonly,
cookies are used to provide a way for users to record items they want to purchase as
they navigate throughout a website (a virtual "shopping cart" or "shopping basket"). To
keep track of which user is assigned to which shopping cart, the server sends a cookie
to the client that contains a unique session identifier (typically, a long string of random
letters and numbers). Because cookies are sent to the server with every request the
client makes, that session identifier will be sent back to the server every time the user
visits a new page on the website, which lets the server know which shopping cart to
display to the user. Another popular use of cookies is for logging into websites. When
the user visits a website's login page, the web server typically sends the client a cookie
containing a unique session identifier. When the user successfully logs in, the server
remembers that that particular session identifier has been authenticated, and grants the
user access to its services. If you want to view and analyze the useful information that
is stored in such HTTP response cookies that a web server sends, then set this flag to
Yes. By default, this flag is set to No, indicating that cookie information is not reported
by default as part of detailed diagnostics.

HTTP headers allow the client and the server to pass additional information with the
request or the response. A request header is a header that contains more information
about the resource to be fetched or about the client itself. If you want the additional
information stored in a request header to be displayed as part of detailed diagnostics,
then set this flag to Yes. By default, this flag is set to No indicating that request
headers are not displayed by default in the detailed diagnosis.

If this flag is set to Yes, then this test will additionally report the average time for which
the transactions of a pattern were utilizing the CPU resources. This will point you to
transaction patterns that are CPU-intensive, and will thus help you right-size your
JVMs. By default however, this test will not report the average CPU time of transaction
patterns. This is because, by default, the Enable Thread CPU Monitoring flag is set to
No for this test.

107

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Enable Thread
Contention
Monitoring

Advanced Settings

POJO Method
Tracing Limit and
POJO

Method Tracing
Cutoff Time

If this flag is set to Yes, then this test will additionally report the following:

« The average time for which the transactions of a pattern were waiting, before they

resumed execution;

« The average time for which the transactions of a pattern were blocked from

execution by another transaction;

If transactions of a pattern are found to be much slower than the rest or are stalling,
then the aforesaid metrics will help administrators determine what could have caused
the slowness - is it because the transactions were waiting for too long? or is it because
they were being blocked for too long?

By default however, this test will not report the metrics described above, because the
Enable Thread Contention Monitoring flag is set to No by default.

To optimize transaction performance and conserve space in the eG database, many
restraints have been applied by default on the agent’s ability to collect and report
detailed diagnostics. Depending upon how well-tuned your eG database is and the level
of visibility you require into transaction performance, you may choose to either retain
these default settings or override them. If you choose not to disturb the defaults, then
set the Advanced Settings flag to No. If you want to modify the defaults, then set this
flag to Yes.

These parameters will appear only if the Advanced Settings flag is set to ‘Yes’.
Typically, if the monitoring mode of this test is set to Profiler, then, as part of the
detailed diagnostics of a transaction, eG reports the execution time of every POJO,
non-POJO, and recursive (i.e. methods that call themselves) method call that a JVM
node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to
collect detailed measures related to POJO method calls do not impact the overall
responsiveness of the monitored transaction, eG, by default, collects and reports the
execution time of only the following POJO method calls:

« Thefirst 1000 POJO method calls made by the target JVM node for that transaction;
(OR)

o The POJO method calls that were made by the target JVM node within 10 seconds

from the start of the monitored transaction on that node;

Accordingly, the POJO Method Tracing Limit is set to 1000 by default, and the POJO
Method Tracing Cutoff Time is set to 10 (seconds) by default. Of these two limits,

108

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Non-POJO Method
Tracing Limit

Recursive Method
Tracing Limit

whichever limit is reached first will automatically be applied by eG for determining when
to stop POJO tracing. In other words, once a JVM node starts processing a
transaction, the agent begins tracking the POJO method calls made by that node for
that transaction. In the process, if the agent finds that the configured tracing limit is
reached before the tracing cutoff time is reached, then the agent will stop tracking the
POJO method calls, as soon as the tracing limit is reached. On the other hand, if the
tracing limit is not reached, then the agent will continue tracking the POJO method
calls until the tracing cutoff time is reached. At the end of the cutoff time, the agent will
stop tracking the POJO method calls. For instance, if the JVM node makes 1000
POJO method calls within say, 6 seconds from when it began processing the
transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call,
and report the execution time of each of the 1000 calls alone. On the other hand, if the
JVM node does not make over 1000 POJO method calls till the 10 second cutoff
expires, then the eG agent continues tracking the POJO method calls till the end of 10
seconds, and reports the details of all those that were calls made till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you
want to impose on the agent and on the transaction, you can increase / decrease the
POJO Method Tracing Limit and POJO Method Tracing Cutoff Time specifications.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, when reporting the detailed diagnosis of a transaction on a particular JVM

node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes
for that transaction. This is why, the non-pojo method tracing limit parameter is set to
1000 by default. If you want, you can change the tracing limit to enable the test to report
the details of more or fewer non-POJO method calls made by a JVM node. While a high
value for this parameter may take you closer to identifying the non-POJO method that
could have caused the transaction to slowdown on a particular JVM node, it may also
marginally increase the overheads of the transaction and the eG agent.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. A
recursive method is a method that calls itself. By default, when reporting the detailed
diagnosis of a transaction on a particular JVM node, this test reports the execution time
of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM node makes for that transaction. This is why, the
Recursive Method Tracing Limit parameter is set to 1000 by default. If you want, you
can change the tracing limit to enable the test to report the details of more or fewer
recursive method calls made by a JVM node. While a high value for this parameter may
take you closer to identifying the recursive method that could have caused the
transaction to slowdown on a particular JVM node, it may also marginally increase the

109

Chapter 3: Monitoring Java Business Transactions

Parameter Description
overheads of the transaction and the eG agent.
Exception This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. As

Stacktrace Lines

Included Exceptions

Ignored Exceptions

part of detailed diagnostics, this test, by default, lists the first 10 stacktrace lines of
each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the
Exception Stacktrace Lines parameter is set to 70 by default. If required, you can have
this test display more or fewer stacktrace lines by overriding this default setting.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« Allunhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a
transaction, such a transaction, by default, will not be counted as an Error transaction
by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL
exceptions that have already been handled programmatically, occur. This can be
achieved by configuring a comma-separated list of these exceptions in the Included
Exceptions text box. Here, each exception you want to include has to be defined using
its fully qualified exception class name. For instance, your Included Exceptions
specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be included are
configured, then this test will count all transactions in which such exceptions are
captured as Error transactions.

This parameter will appear only if the Advanced settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« All unhandled exceptions;

« Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled
exceptions (or handled SQL exceptions), as they may not pose any threat to the
stability of the transaction or to the web site/web application. To achieve this,
administrators can configure a comma-separated list of such inconsequential

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

Ignored Characters

Max Grouped URLs
per Measure Period

exceptions in the Ignored Exceptions text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For
instance, your Excluded Exceptions specification can be as follows:
java.sqgl.SQLException,java.io.FileNotFoundException. Note that wild card
characters cannot be used as part of your specification. Once the exceptions to
be excluded are configured, then this test will exclude all transactions in which such
exceptions are captured from its count of Error transactions.

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, eG excludes all transaction URLs that contain the \’ character from monitoring.
If you want eG to ignore transaction URLs with any other special characters, then
specify these characters as a comma-separated list in the Ignored Characters text box.
Forinstance, your specification can be: \\,&,~

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’.
This test groups URLs according to the Max URL Segments specification. These
grouped URLs will be the descriptors of the test. For each grouped URL, response time
metrics will be aggregated across all transaction URLs in that group and reported.

When monitoring web sites/web applications to which the transaction volume is
normally high, this test may report metrics for hundreds of descriptors. If all these
descriptors are listed in the Layers tab page of the eG monitoring console, it will
certainly clutter the display. To avoid this, by default, the test displays metrics for a
maximum of 50 descriptors —i.e., 50 grouped URLs alone — in the eG monitoring
console, during every measure period. This is why, the Max Grouped URLs per
measure period parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring
console, the eG BTM follows the below-mentioned logic:

« Top priority is reserved for URL groups with error transactions. This means that eG
BTM first scans URL groups for error transactions. If error transactions are found in
50 URL groups, then eG BTM computes the aggregated response time of each of
the 50 groups, sorts the error groups in the descending order of their response time,
and displays all these 50 groups alone as the descriptors of this test, in the sorted
order.

. Onthe other hand, if error transactions are found in only one / a few URL groups —
say, only 20 URL groups —then, eG BTM will first arrange these 20 grouped URLs in
the descending order of their response time. It will then compute the aggregated

response time of the transactions in each of the other groups (i.e., the error-free
groups) that were auto-discovered during the same measure period. These other

Chapter 3: Monitoring Java Business Transactions

Parameter

Description

groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped
URLSs from this sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the
20 error groups are first displayed (in the descending order of their response time),
followed by the 30 ‘error-free’ groups (also in the descending order of their response
time).

At any given point in time, you can increase/decrease the maximum number of
descriptors this test should support by modifying the value of the Max Grouped
URLSs per Measure Period parameter.

Max SQI Queries per This parameter will appear only if the Advanced Settings flag is set to ‘true’.

Transaction

Timeout

DD Frequency

Detailed Diagnosis

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By default, eG picks the first 500
SQL queries executed by the transaction, compares the execution time of each query
with the SQL Execution Cutoff configured for this test, and displays only those queries
with an execution time that is higher than the configured cutoff. This is why, the Max
SQL Queries per Transaction parameter is set to 500 by default.

To improve agent performance, you may want the SQL execution cutoff to be
compared with the execution time of a less number of queries - say, 200 queries.
Similary, to increase the probability of capturing more number of long-running queries,
you may want the sql execution cutoff to be compared with the execution time of a
large number of queries - say, 1000 queries. For this, you just need to modify the Max
SQL Queries per Transaction specification to suit your purpose.

By default, the eG agent will wait for 1000 milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can
change this timeout value, if required.

Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 7:7. This indicates that, by default, detailed measures will be
generated every time this test runs, and also every time the test detects a problem.
You can maodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,

112

Chapter 3: Monitoring Java Business Transactions

Parameter Description

choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measures reported by the test:

Measurement Description mt:iatsurement Interpretation

All transactions Indicates the total number | Number By comparing the value of this
of requests received for measure across transaction patterns,
transactions of this pattern you can identify the most popular
during the last transaction patterns. Using the
measurement period. detailed diagnosis of this measure, you

can then figure out which specific
transactions of that pattern are most

requested.

Avgresponse time | Indicates the average time | Secs Compare the value of this measure
taken by the transactions across patterns to isolate the type of
of this pattern to complete transactions that were taking too long
execution. to execute. You can then use the

detailed diagnosis of the All
transactions measure of that group to
know how much time each transaction
in that group took to execute. This will
lead you to the slowest transaction.

Healthy transactions | Indicates the number of Number
healthy transactions of
this pattern.

Healthy transactions | Indicates what percentage | Percent To know which are the healthy
percentage of the total number of transactions, use the detailed
transactions of this pattern diagnosis of this measure.
is healthy.
Slow transactions Indicates the number of Number This measure will report the number of

113

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

transactions of this pattern
that were slow during the
last measurement period.

transactions with a response time
higher than the configured Slow
Transaction Cutoff (MS). A high value
is a cause for concern, as too many
slow transactions means that user
experience with the web application is
poor.

transactions of this pattern
that were stalled during the
last measurement period.

Slow transaction Indicates the average time | Secs
response time taken by the slow
transactions of this pattern
to execute.
Slow transactions Indicates what percentage | Percent Use the detailed diagnosis of this
percentage of the total number of measure to know which precise
transactions of this pattern transactions of a pattern are slow. You
is currently slow. can drill down from a slow transaction
to know what is causing the slowness.
Error transactions Indicates the number of Number A high value is a cause for concern, as
transactions of this pattern too many error transactions to a web
that experienced errors application can significantly damage
during the last the user experience with that
measurement period. application.
Error transactions Indicates the average Secs The value of this measure will help you
response time duration for which the discem if error transactions were also
transactions of this pattern slow.
were processed before an
error condition was
detected.
Error transactions Indicates what percentage | Percent Use the detailed diagnosis of this
percentage of the total number of measure to isolate the error
transactions of this pattern transactions. You can even drill down
is experiencing errors. from an error transaction in the detailed
diagnosis to determine the cause of the
error.
Stalled transactions | Indicates the number of Number This measure will report the number of

transactions with a response time
higher than the configured Stalled
Transaction Cutoff (MS). A high value

114

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

is a cause for concern, as too many
stalled transactions means that user
experience with the web application is
poor.

for which transactions of
this pattern were utilizing

Stalled transactions | Indicates the average time | Secs
response time: taken by the stalled
transactions of this pattern
to execute.
Stalled transactions | Indicates what percentage | Percent Use the detailed diagnosis of this
percentage of the total number of measure to know which precise
transactions of this pattern transactions of a pattern are stalled.
is stalling. You can drill down from a stalled
transaction to know what is causing
that transaction to stall.
Slow SQL Indicates the number of Number
statements executed | slow SQL queries that
were executed by the
transactions of this pattern
during the last
measurement period.
Slow SQL statement | Indicates the average Secs If there are too many slow transactions
time execution time of the slow of a pattern, you may want to check
SQL queries that were run the value of this measure for that
by the transactions of this pattern to figure out if query execution
pattern. is slowing down the transactions. Use
the detailed diagnosis of the Slow
transactions measure to identify the
precise slow transaction. Then, drill
down from that slow transaction to
confirm whether/not database queries
have contributed to the slowness.
Deep-diving into the queries will reveal
the slowest queries and their impact on
the execution time of the transaction.
Avg CPU time Indicates the average time | Msecs Compare the value of this measure

across transaction patterns to
accurately identify the CPU-intensive

115

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

the CPU.

transaction patterns.
Note:

This measure is reported only under
the following circumstances:

« The Enable Thread CPU Monitoring

flag of this test is set to Yes;

« The target application server's JVM
implementation supports CPU time
monitoring of threads; to verify JVM
support for CPU time monitoring,
use the procedure described in the
Verifying JVM Support for CPU
Time and Thread Contention

Monitoring.

Avg block time

Indicates the average
duration for which
transactions of this pattern
were blocked and could
not execute.

Msecs

If the Avg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not prolonged
blocking is causing transactions of that
pattern to slow down or stall.

Note:

This measure is reported only under
the following circumstances:

« The Enable Thread contention
Monitoring flag of this test is set to

Yes;

« The target application server's JVM
implementation supports contention
monitoring of threads; to verify JVM

support for thread contention

116

Chapter 3: Monitoring Java Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

monitoring, use the procedure
described in the Verifying JVM
Support for CPU Time and Thread

Contention Monitoring.

Avg wait time

Indicates the average
duration for which
transactions of this pattern
were waiting before they
resumed execution.

Msecs

If the Avg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not a very high
waiting time is what is causing the
transactions to slow down/stall.

Note:

This measure is reported only under
the following circumstances:

« The Enable Thread Contention
Monitoring flag of this test is set to

Yes;

« The target application server's JVM
implementation supports contention
monitoring of threads; to verify JVM
support for thread contention
monitoring, use the procedure
described in the Verifying JVM
Support for CPU Time and Thread

Contention Monitoring.

Total transactions
per minute

Indicates the number of
transactions of this pattern
that are executed per
minute.

Number

This is a good indicator of the
transaction processing ability of the
target application server.

Error transactions
per minute

Indicates the number of
error transactions of this
pattern that are executed
per minute.

Number

A very low value is desired for this
measure.

Compare the value of this measure

Chapter 3: Monitoring Java Business Transactions

Measurement

Measurement .
Unit

Description

Interpretation

across transaction patterns to find that
pattern of transactions that is
experiencing errors frequently.

3.3 Detailed Diagnostics

By reporting detailed diagnostics on transaction responsiveness and errors, eG Enterprise not only
points you to the slow/stalled/error transaction URLSs, but also reveals what could be causing the
slowness/errors.

Figure 3.2 reveals detailed diagnosis of the Slow transactions percentage measure of the Java
Business Transactions test.

Slow Transaction Snapshots for Address-Validation-Servicel
REQUEST PROCESSING TIME NODE QRDER REQUEST TIME URL
Feb 09, 2017 02:01:30

TOTAL RESPONSE TIME (ms) REMOTE HOST QUERY STRING = THREAD

B slow Q
E slow Q
= Slow Q
= slow Q
B slow Q
E Slow Q
B slow Q
B slow Q
E slow Q
B slow Q

11

11

11

11

11

11

11

11

11

11

Feb 09, 2017 02:00:20 EDT
Feb 09, 2017 02:00:19 EDT
Feb 09, 2017 02:00:19 EDT
Feb 09, 2017 02:00:16 EDT
Feb 09, 2017 01:59:59 EDT
Feb 09, 2017 01:59:41 EDT
Feb 09, 2017 01:59:37 EDT
Feb 09, 2017 01:59:37 EDT
Feb 09, 2017 01:59:24 EDT

Feb 09, 2017 01:58:59 EDT

fcms/PaymentValidation..

JcmsfPaymentvalidation

fems [Paymentvalidatien..

fcms/PaymentValidation..

Jems fPaymentvalidation

fems [Paymentyalidation

fcms/PaymentValidation..

JemsfPaymentValidation

femsfPaymentvalidation

fcms/PaymentValidation..

22655

19994

24368

19547

17915

20938

23005

21707

22110

18821

192.188.11....

192 16811

192.188.11....

192.188.8.16

192 168.8.77

192.168.11

192.188.11....

192 168 9.69

192 168 8.1

192.168.11....

hrtp-bi
http-bi
http-bi
hrtp-bi
http-bi
http-bi
hrtp-bi
http-bi
http-bi

htep-bi

Figure 3.2: Detailed diagnosis of the Slow transactions percentage measure of the Java Business

Transactions test

The detailed diagnosis reveals the individual transaction URLs in the grouped URL that users
requested for, the total response time of each transaction, the client (remote host) from which each
transaction request was received, the thread executing the transaction, and the query string of the
transaction URL.

The per-transaction response time displayed in Figure 3.2 includes the following:

« The total time for which the transaction request was processed by the target JVM and by other
BTM-enabled JVMs in the transaction path thereafter, until the time the response for that
transaction request was sent out by the target JVM,;

118

Chapter 3: Monitoring Java Business Transactions

« The time taken by external calls (SQL query / HTTP / JMX / Java / JMS / SAP JCO / async) to
other JVMs or backends in the transaction path;

Additionally, the overall experience of the users with each transaction — whether it is slow, stalled, or
error - is also revealed in the REQUEST PROCESSING TIME column. Furthermore, the
HTTP headers, cookies, the HTTP status code returned by the monitored node in response to the
transaction request, and the type of HTTP method invoked by the transaction on that node are also
revealed. In addition, the following are displayed as part of detailed diagnostics:

« How much time each transaction used the CPU;
« How much time was every transaction blocked;

« How much time did each transaction spend waiting;

CPU-intensive transactions, blocked transactions, and waiting transactions of the chosen pattern
can thus be isolated. Also, for the Slow or Stalled transactions, this information will help you
determine the probable cause for the transaction slowness - is it because the transactions were
blocked for too long and could not execute? or is it because the transactions were waiting for too
long a time to continue execution?

The per-transaction statistics are also sorted in the descending order of the transaction response
time, starting with the slowest transaction and ending with the healthiest one. In the event that the
Avg response time of a grouped URL registers an abnormally high value, you can use these detailed
metrics to quickly and accurately identify the exact transaction in the group that is significantly
contributing to the poor user experience with the group.

Besides the above, the detailed diagnosis also includes two columns, namely - User Name and
Business Context.By default, these two columns will not display any values. This has been done so
that administrators can use these columns to display any additional information that they deem
useful for troubleshooting transaction slowness. For instance, administrators can configure
eG Enterprise to capture the name of the user who initiated each transaction and display the same in
the User Name column for every transaction URL in the Detailed Diagnosis page. Likewise,
administrators can also tweak eG Enterprise to capture and display information such as fetch type,
class name, method name, method signature, session attribute name, URL pattern, etc. against
Business Context. Such custom information can also be captured for specific transaction URLs or
URL patterns alone. To know how this can be achieved, refer to the Section 3.3.1 topic.

Detailed diagnostics are also available for the Slow transaction percentage, Stalled transaction
percentage, and Error transaction percentage measures of the Java Business Transactions test.

119

Chapter 3: Monitoring Java Business Transactions

With the help of these detailed measures, you will be able to quickly and accurately identify the slow,
stalled, and error transactions in a grouped URL.

Once a slow/stalled transaction is revealed, the next question is what is causing the transaction to
slowdown. Transaction responsiveness can be impacted by any of the following factors:

« Aninefficient database query run by the target JVM node;

 In a multi-JVM environment, a time-consuming POJO / non-POJO method called by any JVM
node;

« A poorly responsiveness remote service call made by the target JVM node;

With the help of illustrated examples, the links below describe how drill-downs from the detailed
diagnostics enable accurate isolation of the root-cause of a transaction slowdown / errors in a
transaction.

» Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow
Transaction

« Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown
« Detailed Diagnostics Revealing the Root-cause of an Error Transaction

« Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction
Slowed Down

3.3.1 Configuring User Name and Business Context

As part of detailed diagnosis, eG BTM displays two columns, namely - User Name and Business
Context. By default, these two columns will not display any values. This has been done so that
administrators can use these columns to display any additional information that they deem useful for
troubleshooting transaction slowness. For instance, administrators can configure eG Enterprise to
capture the name of the user who initiated each transaction and display the same in the User Name
column for every transaction URL in the Detailed Diagnosis page. Likewise, administrators can also
tweak eG Enterprise to capture and display information such as fetch type, class name, method
name, method signature, session attribute name, URL pattern, etc. against Business Context. Such
custom information can also be captured for specific transaction URLs or URL patterns alone.

To achieve this, follow the steps below:

1. Edit the exclude.props file inthe <EG_BTM_INSTALL_DIR>\lib\btm directory.

2. Inthefile, locate the IC for APM Configuration section.

120

Chapter 3: Monitoring Java Business Transactions

3.

In this section, first create an entry called IC_IDS and indicate for how many URLs/URL patterns you
want a User Name and/or Business Context to be displayed.

IC_IDS=1~|~2~|~3~|........|~N

For instance, if you want to configure a User Name and/or Business Context to be displayed for 4
patterns of URLs. then your IC_IDS specification will be as follows:

IC_IDS=1~|~2~|~3~|~4

Next, append an IC entry for every URL/URL pattern for which a User Name and/or a Business Context

is to be displayed. Each IC specification should be configured in the following format:

IC_<<URLIndex>>=<<Entry Description>>~|~<<Field Type>>~|~<<Fetch Type>>~|~<<Fully
Qualified Class Name>>~|~<<Method Name>>~|~<<Method Signature>>~|~<<Method Argument
Index>>~|~<<Fetch Once>>~|~<<Pass Request Object>>~|~<<Execute at Start of the
Transaction>>~|~<<Session Attribute Name>>~|~<<Matching URL Pattern>>

Let us take a look at each variable in the specification. <<URLIndex>> refers to the serial number that
identifies the URL/URL pattern to which the IC specification applies. This can be any number,
depending upon the total number of URLs/URL patterns for which IC specifications need to be defined.
For instance, if you want to display a user name and/or business context for 3 URLs/URL patterns,
then, you will have to insert three separate IC specifications here, each with the <<URLIndex>> 1, 2,

and 3, respectively, as shown below.

IC_1=
IC_2=
IC_3=

The <<URLIndex>> has to be sequentially incremented, as and when a new IC specification is

appended.

<<Entry Description>> can be a text string or a keyword that uniquely identifies the
URL/URL pattern to which the IC specification applies. For instance, if you are configuring an
IC specification for the URL pattern, */sports*, then you can configure sports as the <<Entry
Description>>.

121

Chapter 3: Monitoring Java Business Transactions

7.

10.

11.

<<Field Type>> should indicate whether you want to fetch a User Name for the
URL/URL pattern or a Business Context. The <<Field Type>> should be either 1 or 2, where 1
denotes User Name and 2 denotes Business Context.

<<Fetch Type>> refers to the approach using which you want to capture the User Name or Business

Context for a transaction URL. eG Enterprise prescribes three approaches to capturing the same:

o Method Argument - If you have written a Java method that takes input arguments for
capturing the user name or business context, then use the Method Argument approach.

o Static Method - A Static method belongs to the class and not to the object(instance). A static
method can access only static data. It cannot access non-static data (instance variables). A
static method can call only other static methods and can not call a non-static method from it.
If you have written a static Java method for retrieving the user name or business context,
then use this approach.

o Session Attribute - If the User Name or Business Context is available as a session attribute,
then you can configure the eGagent to access that session attribute and retrieve the
required information.

The rest of the specification will change based on the approach you choose. In the specification, type 1
to choose the Method Argument approach, 2 to choose the Static Method approach, and 3 to pick the

Session Attribute approach.

<<Fully Qualified Class Name>> is applicable only if the <<Fetch Type>> is either 1 or 2. If so,
then specify the name of the class that contains the method definitions for fetching the User
Name or Business Context. If a packaged class is to be used, then specify the fully qualified
class name - eg., com/samples/MyProgram. If its not a packaged class, then simply specify the
class name - eg., MyProgram.

<<Method Name>> refers to the method that should be invoked for capturing the User Name
or Business Context. Specify the name of that method here.

<<Method Signature>> is applicable only if the <<Fetch Type>> is 1. If the <<Method Name>>
configured takes one/more input arguments, then specify a comma-separated list of such arguments in
the place of <<Method Signature>>. Typically, if these input arguments are of primitive type, then you
can specify them as is . However, if they are objects or wrapper classes, then they should be specified
using the fully qualified object name or wrapper class name - eg., /java/lang/String.

On the other hand, if the <<Method Name>> configured does not take any input parameters, then enter
null here.

122

Chapter 3: Monitoring Java Business Transactions

12.

13.

14.

15.

16.

17.

18.

<<Method Argument Index>> is applicable only if <<Fetch Type>>is 1. If the <<Fetch Type>>
is 2 or 3, then replace <<MethodArgumentindex>> with none. For <<Fetch Type>> 1, in the
place of <<Method Argument Index>>, you need to define at what position of the method
invocation call, the information you need - i.e., whether User Name or Business Context -
resides. For instance, if the method invocation call is Method1(int userlD, string userName),
then to fetch the User Name, the <<Method Argument Index>> will be 2. This is because, the
second argument, string userName, is the one that fetches the User Name information.

<<Fetch Once>> takes the value true or false. This is presently not handled. Nevertheless, you
need to set it to either true or false. The value you set will not in any way impact the functionality
or the output of the method.

<<Pass Request Object>> is applicable only if <<FetchType>> is 2 - i.e., the static method
approach. The static method that you use to fetch the User Name or Business Context should
either take only one request object or no request objects. If the static method you use uses a
single request object, enter true in the place of <<Pass Request Object>>. If the method you
have written does not use any request objects, then specify false. If the <<Fetch Type>>is 1 or
3, then enter none.

<<Execute at Start of Trans>> is applicable only if <<Fetch Type>> is 2 or 3. If <<Fetch
Type>>is 1, then set this flag to none. On the other hand, if << Fetch Type>>is 2 or 3, then set
the value of this flag to true or false. For example, say, you want to fetch the value of User
Name from a session attribute and have hence set <<Fefch Type>> to 3. Let's say that the
session attribute captures the user name only when the transaction is in progress; not when it
begins. In this case, you have to set the <<Execute at Start of Trans>> to false, so that the user
name is obtained from the session attribute towards the end of the transaction. On the other
hand, if the session attribute captures the user name at the beginning of the transaction, set this
flag to frue. In this case, the user name is obtained from the session attribute at the start of the
transaction itself.

<<8ession Attribute Name>> is applicable only if <<Fetch Type>>is 3. If so, then specify the
name of the session attribute from which the User Name or Business Context has to be
fetched.

<<URL Pattern>> is applicable to all <<Fetch Types>>. Here, specify a comma-separated list
of URLs or URL patterns for which the User Name or Business Context has to be captured and
displayed as part of detailed diagnosis. The URL patterns can include wild card patterns - eg.,
WebPoc, *Web*

A sample IC specification is as follows:

123

Chapter 3: Monitoring Java Business Transactions

IC_
1=MethodParams~|~1~|~1~|~com/egi/poc/UserName~|~isValidUser~|~null~|~1~|~true~|~false~|~tru
e~|~null~|~*WebPoc*

Finally, save the file.

19. Then, restart the application.

Note:
Some of the limitations of each of the approaches are as follows:

Method Argument Approach

« Not possible to get the argument values of predefined methods.

« Not possible to capture all the argument values of a method.

Static Method Approach

« Not possible to get the return value of private static methods.

« Not possible to get the output of static methods that have more than one parameter.

Session Attribute Approach

Not possible to get the session value if the response is committed at the end of the transaction.

3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the
Reason for a Slow Transaction

Let us consider the example of a web application that has been deployed on the Oracle WebLogic
server, Address-Validation-Service1:7001. Users of the web application complained that every time
they tried to browse the LanguageService web page on the web application, the response was very
poor. Using eG’s Java Business Transactions test of the Oracle WebLogic server,Address-
Validation-Service1:7001, you can promptly capture this anomaly! As you can see in Figure 1 below,
the Java Business Transactions test has accurately captured and reported that the Slow
transactions percentage for the /cms/LanguageService.jsp is 100%. This means that 100% of the
requests for the LanguageService.jsp transaction were serviced slowly (see Figure 3.3)!

124

Chapter 3: Monitoring Java Business Transactions

x Address-Validation-Service1:7001

Last Measurement Time : Feb 09, 2017 02:19:40

€3 Java Business Transactions - fcms/Languageservice,sp i
@ Application Transactions [—

~ €3 Java Business Transactions Al transactions (Number) 2z [4
X Jems/languageService jsp o/ Avg response time (Milliseconds) 20709 5 Q| £
X Jems/Paymentvalidationsp o/ Healthy transactions (Number) a [4
X [emsjSearchResults jsp o/ Healthy transactions percentage () a [4

X femsjStoreLocations jsp Slow statistics
_Jsms{CheckPrice.jsp Slow transactions (Number) 2 I &
/ Slow transactions response time (Milliseconds) 20709.5 [=
X Slow transactions percentage %) 100 Q&
/ Error transactions (Number) o \i ‘L
/ Error transactions percentage (%) o \i ‘L
) Stalled transactions (Number) 0 I £
/ Stalled transactions respanse time (Millissconds) 0 I £
/ Stalled wansactions percentage () 0 I &

SOL Statistics.

Figure 3.3: The Layers tab page indicating that all requests for /Easykart/PaymentPage.jsp were slow

To know which request received the slowest response, click the DIAGNOSIS icon against the Slow
transactions percentage measure in 3.3.2. Figure 3.4 will then appear listing all the transaction
requests that were slow, the time at which each request was sent, the total response time of every
request, the client from which the request was received, the query string of the transaction URL, and
more.

Slow Transaction Snapshots for Address-Validation-Servicel
REQUEST PROCESSING TIME NODE ORDER REQUEST TIME URL TOTAL RESPONSE TIME {ms) REMOTE HOST QUERY STRING = THREAD IN
Feb 09, 2017 02:04:45
E Slow Q 11 Feb 08, 2017 02:02:43 EDT Jems/Languageservice.. 19814 192.168.11. ... http-bio-
E stlow O 1.1 Feb 08, 2017 02:01:52 EDT fems/LanguageService.. 21605 192.168.11. .. http-bio-

Figure 3.4: Detailed Diagnosis of the Slow transactions percentage measure

Since the requests are arranged in the descending order of their response time, a quick look at the
detailed diagnostics will lead you to the precise request that is the slowest. But, why is response to
this request slow? To answer this question, click the ‘magnifying glass’ icon against Slow in n the
slowest request (i.e., the topmost request in Figure 3.4).

Figure 3.5 will then appear revealing the cross-application flow of the slow transaction. This flow
diagram clearly reveals the following:

« The JVMs and backends through which the transaction travelled;

« The time for which the transaction request was processed at each BTM-enabled JVM; note that
this time will not be computed for JVMs that are in the transaction path, but are not
BTM-enabled and those that are BTM-enabled but are not managed by eG;

« The exit calls made by each BTM-enabled node to another node as part of the transaction's
journey, the time consumed by each exit call,and the number of times each type of call was made;

125

Chapter 3: Monitoring Java Business Transactions

the following exit calls are supported by eG BTM:

o Database Query

o HTTP

o Web service

o JMS

o LDAP

o RMI

o Java mail API

o EJB

o JSF (Java Server Faces)

Runtime

o

Note that the EJB exit call is supported only for JBoss, WebLogic, and WebSphere
nodes.

Cross Application Transaction Flow for fcms/LanguageService jsp received on node at Fe | = nl

URL Clicked by the USER: /zapstore/trackYourOrder/ received at Feb 09, 2017 02:01:33 EDT

TRANSACTION SNAPSHOT

Request © Z slow
Processing Time o SAPICO b %
W Java s SAP.
Execution Time : 22764 ms 151 ms Remote Call
ABAP:192.168.8.36:00

Slow Segment - Database Query execution on v ;‘;:”’ Call N (E

Customers-DB:1521:PROD o=

took 19339 ms. Oracle WebLogic

Click here to view tier- N5 (5)
wise response time

breakup ActiveMQ
OrderGueue
v NS (6) +
66 ms =T
ActiveMQ
Email Alert
& Database Query ’ %
-
o Jova 19239 ms s
1102 ms Gracle Database
[] Customers-DE:1521PROD
s " +/ HTTP Call 5
Y 4 856 ms
F User Oracle WebLogic Remote Call
Shipping-Engine1:7001 https:/ /deliveryinterceptservice:443
+
) " Web Service , @
s Zoom in | Zoom out 562 ms
=) | "
slider Remote Call

http://mastercard merchantsite:443

'y
Bd
sb
[

Figure 3.5: Cross-application transaction flow

Note:

126

Chapter 3: Monitoring Java Business Transactions

« If a BTM-enabled node appears 'grayed out' in the cross-application transaction flow, it
denotes that eG BTM could not collect detailed diagnostics for that node. The reasons for this
could be either or both of the following:

« Transaction responsiveness on the 'grayed out' node was either healthy or was only slightly
slow, and hence, did not appear in the list of Top-N slow transactions.

« Slow data transmission from eG agent to manager;

« IfaJVM node makes a JMS call to a messaging server, then. in the transaction topology, that
messaging server will be identified by the name of the messaging service provider and the
name of the exact queue/topic that is managing the JMS request. If a JVM node makes a
SQL query call on a database server, then the details displayed for that database server in the
transaction topology depends upon whether/not that database server is managed by
eG Enterprise. If the database server is not managed by eG Enterprise, then such a database
server will be represented in the topology using the server type (whether Oracle, Microsoft
SQL etc.) and the name of the database that was accessed by the SQL query. To know the IP
and port number of the unmanaged database server, you can drill-down from the Database
queriescall in the topology. On the other hand, if the database server in question is being
monitored by eG Enterprise, then such a server will be represented in the topology using the
server type, nick name, port number, and the database name. Additionally, the SID will be
displayed in case of an Oracle database server, and the instance name will be displayed in
case of an instance-based Microsoft SQL server.

« EJB calls from a client and to a server on the same host will not be captured by eG BTM, and
will hence not be displayed in the cross-application transaction topology.

« Sometimes, empty nodes — i.e., nodes without any details — will be visible in the cross-
application transaction flow topology. Likewise, the time spent on certain external calls may
also not be displayed in the topology. This is owing to inconsistencies in the collection of
detailed diagnostics.

Using conventional color codes and intuitive icons, the transaction flow chart precisely pinpoints
where the transaction slowed down. In the case of Figure 3.5 above, from the color-coding it is clear
that the Database Query executed by the Oracle WebLogic server — Address- Validation-
Service1:7001 - is taking a long time for execution. The question now is which query is this. To
determine that, click on Database Query in Figure 3.5.

Drilling down from Database Query in Figure 3.5 automatically opens the list of SQL Queries
executed by the slow transaction in question (see Figure 3.6). The execution time of each query and
what percentage of the total response time of the transaction each query is consuming will be
displayed here. From Figure 3.6, it is evident that a SELECT DISTINCT specials. . . query is taking

127

Chapter 3: Monitoring Java Business Transactions

over 19000 milliseconds for execution — this is apparently 97% of the total response time of the target
transaction. This time-consuming query is what is causing the transaction to slow down. To view the
complete query, click on that query in the SQL Queries list of Figure 3.6. The detailed query will
then be displayed in the Query section of Figure 3.6.

Call Drill Down for /emsfLanguageService jsp on Address-Validation-Service1:7001

i summary Slow SQL Queries 1 out of 1 SQL query is slow; Total time : 19339 ms
Execution Analysis UERY EXECUTION

2 QUERY DETAILS % TIME ERROR COMPOMNENT | DATABASE

TYPE TIME (ms})
@ Hot spots

SELECT SELECT DISTINCT specials.... 19339 97.6 % = °Custo... 10.44.207...
=] slow SOL Queries
E* Error Details
E Remote Call Details

<
Query

SELECT DISTIMCT specials.specials_new_products_price, specials.status, specials.expires_date, specials.starts_date,
products.products_date_added, products.products_date_available, products.products_date_expiry,
products.products_id, products. products_image, products.products_image2, products.products_image3,
products.products_imaged, products.product_image_dir, products.product_uuid, products.products_model,
products_products_price, products.products_price_1, products.products_price_2, products.products_price_3,
products.products_ordered, products. products_quantity, products. products_status, products.products_invisible,
products.products_weight, products.product_length, products.product_width, products.product_depth, products.rating,
products_number_reviews, products. products_tax_class_id, products_products_sku, products. products_type,
products.products_file_path, products.paymeni_schedule_id, products. products_content_type, products.customl,
products.custom2, products.custom3, products.customd, products.custom5, products.customé, products.custom?,
products.custom8, products.custom9, products.custom10, products.custom1Dec, products.custom2Dec,
products.custom1int, products.custom2int, products.store_id, products. max_download_days,
products.max_num_downloads, products.stock_reorder_level, products.can_order_when_not_in_stock,

Figure 3.6: Analyzing the slow query

This way, using a short sequence of mouse clicks, you have zeroed-in on the source of the
transaction slowness.

The TRANSACTION SNAPSHOT section in Figure 3.5 leads you to the same root-cause, without
requiring any clicks! The details provided by this section are as follows:

« User Experience: The user experience with the LanguageService transaction; in our example,
this is Slow

« Execution Time: The total response time of the LanguageServicetransaction;

« Slow Segment: Where exactly the LanguageService transaction slowed down;

From the Slow Segment display, it is evident that a database query executed by the
LanguageService.jsp transaction on the Customers-DB database took over 19000 millisecs for

128

Chapter 3: Monitoring Java Business Transactions

execution, thereby slowing down the entire transaction! This corroborates our findings from the
cross-application transaction flow and the subsequent query analysis.

Now, click on the down-arrow button at the bottom tip of the TRANSACTION SNAPSHOT section
(asindicated by Figure 3.5). Doing so will reveal a tier-wise breakup of the transaction response time
(see Figure 3.7). This way, you can quickly compare response time across tiers, and accurately
isolate where the bottleneck lies —in this case, itis in the database queries.

Click to close
TRANSACTION SNAPSHOT [-] i
the transaction

Request : E Slow snapshot
Processing Time

Execution Time : 22764 ms

Slow Segment © Database Query execution on

Customers-DB:1521:FROD
took 19339 ms.

. .) Click to close
Tier Execution Time Breakup ithe tierwise
breakup
Java Database Queries Remote Calls
1253 ms 19339 ms 2172 ms

Figure 3.7: Tier-wise response time breakup

To close the tier-wise breakup, click on the up arrow button indicated by Figure 3.7.

You can even close the transaction snapshot pop-up if you want to by clicking on the =/ button
alongside the titte TRANSACTION SNAPSHOT (as indicated by Figure 3.7).

Let us now revisit the cross-application flow diagram of the LanguageService transaction. You can
use the top-down slider at the bottom, left corner of the flow diagram (as indicated by Figure 3.5) to
zoom your diagram in and out.

Moreover, by default, the time spent by the transaction at every point cut is reported in milliseconds
in the flow diagram. You can reconfigure the flow diagram to express the time spent as a percentage
of total transaction response time instead. For this, first click the button at the right, top corner of the
flow diagram. The options depicted by 3.3.2 will then appear.

129

Chapter 3: Monitoring Java Business Transactions

] -

More Options

Time spent in ms

Time spent in %

All
Component type

Component name

Figure 3.8: Expressing the time spent at every point cut as a percentage of total transaction response time

Uncheck the Time spent in ms check box in 3.3.2 and select the Time spent in % check box to
make sure that the response time at every point cut is displayed as a percentage of total transaction
response time. The percentage will enable you to better judge where the transaction spent
maximum time.

You can also choose the Component type or Component name options in 3.3.2 to have the
component type only or the component name only (as the case may be) displayed for each of the
nodes in the cross-application transaction flow. By default, both component type and name will be
displayed for each node.

Let us now explore the Summary section of the call drill down. For that, click the Summary option
in the left panel of Figure 3.6. Figure 3.9 will appear.

130

Chapter 3: Monitoring Java Business Transactions

Call Drill Down for {cms/LanguageService jsp on Address-Validation-Service1:7001

Summary
Execution Analysis
%) Hot Spots
= Slow SQL Queries
[EX Error Details

[E] Remate Call Details

Summary

Total Processing time . 19814 ms

URL : /cms/LanguageService,jsp

Component : Address-Validation-Service1:7001 (Oracle We...

Breakup of Processing Time :
Java (this node)
151 ms

TRANSACTION DETAILS
URL

Request Time

Business Transaction

Request Processing Time (Owverall)

Java Processing Status on Address...

Total Processing Time
Component

Remote Host

Query String

Session ID

Thread Name

Thread ID

Transaction Threshald

Remote Calls (database, others)

B Address-Validat. Others

J/cms/LanguageService.jsp
Feb 09, 2017 02:02:43 EDT

Jzapstore/trackYourOrder

Z slow
' Healthy

19814 ms (Transaction was slower than the slow threshold of 4000 ms)
Address-Validation-Service1:7001
192.168.11.189

C204F96392BEDCA48CT74117A096664DF
http-bio-8780-exec-14

[12458]

4000 ms

h2rREFE2_1 76 -AAaf 0028 -GAETAACAST7A-1ARAETIANIAEDT

Figure 3.9: A summary of the performance of the JVM node, Address-Validation-Service1:7878

The Summary section provides a quick summary of the performance of the monitored transaction,
LanguageService.jsp, on the JVM node that executed the slow database query — i.e., the Oracle
WebLogic server, Address-Validation-Service1:7001. .

From the Summary, you can infer that the LanguageService transaction was processed for a total
of 19814 milliseconds on Address-Validation-Service1:7001. If you take a look at the transaction
topology now (see Figure 3.10), you will be able to understand that this processing time is the sum of
the following:

« The time for which the transaction was processed internally by the Address-Validation-
Service1:7001 server— 151 ms

« The time taken by Address-Validation-Service1:7001 to execute a database query for
the transaction and retrieve results — 19339 ms

o The time taken by Address-Validation-Service1:7001 to make a JMS call to a messaging
server and pull data from the message queue OrderQueue —319 ms

« The time taken by Address-Validation-Service1:7001 to make a SAP JCO call to a SAP
server—5ms

131

Chapter 3: Monitoring Java Business Transactions

Cross Application Transaction Flow for fems/LanguageService.jsp received on node at Fe. | -E nl
URL Clicked by the USER: fzapstore/trackYourQOrder/ received at Feb 09, 2017 02:01:33 EDT
TRANSACTION SNAPSHOT
Regquest = siow
Processing Time %
 Jaa S SAP.
Execution Time : 22764 ms 151 ms Remote Call
ABAP1921688.36:00
Slow Segment Database Query execution an v ;«;w Call %
Customers-Dg:1521:PROD .
took 19339 ms_
W IMs (5)
)
ActiveMQ
OrderQuese
A M (6)
66 ms =79
ActiveMQ
Email Aler
=
 Jaa S
1102 ms Oracle Database
o P Customers-DE:1521PROD
- al
PN = i o

F User Oracle WebLogic Remote Call
Shipping-Engine 7001 hitps:/ /deliveryinterceptservice:443

o Web Servies @
562 ms Q
mota G
a

S
Bd
=]
[

Figure 3.10: How the total processing time of the transaction on Address-Validation-
Service1:7001 is computed

The Breakup of Processing Time section in Figure 3.9 clearly indicates how the Total
Processing time is computed. From this section, you can also glean where the slowdown
originated — within the JVM node? Or when making external calls from the JVM node? In the case of
our example, the problem is with the remote calls.

Next, take a look at the URL displayed in the Summary section. As you can see, the URL is that of the
Business Transaction that was zoomed into - i.e., LanguageService.jsp. However, sometimes, while the
Business Transaction may continue to be LanguageService.jsp, the URL could be different. This is
because, the URL refers to the URL that was hit when an HTTP call is made by one JVM node to another.
This means that when accessing the LanguageService.jsp web page on Address-Validation-Service1:7001, if
that web page had hit another URL, then that URL will be displayed against URL.

Additionally, the Summary section also reports the Query String of the URL, the Session ID of
the session in which the transaction is processed on the Address-Validation-Service1:7878 server,
and Thread Name of the thread that processed the transaction.

The Summary section also differentiates between the overall User Experience of a transaction
and the Java Processing Status of that transaction on a particular JVM node. In the case of our
example, the Summary section clearly reveals that the User Experience of the transaction is
Slow. At the same time, eG has also detected that the slowness did not occur because of a
processing bottleneck on the Address-Validation-Service1:7001 server. This is why, eG maintains
that the Java Processing Status of the Address-Validation-Service1:7001 server is Healthy.

132

Chapter 3: Monitoring Java Business Transactions

3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing
Transactions to Slowdown

Let us consider the example of a web application, where the following transactions are slow.

All Transaction Snapshots for Merchandising-Enginel

REQUEST PROCESSING TIME ~ NODE ORDER REQUEST TIME URL TOTAL RESPONSE TIME (ms) ~ REMOTE HOST QUERY STRING ~ THREAD IN|

-
= slow Q 1 Feb 16,2017 0B:57:25EDT fEasyKart/ProductStatus... 25560 192.168.1.. - http-t
2 slow 4 Feb 16,2017 0B:58:08 EDT fEasyKart/ProductStatus. 25560 1921681 hitp-t

g Slow G Feb 16, 2017 09:02:05 EDT JEasyKartfProductStatus.. 25560 192.168.1.. http-t

E siow G Feb 16,2017 09:01:22 EDT fEasyKart/ProductStatus. .. 25560 192.168.1.. htp-t| =

E slow 4 Feb 16, 2017 09:05:08 EDT fEasyKart[ProductStatus. 25560 192 168.1. http-k
B slow Q 1 Feb 16, 2017 09:04:14 EDT fEasyKart/ProductStatus.... 25560 192.168.1.... - hitp-t
I slow & 1 Feb 16, 2017 09:07:41 EDT [EasyKart/ProductStatus. 25560 192.168.1.. - http*l\\

g Slow G 1 Feb 18, 2017 09:11:02 EDT JEasyKart[ProductStatus... 25560 192.168.1.... - http-t

= Cln O . Eakh 16 7017 N0 1M-E2 ENT SP o rosme e mrrre PECIET R
4 m n| r

Page ofl6 | > » ¥

Figure 3.11: Detailed diagnosis of the Avg response time measure

Let us focus on the slow /Easykart/ProductStatus.jsp in Figure 3.11. To zoom into the transaction,
click on it. The flow of the ProductStatus.jsp transaction will then be displayed as depicted by Figure
3.12.

Cross Application Transaction Flow for /EasyKart/ProductStatus jsp received on node [[EEENEETE GOSN at Feb. ..] |

URL Clicked by the USER: fEasyKart/ProductStatus.jsp received at Feb 16, 2017
09:02:05 EDT
TRANSACTION SNAPSHOT |-/

Request : g Slow
Processing Time

Execution Time : 25560 ms
wIMse
Slow Segment - Multiple SLOW calls found 66 ms.

ActiveMO
Email Alert

The Oracle WebLogic server where
transaction processing slowed down

" HTTP Call @
56 ms
= Java 2107 ms
6001 ms (async) Remote Call
— https:/ /addressvalidationservice:443

‘ + \ Ius (5}40@.

] 319 ms

5 User 151ms ActiveMQ.
‘OrderQueue

K,
Orade WEDLDN
Pricing-Enginel:7001 -

E DatabaseQueries 3} —]

[+ 21135 ms
Oracle Database
prodl
 WebService .,
62 ms
Remote Call
& hitps:// mastercard.merchantsite:443
*Topology above represents the complete request flow? @ 7 g 'I.lil')\'i{

Figure 3.12: The cross-application flow of the ProductStatus.jsp transaction

133

Chapter 3: Monitoring Java Business Transactions

From the transaction flow, it is evident that the transaction slowed down on the Oracle WeblLogic
server, Merchandising-Engine1:7001. The question now is what type of processing on the Oracle
WeblLogic server delayed the transaction in question. A closer look at the WebLogic server icon in
Figure 3.12 will answer this question as well! As indicated by Figure 3.12, the Merchandising-
Engine1:7001 server processed Java methods synchronously for 2107 milliseconds and
asynchronously for over 6000 milliseconds. Comparing the two execution times points the needle of
suspicion towards the synchronous Java call made by the WebLogic server. If so, which exact Java
method is slowing down the transaction? To identify the same, let us zoom into the WebLogic server
by clicking on it in Figure 3.12. An intermediate window depicted by Figure 3.13 will then appear.

Cross Application Transaction Flow for /EasyKart/ProductStatus.jsp received on node at Feb.. || == nl

URL Clicked by the USER: fEasyKart/ProductStatus.jsp received at Feb 16, 2017

09:02:05 EDT
TRANSACTION SNAPSHOT

Request E Slow
Processing Time
Execution Time : 23560 ms

V' IM5 (6)
Slow Segment Multiple SLOW calls found 66 ms ="

ActiveMQ
Email Alert

Select a call to drill down
CALL SOURCE START TIME SELF EXECUTI
= Java 21 TYPE TIME ON TIME
I
. 6001 m (ms) (ms)
1 = .
_— = Synchr... This Node Feb 16, 2017 09:02:... 2107 25560
PN &1z -
— = E Asynch.. This Node Feb 16,2017 09:01:.. 6001 6001
= User L, ActiveMQ
g OrderQueue
' \-—’I
+ —
2
Oracle Database
prodl

e
Remote Call
https:/ /mastercard.merchantsite:443

s
b
=l
[[

Figure 3.13: An intermediate modular window

This intermediate window will appear only under the following circumstances:

« If a node receives and processes multiple synchronous / asynchronous requests from
one/more external sources; and/or

« If one/more asynchronous threads are invoked by a node in response to requests to it;

Typically, from this window, you will be able to quickly determine the number of synchronous and
asynchronous calls that a particular JVM node processed. In the case of our example, we can clearly
infer from the intermediate window that the Merchandising- Engine1:7001 server executed a
synchronous and an asynchronous call.

134

Chapter 3: Monitoring Java Business Transactions

For each synchronous and asynchronous call, this window will also display the self execution time
and total execution time of that call. Self execution time is the time it took for the
synchronous/asynchronous call to perform Java processing alone. Total execution time is the time
taken by the synchronous/asynchronous call to perform both Java and non-Java (eg., HTTP,
Database, etc.) processing. By comparing the self and total execution times across calls, you will be
able to accurately identify the exact call that took too long to execute, the call type, and whether such
a call was slow in processing Java or non-Java. Accordingly, we can clearly deduce from the
intermediate window of Figure 3.13 that the synchronous call made by Merchandising-
Engine1:7001 server in our example performed Java processing for a much longer time than
desired. To be able to precisely identify the exact Java method that caused the delay, click on the
synchronous call in Figure 3.13. Figure 3.14 will then appear.

Call Drill Down for /EasyKart/ProductStatus_ jsp on Merchandising-Enginel:7001

= Summary Execution Analysis

Y for the request [EasyKart/ProductStatus jsp on Merchandising-Enginel:7001 (Oracle WebLogic) at Feb 16...

@ Hot Spots

m Slow SOL Queries ® java Async

[E¥ Error Details ' s ® HTTRCall
T oB2m Web Service
E Remote Call Details

SELF TOTAL
CALL TYPE EXECUTION EXECUTION TRACE DETAILS
TIME (ms) TIME {ms)

IJa\ra 1 25560 E\P w org.apache jsp.BrowseProducts_jsp._jspService
IJE\ra .| 2050 f w org.apache jsp.httpcall_jsp.CountrySelectiol
Async O V] f java.lang.Thread.start() [Thread-21-61]

I HTTP Call O, 4 sun.netwww. protocol http.HttpURLConnection

Web Service C4 @ org.apache.axis.client.Callinvoke()

IJa\ra sun.net.www.protocol.http. HttpURLConnection

I HTTP Call &, 4 sun.netwww. protocol http HttpURLConnectior

ms G X f org.apache.activemg.ActiveMQMessageProduc

ms G X _.’-. org.apache.activemag.ActiveMQMessageProduc

4

4 | o

*50L queries executed within S0L execution cutoff are clubbed under Java.

Figure 3.14: The call graph of the synchronous call

Figure 3.14 provides a detailed Execution Analysis of the synchronous call. As part of this
analysis, a pie chart is presented that quickly reveals the percentage of time the WebLogic server in
our example spent processing the server’s Java code and making external JMS / SAP JCO / SQL
query calls. The table below the pie chart in Figure 3.14 lists the exact methods that performed Java
processing or made the remote calls. A quick look at this table reveals that the Java method,
org.apache.jsp.BrowseProducts_jsp_jspService..., invoked a series of child methods and external
calls, which together took over 25000 milliseconds to execute. However, the method itself took only

135

Chapter 3: Monitoring Java Business Transactions

around 1 millisecond to execute (self execution time)! Browsing the child methods called by the
parent method reveals that the transaction spent over 90% of its time on the HTTP call,
'sun.net.www.protocol..". This means that the 'sun.net.www.protocol.." is the method that is delaying
the BrowseProducts.jsp transaction. To know the exact URL that this HTTP call hit, move your
mouse pointer over the call in Figure 3.14.

Call Drill Down for [EasyKart/ProductStatus._jsp on Merchandising-Enginel:7001

= Summary Execution Analysis
Execution Analysis for the request fEasyKart/ProductStatus_jsp on Merchandising-Engine1:7001 (Oracle WebLogic) at Feb 16...
) Hot Spots

=] SlowS0L Queries 15 P poyne
[E¥ Error Details IMS

— B.2% Web Servi
Ef' Remote Call Details ' eb Service

® umPcall

HTTP CALL DETAILS Drill Down into Downstream Call

< I HTTP URL : http://10.44.210.72:7001/EasyKart/SearchDetails jsp seProducts_jsp._jspService
I Method : POST Execution Time : 23269 ms htipeall_jsp.CountrySelectiol
d.start() [Thread-21-61]
—
T e r,r,r,rr———ee————————
I HTTP Cail Q 91.04 % 737269 23769 4 sun.netwww.protocol http. HitpURLConnectior
web service O, [IEZEIN 62 62 @ org.apache.axis client.Callinvoke()
Ijava | 022% | 56 56 sun.netwww.protocol http.HetpURLConnectior
I HTTPCall O, AN s6 4 sun.netwww.protocol http. HtpURLConnectior
Jms G X 11

. org.apache.activemg.ActiveMQMessageProduc

L
MS Q X 11 f org.apache.activemg.ActiveMOMessageProduc
P

o - . |

¥ 50U queries executed within S0L execution cutoff are clubbed under Java.

Figure 3.15: The URL hit by an HTTP call

Figure 3.15 will then appear revealing that the /EasyKart/SearchDetails.jsp was the URL that was
hit by the HTTP call.

This way, eG BTM enables you to diagnose the root-cause of slowness in your synchronous and
asynchronous calls using just a few mouse clicks!

3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction

The detailed diagnosis of the Error transactions measure reveals the complete URLs of the error
transactions of a particular business transaction pattern. The total response time of each error
transaction and the time at wihich every such transaction was requested can be ascertained from
the detailed diagnosis. To zoom into the nature of the error and where it occurred, click on the
‘magnifying glass’ icon against the corresponding ‘Error’ icon in the TRANSACTION USER
EXPERIENCE column of Figure 3.16.

136

Chapter 3: Monitoring Java Business Transactions

DS PG Ll Measure Graph | Fix History | Fix Feedback R B &=

Compaonent Test Measured By Descriptor Measurement Sort by
Shipping-Engine1:7001:0racl w Java Business Transacl w 192.168.9.58 ~ Jzapstore forderHistor w Error transactions pen Request Time
Timeline
wes v [

Error Transaction Snapshots for Shipping-Enginel

REQUEST PROCESSING TIME NODE ORDER REQUEST TIME URL TOTAL RESPONSE TIME {ms) REMOTE HOST QUERY STRING | THREAD INFC
Feb 09, 2017 05:42:22

g Error Q 1 Feb 09, 2017 05:40:09 EDT Jzapstore jorderHisto 25013 192,168 11 - http-bio-8

Figure 3.16: The detailed diagnosis of the Error transactions measure

3.3.4 will then appear, which will chart the entire path of the error transaction end-to-end. Using
conventional color-codes, this visual representation will accurately pinpoint where the error has
occurred.

Cross Application Transaction Flow for /zapstore/orderHistory/ received on node at Feb 09, 2017 .. = | -= nl

URL Clicked by the USER: /zapstore/orderHistory/ received at Feb 09, 2017 05:40:09 EDT
TRANSACTION SNAPSHOT

Request * 4 Error
Processing Time

Execution Time : 25013 ms

Error Segment © IndexOutOfBoundsException
on Shipping-Enginel: 7001

Vv HTTPCal

o 84 ms
}'< Java
1560 ms Remote Call
. https://deliveryinterceptservice:443
fuy
S — E Java
%’ User Oracle wWebLogic 23367 ms
Shipping-Engine1:7001

Vv HTTPCAll

2ms Sn
T Oracle wWebLogic
Address-Validation-Service1:7001
=
“Topology above represents the complete re fls

LN
Bd
=
*®

Figure 3.17: The error transaction path revealing where the error has occurred

In the example of 3.3.4 above, the error seems to have occurred on the Shipping-Engine1:7001
(Oracle WeblLogic) server being monitored. To know what the error is, click on the Shipping-
Engine1:7001 serverin 3.3.4.

Figure 3.18 that appears next opens an Error Details section, which displays the complete details
of the error.

137

Chapter 3: Monitoring Java Business Transactions

Call Drill Down for /zapstore/orderHistory/ on Shipping-Enginel:7001

iE Summary Error Details
Execution Analysis

javalang.IndexOutOfBoundsException: Index: 18, Size: 18
@ Hot Spots

E!q Slow SOL Queries at java.util ArrayList.rangeCheck{ArrayList java:635)
at java.util ArrayListget(ArrayList java:411)
[E¥ Error Details ar org.apache.jsp.orderHistory_jsp._jspService(orderHistory_jsp.java:113)

at org.apache jasper.runtime.Http)spBase.service(Http)spBase java: 70}

at javax.servlet.http. HttpServietservice(HttpServlet java: 717)

at org.apache jasper.serviet.|spServietWrapper.service(|spServietWrapper_ java:388)

at org.apache jasper.serviet]spServiet. senvice]spFile(lspServiet java:313)

at org.apache jasper.serviet |spServiet. senvice(|spServiet java:260)

at javax.servlet.http. HttpServletservice(HttpServlet java: 717)

at org.apache.catalina.core ApplicationFilterChain.internalDoFilter{ApplicationFilterChain_java:290)

[Ef Remote Call Details

Figure 3.18: Error details

3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason
Why a Transaction Slowed Down

According to Figure 3.19 below, slowness has been detected in 9 transactions of the pattern,
/Easykart/Login.jsp. To know the exact URLs of the slow transactions, click on the ‘magnifying glass’
icon against Slow transactions in Figure 3.19.

138

Chapter 3: Monitoring Java Business Transactions

D Shipping-Enginel:7001 L ent Time 06:14:59
| Java Business Transactions - fzapstore /returnProduct/ nﬂ
@ Application Transactions
~ ([} Java Business Transactions /Al transactions (Number) 9 | €5
| fzapstore/myorders/ / Avg response time (Milliseconds) 8433 4444 Q&
| Jzapstore/ordertistary/ / Healthy transactions (Number) o [€
| Jzapstare/ordersummary/ / Healtny wransactions parcantage (4) 0 b &
! fzapstore/returnProduct/
[zapstorecancelOrder/ Slow transactions (Numbzr) E | €
/zapstore[changeshipping Address / Slow transactions response time (Milliseconds) 8433.4442 [=
dispatchDetail
Jeapstore [dispatchBetails ! Slow transactions percentage (%) 100 Q &
fzapstore [trackYourOrder/
& Weblogic Container Error transactions (Number) 0 [
/ Error transactions response time (Milliseconds) 0 S5}
9 v > Error transactions percentage (%) 0 [=
Q v » Stalled transactions (Number) 0 [5

P / Stalled ransactions response time (Milliseconds) 0 I £
Network >
Stalled transactions percentage (34 0 (S &)

& Operating System >

Figure 3.19: The Layers tab page revealing that 100% of the transactions of the pattern
/zapstore/returnProduct are slow

Figure 3.20 will then appear listing the slow transactions URLs. To drill down to the source of the
slowness of any of these transactions, click on the ‘magnifying glass’ icon alongside the ‘Slow’ icon of
that transaction.

[SFT NV ENOIIl Measure Graph | Fix History | Fix Feedback BB e

Component Test Measured By Descriptor Measurement Sort by

| shipping-gngine17001:0racl w | | Java Business Transact ~ | | 192,168 958 v | jzapstoreretumProgt w | | Slow transactions perc ~ | | Request Time |

Timeline

Slow Transaction Snapshots for Shipping-Enginel

REQUEST PROCESSING TIME NODE ORDER REQUEST TIME URL TOTAL RESPONSE TIME {ms) REMOTE HOST QUERY STRING = THREAD INI
= slow Q 1 Feb 08, 2017 06:10:50 EDT Jzapstore jreturnProdu 8487 192.168.11. - http-bio-
g Slow G 1 Feb 09, 2017 06:10:27 EDT [zapstorefreturnProdu. .. 8581 192.168.11.... - http-bio-|
g Slow G 1 Feb 08, 2017 06:10:21 EDT Jzapstore freturnProdu... 8310 192.168.11.... - http-bio-|
 slow Q 1 Feb 09, 2017 06:09:54 EDT Jzapstore jreturnProdu. 8608 197.168.11 = hittp-hio-
g Slow G 1 Feb 08, 2017 06:09:45 EDT /zapstore freturnProdu... 8144 192.168.11.... - http-bio-|
 slow & 1 Feb 08, 2017 06:09:41 EDT Jzapstore jreturnProdu. 8395 192.168.11. = http-bio-
g Slow G 1 Feb 09, 2017 06:09:34 EDT [zapstorejreturnProdu. .. 8628 192.168.11. .. - hittp-bio-|
g Slow G 1 Feb 08, 2017 06:09:26 EDT /zapstore freturnProdu... 8421 192.168.11.... - http-bio-|
= slow Q 1 Feb 09, 2017 06:09:20 EDT Jzapstare jreturnProdu 8736 197.168.11. - hittp-hio-

—
Page (=

Figure 3.20: Detailed diagnosis listing the slow transactions of the pattern /zapstore/returnProduct

139

Chapter 3: Monitoring Java Business Transactions

Figure 3.21 will then appear depicting how the transaction flows. From Figure 3.21, itis clear thata
Web service call made by the Oracle WebLogic server, Shipping-Engine1:7001, to a delivery
intercept service in the backend is slowing down the transaction.

Cross Application Transaction Flow for fzapstore/returnProduct/ received on node at Feb 09, 2017 ® -= nl
URL Clicked by the USER: /zapstore/returnProduct/ received at Feb 09, 2017 06:01:59 EDT
TRANSACTION SNAPSHOT
Request = slow
Processing Time
Execution Time - 8487 ms
Slow Segment Web Service execution on
hitps:/ /deliveryinterceptservice
443 tock 6324 ms.
NS (5)
Y ome gevee(]
o Java
751 ms g ActiveMQ
- OrderQueue
+ HTTP Call , /E @
64 @
v) ™ =
1194 ms Oracle WebLogic
Address-Validation-Service 17001~
Pl , % Database Query R %
q
_- B 135 ms %
T user Oracle Database
- Customers-DB:1521:PROD
& web service , @
6324 ms
Remote Call
T hups://deliveryinterceptservice:443
. N X I
I I Y&

Figure 3.21: Cross-application transaction flow depicting that the problem is with the Web Service call

To know more about this call, click the Web Service icon in Figure 3.21. A Remote Call Details
window will then open listing all the remote calls made by the Shipping-Engine1:7001 server. From
this window you can infer that the Web Service call made to the delivery intercept service is
consuming nearly 75% of the transaction execution time. As you can see, a few quick mouse clicks
from a Slow transaction in Figure 3.20 has lead you to the precise web service call that is delaying
the transaction.

140

Chapter 3: Monitoring Java Business Transactions

Call Drill Down for /zapstore/returnProduct/ on Shipping-Engine1:7001

= summary Remote Call Details
Execution Analysis
WEE SERVICE

@ Hot Spots

TYPE DETAILS Time (ms) % TIME OPERATION
E% Slow SQL Queries Web Service deliveryinterce ptservice fwebservices... 8324 7451% getDeliveryDetails
[EF Error Details
[E7 Remote Call Details HTTP CALL

TYPE DETAILS Time (ms) % TIME METHOD

HTTP Call http://10.44.210.73:7001/cms/CheckPrice.jsp 969 11.42 % POST

Figure 3.22: List of remote service calls made by the Shipping-Engine1:7001 server

141

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even the most challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learn more visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fithess for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	1.1 The eG Java Business Transaction Monitor (BTM)
	1.2 Pre-requisites for Java Business Transaction Monitoring Using eG Enterprise
	1.3 How does the eG Java BTM Work?
	1.4 How does the eG Java BTM Communicate with the eG Agent?
	1.5 Performance Overhead of the eG Java Business Transaction Monitor

	Chapter 2: Installing and Configuring eG Java BTM
	2.1 Installing eG Java BTM on a Generic JVM Node
	2.1.1 BTM-Enabling a Generic JVM Node Running on a Windows Platform
	2.1.2 BTM-Enabling a Generic JVM Node Running on a Unix Platform

	2.2 Installing eG Java BTM on an Apache Tomcat Server
	2.2.1 BTM-Enabling a Tomcat Server Running on a Windows Platform
	2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform

	2.3 Installing eG Java BTM on an IBM WebSphere
	2.3.1 BTM-Enabling a WebSphere Server Running on a Windows Platform
	2.3.2 BTM-Enabling a WebSphere Server Running on a Unix Platform

	2.4 Installing eG Java BTM on an Oracle WebLogic Server
	2.4.1 BTM-Enabling a WebLogic Server Running on a Windows Platform
	2.4.2 BTM-Enabling a WebLogic Server Running on a Unix Platform

	2.5 Installing eG Java BTM on GlassFish
	2.5.1 BTM-Enabling a GlassFish Server Running on a Windows Platform
	2.5.2 BTM-Enabling a GlassFish Server Running on a Unix Platform

	2.6 Installing eG Java BTM on JBoss EAP
	2.6.1 BTM-Enabling a JBoss EAP Server Running on a Windows Platform
	2.6.2 BTM-Enabling a JBoss EAP Server Running on a Unix Platform

	2.7 Installing eG Java BTM on JBoss WildFly
	2.7.1 BTM-Enabling a JBoss WildFly Server Running on a Windows Platform
	2.7.2 BTM-Enabling a JBoss WildFly Server Running on a Unix Platform

	2.8 Installing eG BTM on a Multi-Server SAP Web Application Server Instance

	Chapter 3: Monitoring Java Business Transactions
	3.1 Java Business Transactions Test
	3.2 Java Key Business Transactions Test
	3.3 Detailed Diagnostics
	3.3.1 Configuring User Name and Business Context
	3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction
	3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown
	3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction
	3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down

	About eG Innovations

