
eG Java Business Transaction Monitoring

eG Innovations Product Documentation

www.eginnovations.com

Table of Contents
CHAPTER 1: INTRODUCTION 1

1.1 The eG Java Business TransactionMonitor (BTM) 2

1.2 Pre-requisites for Java Business TransactionMonitoring Using eG Enterprise 2

1.3 How does the eG Java BTMWork? 7

1.4 How does the eG Java BTM Communicate with the eG Agent? 9

1.5 PerformanceOverhead of the eG Java Business TransactionMonitor 10

CHAPTER 2: INSTALLINGAND CONFIGURINGEG JAVA BTM 11

2.1 Installing eG Java BTM on aGeneric JVM Node 11

2.1.1 BTM-Enabling a Generic JVM Node Running on a Windows Platform 11

2.1.2 BTM-Enabling a Generic JVM Node Running on a Unix Platform 14

2.2 Installing eG Java BTM on an Apache Tomcat Server 18

2.2.1 BTM-Enabling a Tomcat Server Running on a Windows Platform 18

2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform 23

2.3 Installing eG Java BTM on an IBMWebSphere 27

2.3.1 BTM-Enabling a WebSphere Server Running on a Windows Platform 27

2.3.2 BTM-Enabling a WebSphere Server Running on a Unix Platform 34

2.4 Installing eG Java BTM on anOracleWebLogic Server 38

2.4.1 BTM-Enabling a WebLogic Server Running on a Windows Platform 38

2.4.2 BTM-Enabling a WebLogic Server Running on a Unix Platform 45

2.5 Installing eG Java BTM onGlassFish 50

2.5.1 BTM-Enabling a GlassFish Server Running on a Windows Platform 50

2.5.2 BTM-Enabling a GlassFish Server Running on a Unix Platform 58

2.6 Installing eG Java BTM on JBoss EAP 62

2.6.1 BTM-Enabling a JBoss EAP Server Running on a Windows Platform 62

2.6.2 BTM-Enabling a JBoss EAP Server Running on a Unix Platform 67

2.7 Installing eG Java BTM on JBoss WildFly 71

2.7.1 BTM-Enabling a JBoss WildFly Server Running on a Windows Platform 71

2.7.2 BTM-Enabling a JBoss WildFly Server Running on a Unix Platform 76

2.8 Installing eG BTM on aMulti-Server SAP Web Application Server Instance 81

CHAPTER 3: MONITORING JAVA BUSINESS TRANSACTIONS 87

3.1 Java Business Transactions Test 87

3.2 Java Key Business Transactions Test 104

3.3 Detailed Diagnostics 118

3.3.1 Configuring User Name and Business Context 120

3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Trans-
action 124

3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown 133

3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction 136

3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction
Slowed Down 138

ABOUT EG INNOVATIONS 142

Table of Figures
Figure 1.1: How eG BTM Works? 8

Figure 1.2: Communication between the .NET Profiler and the eG Agent 10

Figure 2.1: Downloading the APM Profiler Agent for the JVM node 12

Figure 2.2: Contents of the APM Profiler Agent zip 13

Figure 2.3: Downloading the APM Profiler Agent for the Tomcat server 19

Figure 2.4: Contents of the APM Profiler Agent zip 20

Figure 2.5: BTM-enabling the Tomcat server on Windows 22

Figure 2.6: Editing the catalina.bat file 23

Figure 2.7: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server 26

Figure 2.8: Downloading the APM Profiler Agent for the WebSphere server 28

Figure 2.9: Contents of the APM Profiler Agent zip 29

Figure 2.10: The WebSphere Administration console 31

Figure 2.11: Clicking on the WebSphere server instance to be BTM-enabled 31

Figure 2.12: The Configuration tab page of the WebSphere server instance to be BTM-enabled 32

Figure 2.13: Selecting the Process definition option from Java and Process Management tree 32

Figure 2.14: Configuring the Process definition 33

Figure 2.15: Configuring the JVM arguments for a WebSphere Server on Windows 33

Figure 2.16: Configuring the JVM arguments for a WebSphere Server on Unix 37

Figure 2.17: Downloading the APM Profiler Agent for the WebLogic server 39

Figure 2.18: Contents of the APM Profiler Agent zip 40

Figure 2.19: Clicking on the Servers link 42

Figure 2.20: Clicking on the server instance to be BTM-enabled 42

Figure 2.21: Viewing the configuration of the chosen server instance 43

Figure 2.22: Configuring the JVM arguments 43

Figure 2.23: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an agent-
based manner 45

Figure 2.24: Configuring the JVM arguments for a WebLogic server on Unix 48

Figure 2.25: Downloading the APM Profiler Agent for the GlassFish server 51

Figure 2.26: Contents of the APM Profiler Agent zip 52

Figure 2.27: Clicking on the server-config node 54

Figure 2.28: Clicking on the JVM Options tab page 54

Figure 2.29: Clicking on the ADD JVM Option button 55

Figure 2.30: Two empty rows inserted in the JVM Options tab page 55

Figure 2.31: Specifying the Java arguments for BTM-enabling the GlassFish server 56

Figure 2.32: Editing the start-up script of the GlassFish server instance to BTM-enable the instance 57

Figure 2.33: Adding com.eg to boot delegation framework 58

Figure 2.34: Downloading the APM Profiler Agent for the JBoss EAP server 63

Figure 2.35: Contents of the APM Profiler Agent zip 64

Figure 2.36: Editing the start-up script to BTM-enable a JBoss EAP server running on Windows 66

Figure 2.37: Editing the domain.conf file or standalone.conf file 66

Figure 2.38: Editing the start-up script to BTM-enable a JBoss EAP server on Unix that is monitored in an agent-
based manner 70

Figure 2.39: Editing the domain.conf file or standalone.conf file 71

Figure 2.40: Downloading the APM Profiler Agent for the JBoss WildFly server 72

Figure 2.41: Contents of the APM Profiler Agent zip 73

Figure 2.42: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agent-based
manner 75

Figure 2.43: Editing the domain.conf file or standalone.conf file 76

Figure 2.44: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix that is monitored in an
agent-based manner 79

Figure 2.45: Editing the domain.conf file or standalone.conf file 80

Figure 2.46: Download the APM Profiler Agent to the SAP WAS instance 81

Figure 2.47: Navigating to the cluster folder in the <SAP_WAS_INSTANCE_INSTALL_DIR> 82

Figure 2.48: Configuring the BTM port for a server process 82

Figure 2.49: The login page of the SAP Netweaver administrator tool 83

Figure 2.50: Clicking the VM Additional Parameters link 84

Figure 2.51: Clicking the Add button in the Additional VM Parameters tab page 84

Figure 2.52: Adding a new VM parameter 85

Figure 2.53: Saving the changes 86

Figure 3.1: The test mapped to the Application Transactions layer 87

Figure 3.2: Detailed diagnosis of the Slow transactions percentage measure of the Java Business Transactions
test 118

Figure 3.3: The Layers tab page indicating that all requests for /Easykart/PaymentPage.jsp were slow 125

Figure 3.4: Detailed Diagnosis of the Slow transactions percentage measure 125

Figure 3.5: Cross-application transaction flow 126

Figure 3.6: Analyzing the slow query 128

Figure 3.7: Tier-wise response time breakup 129

Figure 3.8: Expressing the time spent at every point cut as a percentage of total transaction response time 130

Figure 3.9: A summary of the performance of the JVM node, Address-Validation-Service1:7878 131

Figure 3.10: How the total processing time of the transaction on Address-Validation-Service1:7001 is computed 132

Figure 3.11: Detailed diagnosis of the Avg response time measure 133

Figure 3.12: The cross-application flow of the ProductStatus.jsp transaction 133

Figure 3.13: An intermediate modular window 134

Figure 3.14: The call graph of the synchronous call 135

Figure 3.15: The URL hit by an HTTP call 136

Figure 3.16: The detailed diagnosis of the Error transactions measure 137

Figure 3.17: The error transaction path revealing where the error has occurred 137

Figure 3.18: Error details 138

Figure 3.19: The Layers tab page revealing that 100% of the transactions of the pattern /zapstore/returnProduct
are slow 139

Figure 3.20: Detailed diagnosis listing the slow transactions of the pattern /zapstore/returnProduct 139

Figure 3.21: Cross-application transaction flow depicting that the problem is with the Web Service call 140

Figure 3.22: List of remote service calls made by the Shipping-Engine1:7001 server 141

Chapter 1: Introduction

1

Chapter 1: Introduction

A business transaction represents a type of user request to a web application. For instance, the
following types of requests are considered business transactions for an online retail banking
application:

l Logging in

l Balance checking

l Funds transfer

l Bill payments

l Logging out

User experience with a web application not only relies on the successful completion of these user
requests/transactions, but also on their rapid execution. This is why, even if a single transaction
slows down, stalls, or fails, user dissatisfaction with the web application as a whole grows. This in
turnmay cause user complaints to increase, support costs to sky rocket, and revenues to dip.

To avoid such disastrous results, web application administrators should monitor every business
transaction closely and promptly identify the slow/stalled/failed transactions. Most importantly,
administrators will have to determine where and why these transactions under-performed – i.e.,
identify the root-cause of poor transaction performance - so that the problem can be quickly resolved
before users begin doubting the stability of the web application.

Root-cause isolation is often the most challenging! This is because, most web applications these
days overlay multi- tier environments characterized by multiple application servers, database
servers, remote services, etc. Every business transaction to such web applications travels through
multiple nodes, using remote calls to external services, to fulfill its purpose. For example, an online
transaction to shop for goods may access a ShopCart web page on a web server. Every time an
item is added to a shopping cart, the web server may make an HTTP/S call to a web application
server to invoke the business logic. The business logic may thenmake a database call to run a query
for retrieving the total count of goods that that user has shopped for so far. A slowdown in even one
node or a delay in processing even a single remote service call can impact the performance of the
transaction. To accurately isolate where the actual bottleneck lies, administrators should employ an
APM solution that can trace the entire path of every business transaction, measure the total round-
trip time of each transaction, identify the synchronous and asynchronous calls made by the
transaction at various nodes, and compute the time spent by the transaction at each node, for each
call. This can be achieved using the eG Java Business Transaction Monitor (BTM).

Chapter 1: Introduction

2

1.1 The eG Java Business Transaction Monitor (BTM)
The eG Java BTM employs an advanced ‘tag-and-follow’ technique to trace the complete path of
each business transaction to a web application, end-to-end.When doing so, it auto-discovers the
application servers the transaction travels through, and also automatically ascertains what remote
service calls weremade by the transaction when communicating with the servers. In the process,
the eG Java BTMmeasures the following:

l The total response time of each transaction;

l The time spent by the transaction on each application server;

l The time spent by the transaction for processing every external service call (including
SQL queries);

Using these analytics, the eG Java BTM precisely pinpoints the slow, stalled, and failed transactions
to the web application, enables administrators to accurately isolate where – i.e., on which application
server – the transaction was bottlenecked, and helps them figure out exactly what caused the
bottleneck – an inefficient or errored query to the database? A slow HTTP/S call to another
application server? a time-consuming POJO / JMX method execution? a slow SAP JCO/async call?
By quickly leading administrators to the source of transaction failures and delays, the eG Java BTM
facilitates rapid problem resolution, which in turn results in the low downtime of and high user
satisfaction with the web application.

1.2 Pre- requisites for Java Business Transaction Monitoring
Using eG Enterprise
The following are the pre-requisites for performing Java business transactionmonitoring using eG:

l For the eG Java Business Transaction Monitor to function, your eG Enterprise infrastructure
should include:

o An eG Manager of version 6.2.0 (or above)

o eG Agents of version 6.2.0 (or above)

o An eG database on a Microsoft SQL Server 2008 (or above) (OR) An Oracle Database
Server 9i (or above)

l The eG Java Business Transaction Monitor (BTM) can be installed on Java containers
only - i.e., Java applications / J2EE-enabled web, application, and messaging servers. The
details are as follows:

Chapter 1: Introduction

3

Supported JVMs

The eG Java BTM can be installed on JVM 1.6 (and above) only, regardless of the JVM
vendor. JVM 1.4 or below is not supported. Only partial support is available to JVM 1.5; this is
because, in JVM 1.5, cross-application transaction tracing cannot be performed since the
HttpURLConnection class cannot be byte-code instrumented to perform cross-JVM tag-and-
follow.

Vendor-specific JVM support is as detailed below:

l Oracle Hotspot JVM 1.6 to 12

l BEA JRockit 1.6

l IBM JVM1.6 to 1.8

l OpenJDK 1.6 to 12

l SAP JVM1.6 to 1.8

l Azul Zing 1.6 to 1.8

l Azul Zulu 1.6 to 1.8

Supported Application Types

Java-based application types

Supported/Unsupported Application Servers

Application Server Supported Versions Unsupported
Versions

WebSphere Application Server 7.x, 8.x, 9.x 6.x and below

WebSphere Liberty Profile 8.x

WebLogic Server 9.x, 10.x, 12.x 8.x and below

JBoss 4.x, 5.x

JBoss AS/EAP 6, 7, 7.x

WildFly 8.x, 9.x, 10.x to 18

Tomcat 5.x, 6.x, 7.x, 8.x, and 9.x 4.x and below

TomEE 7.x, 8.x

Jetty 9.x

Chapter 1: Introduction

4

GlassFish 3.x, 4.x, 5.x 2.x

Payara 4.x, 5.x

Oracle Application Server
(OC4J)

Spring Boot Application with
Embedded Tomcat

2.0 to 2.2

Spring Boot Application with
Embedded Jetty

2.0 to 2.2

Spring Boot Application with
Embedded Undertow

2.0 to 2.2

Any CustomWeb Application
with Embedded Tomcat

6.x to 9.x

Supported Packaged Applications

l Oracle Peoplesoft

l Oracle JDEdwards

l Liferay (with Tomcat) 6.2 to 7.3

Supported Entry Pointcuts

l Servlets/Filters 2.5 (and above)

l JSPs

l Struts 1.x, 2.x

l SpringMVC 3.x and 4.x

l WebServices - SOAP and REST

l Java Server Faces (JSF) 1.x and 2.x

l JMS 1.x and 2.x

Supported HTTP Exit Pointcuts

l HTTPURLConnection

l ApacheHTTPClient 3.x and 4.x

Chapter 1: Introduction

5

Supported Web Service Exit Points

l SOAP based web services

l Axis 1.x and 2.x

l Apache CXF

l Resteasy

l Jersey

Supported Databases

l Oracle 8i, 9i, 10g, 11g, 12c

l IBMDB2 9.x

l MS SQLServer 2005, 2008, 2012, 2016

l PostgreSQL 8.x and 9.x

l MySQL 5.x and 8.0

l HSQLDB

l MariaDB 5.x

l IBM Informix

l Sybase

l SAP HANA

l AWS RDS

l AWS Aurora

l MongoDB 3.x

Supported Database/ORM Frameworks

l iBATIS/MyBatis 2.x and 3.x

l Hibernate

l JPA

Supported Database Clusters

l Microsoft SQL Cluster

l Oracle RAC

Chapter 1: Introduction

6

Note:

o In the cross-applications transaction topology flow map, a Microsoft SQL cluster (if any)
will be represented only as a standaloneMicrosoft SQL database server.

o Oracle RAC supports a variety of JDBC URL formats. The eG Java BTM currently
captures only those queries issued to an Oracle RAC for just a subset of these
JDBC URL formats. If a Java transaction issues a query to an Oracle RAC for one of the
supported JDBC URL formats, that Oracle RAC component will only be represented as
a standalone Oracle database server in the cross-application transaction topology flow
map.

Supported ESB and Integration Frameworks

l Mule ESB 3.9

l Apache Camel (Only JMS integration)

Supported Drivers

l Oracle- Thin

l DB2

l Microsoft SQL Server

l Connector/J

l jTDS - Type4

l JDBC2, JDBC2 EE, JDBC3, JDBC4

Messaging Exit Pointcuts

l ActiveMQ5.x

l JBossMessaging and HornetQ from JBoss

l IBM MQ

l JMS Queues and Topics

Middleware Exit Pointcuts

l RMI using JRMP

l EJB - Stateless session bean (SLSB)

l EJB - Stateful session bean (SFSB)

Chapter 1: Introduction

7

l Runtime Exec (Process Exec)

l LDAP

l JavaMail

l SAP JCO

l JOLT

Caching Frameworks or In-memory Databases

l H2

l HSQL DB

l EHCACHE 2.x

l Redis

Elastic Environments

l Standalone Docker

l Standalone Kubernetes

l AWS ECS (using EC2 Instances)

l AWS EKS (using EC2 Instances)

l The eG Java Business Transaction Monitor (BTM) can be installed on only those Java
containers that use JDK 1.5 or higher.

l Do not install the eG Java Business Transaction Monitor (BTM) on a Java container that
is already JTM-enabled.

l For cross application transaction tracing to occur, the Java application beingmonitored should
run only on JRE 1.6 (or higher).

l For complete visibility into the transaction path, make sure that you:

l BTM-enable each JVM node in the transaction path;

l Manage each JVM node as a separate component in eG;

1.3 How does the eG Java BTMWork?
To be able to track the live transactions to a web application, eG Enterprise requires that a special
eG Java Transaction Profiler be deployed on every JVM node (i.e., web ccserver instance)

Chapter 1: Introduction

8

through which the transaction travels. The steps for deployment are discussed in Installing and
Configuring eG Java BTM.

Figure 1.1: How eG BTM Works?

The eG Java Transaction Profiler uses byte-code instrumentation to trace transaction path and
measure responsiveness. Using this instrumentation mechanism, the profiler injects Java code into
the JVM on which it is deployed, at load time. The injected code adds a GUID to each unique
transaction on a JVM, so that its path can be accurately traced . In addition, the profiler performs the
following tasks for every unique transaction on a JVM:

l Tracks requests to that transaction;

l Measures the average responsiveness of that transaction to the requests;

l Identifies the slow, stalled, and error transactions, and computes the count of such
transactions;

l Ascertains the exit calls made by the transaction, the destination of the calls, and measures
the time taken by each call;

l Stores all the aforesaid statistics in memory

The profiler then sends all these statistics to the eGagent. To know how and when the profiler
transmitsmetrics to the eGagent, refer to Section 1.4.

Chapter 1: Introduction

9

The eG agent deployed on a remote host or on the BTM-enabled JVM periodically runs a Java
Business Transactions test. This test communicates with the profiler via a configured BTM port,
pulls the metrics stored in memory, and reports them to the eG manager for display in the eG
monitoring console.

1.4 How does the eG Java BTM Communicate with the eG Agent?
The eG agent should be deployed on the JVM that hosts the eG Java BTM. The eG Java BTM
communicates with the eG agent via port number 13700 by default. You can change the default port
by following the steps below:

l Edit the eg_tests.ini file (in the <EG_MANAGER_INSTALL_DIR>\manager\config directory on a
Windowsmanager, or the /opt/egurkha/manager/config directory on a Unixmanager).

l Configure the new port number against the AgentServerSocketPortNo parameter in the
[AGENT_SOCKET_SETTINGS] section of the file. Note that you cannot set any random port
number against the AgentServerSocketPortNo parameter. You have to pick a port number
from the list of port numbers present against theAgentServerSocketPortOrder parameter, and
configure the AgentServerSocketPortNo with that port number only. If you configure a port
number that is not available against AgentServerSocketPortOrder, then the eG Java BTM will
not be able to communicate with the eGagent.

l Finally, save the file.

Typically, once the eG agent is configured with the details of the web site to be monitored, the
eG Java BTM contacts the eGagent and downloads these details from it.

Chapter 1: Introduction

10

Figure 1.2: Communication between the .NET Profiler and the eG Agent

Then, when a transaction request for the web application comes in, the eG Java BTM injects a code
in the application code to trace the path of that request. In the process, the eG Java BTM also
collects response time metrics related to that transaction. Every 10 seconds, the eG Java BTM
sends these metrics to the eG agent. The eG agent stores these metrics in memory, until the next
time it runs the Java Business Transactions test. When the test is run, the agent pulls the metrics
stored inmemory and sends it to the eG manager.

1.5 Performance Overhead of the eG Java Business Transaction
Monitor
eG BTM leaves a very minimal resource footprint on the application it monitors. Typically, it adds a
mere 2-5% to the application overhead.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

11

Chapter 2: Installing and Configuring eG Java BTM

The first step towards business transaction monitoring is to BTM-enable the JVM nodes in the
transaction path. For this purpose, eG Enterprise requires that a special eG Application Server
Agent be deployed on every JVM node (i.e., web application server instance) through which the
transaction travels.

The eG Application Server Agent is available as a file named eg_btm.jar on the eG agent host,
which has to be copied to the system hosting the application servers being monitored. You then
need to configure the application server with the path to the eg_btm.jar file to fully BTM-enable the
server.

The detailed steps for deployment on different web application servers have been discussed in this
section.

2.1 Installing eG Java BTM on a Generic JVM Node
The steps for deploying an eG Java BTM on a JVM node will differ based on the platform on which
the target JVM node is running - whether on aWindows platform or a Unix platform.

2.1.1 BTM-Enabling aGeneric JVM NodeRunning on aWindows Platform

If the JVM node is running on a Windows operating system, then follow the steps below to BTM-
enable that node:

1. Login to the JVM node.

2. Open a browser on the node, connect to the eG manager, and login to the eG admin interface.

3. Manage the JVM node as a separate component using the eG administrative interface. When
managing, make a note of theNick name andPort number that you provide.

4. If multiple JVM instances are operating on a single node, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of theNick name and Port number using
which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JVM node
- say, C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed_Component_NickName>_<Managed_Component_Port> .

Chapter 2: Instal l ing and Conf iguring eG Java BTM

12

For instance, if you have managed the JVM node using the nick name AppServer1 and the port
number 8088, the new directory under the btm directory should be named asAppServer1_8088.

6. If you have managed multiple JVM instances running on a single node, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the JVM node, connect to the
eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.1 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JVM node that you want to BTM-enable. Once you locate the node, click the
Download icon corresponding to that node to download theAPM Profiler Agent to that node. If
multiple JVM instances on a single node are managed, then you will have to download the
APM Profiler Agent separately for each of themanaged instances.

Figure 2.1: Downloading the APM Profiler Agent for the JVM node

10. Upon clicking the Download icon in Figure 2.1, a zip file named javaagent_<Nick_name_of_
JVM_node>_<Port_number_of_JVM_node will get downloaded. For instance, if you have
managed the JVM node using the nickname 'AppServer1' and the port number '8088', then the
name of the zip file will be javaagent_AppServer1_8088. Where multiple JVM instances have
been managed, you will be downloading multiple zip files - one each for every JVM instance. The
names of these zip files will automatically carry the nick name and port number you assigned to
the corresponding JVM instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
step 6 above). For example, the zip file named javaagent_AppServer1_8088, should be copied
to the C:\btm\AppServer1_8088 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

13

13. Figure 2.2 depicts the extracted contents of the zip file.

Figure 2.2: Contents of the APM Profiler Agent zip

14. From Figure 2.2, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM-enable the JVM node/instance. For that, edit the btmOther.props file in
the sub-directory (of the btm directory) that corresponds to that JVM node/ instance. You will find
the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

14

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, proceed to edit the start-up script of the JVM node/instance being monitored, and append
the following lines to it:

-DEG_PROPS_HOME=<<PATH OF THE SUB-DIRECTORY CONTAINING THE .PROPS FILES>>

"-javaagent:<<PATH OF THE eg_btm.jar FILE>>”

For instance, if the eg_btm.jar and .props files have been copied to the C:\btm\AppServer1_8088
directory, the above specification will be:

-DEG_PROPS_HOME=C:\btm\AppServer1_8088

"-javaagent:C:\btm\AppServer1_8088\eg_btm.jar”

Note:

The “-javaagent…” entry above should be added as one of the JVMoptions in the start-up script.

18. Finally, save the file, and restart the JVM node.

19. If multiple JVM instances on a single node are monitored, make sure you follow steps 15-18 for
each JVM instance.

2.1.2 BTM-Enabling aGeneric JVM NodeRunning on a Unix Platform

If the target JVM node is running on a Unix operating system, then follow the steps below to BTM-
enable that node:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

15

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on the system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target JVM node as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple JVM instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of theNick name and Port number using
which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

6. Log into the target JVM node. Then, create a btm directory anywhere on the target JVM node -
say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed_Component_NickName>_<Managed_Component_Port> .
For instance, if you have managed the JVM node using the nick name AppServer1 and the port
number 8088, the new directory under the btm directory should be named asAppServer1_8088.

7. If you have managed multiple JVM instances running on a single node, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the JVM node. Log back into the system
you used in step 1 above. Open a browser on the system, connect to the eG manager, and login
to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.1 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JVM node that you want to BTM-enable. Once you locate the node, click the
Download icon corresponding to that node to download theAPM Profiler Agent to that node. If
multiple JVM instances on a single node are managed, then you will have to download the
APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.1, a zip file named javaagent_<Nick_name_of_
JVM_node>_<Port_number_of_JVM_node will get downloaded. For instance, if you have
managed the JVM node using the nickname 'AppServer1' and the port number '8088', then the
name of the zip file will be javaagent_AppServer1_8088. Where multiple JVM instances have
been managed, you will be downloading multiple zip files - one each for every JVM instance. The

Chapter 2: Instal l ing and Conf iguring eG Java BTM

16

names of these zip files will automatically carry the nick name and port number you assigned to
the corresponding JVM instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JVM node at
steps 6 and 7 above. For example, the zip file named javaagent_AppServer1_8088, should be
transferred to the/opt/btm/AppServer1_8088 directory on the target JVM node.

13. Log out of the system and log back into the JVM node.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.2 depicts the extracted contents of the zip file.

16. From Figure 2.2, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM-enable the JVM node/instance. For that, edit the btmOther.props file in
the sub-directory (of the btm directory) that corresponds to that JVM node/ instance. You will find
the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

17

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

19. Then, proceed to edit the start-up script of the JVM node/instance being monitored, and append
the following lines to it:

-DEG_PROPS_HOME=<<PATH OF THE SUB-DIRECTORY CONTAINING THE .PROPS FILES>>

"-javaagent:<<PATH OF THE eg_btm.jar FILE>>”

For instance, if the eg_btm.jar and .props files have been copied to the /opt/btm/AppServer1_
8088 directory, the above specification will be:

-DEG_PROPS_HOME=/opt/btm/AppServer1_8088

"-javaagent:/opt/btm/AppServer1_8088\eg_btm.jar”

Note:

l The “-javaagent…” entry above should be added as one of the JVM options in the start-up
script.

l Also, in Unix environments, when using the agent-based approach, both the agent and the
JVM instance will be running on the same host using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification.

-DEG_LOG_HOME=<<Log_File_Path>>

Chapter 2: Instal l ing and Conf iguring eG Java BTM

18

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-DEG_PROPS_HOME=/opt/btm/AppServer1_8088

-DEG_LOG_HOME=/App001/eGBTMLogs

"-javaagent:/opt/btm/AppServer1_8088/eg_btm.jar”

20. Finally, save the file, and restart the JVM node.

21. If multiple JVM instances on a single node are monitored, make sure you follow steps 17-20 for
each JVM instance.

2.2 Installing eG Java BTM on an Apache Tomcat Server
The steps for deploying the eG Java BTM on a Tomcat server will differ based on the platform on
which the target Tomcat server is running - whether on aWindows platform or a Unix platform.

2.2.1 BTM-Enabling a Tomcat Server Running on aWindows Platform

If the Tomcat server is running on aWindows operating system, then follow the steps below to BTM-
enable that server:

1. Login to the Tomcat server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

3. Manage the Tomcat server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable
all the instances, then you will have to manage each instance as a separate component using the
eG administrative interface. When doing so, make a note of the Nick name and Port number
using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the Tomcat
server - say,C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-

Chapter 2: Instal l ing and Conf iguring eG Java BTM

19

folder in the following format: <Managed_Component_NickName>_<Managed_Component_
Port>. For instance, if you have managed the Tomcat server using the nick name tomcat1 and
the port number 8080, the new directory under the btm directory should be named as tomcat1_
8080.

6. If you have managed multiple Tomcat server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the Tomcat server, connect to the
eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.3 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the Tomcat server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to it. If
multiple Tomcat server instances on a single host are managed, then you will have to download
the APM Profiler Agent separately for each of themanaged instances.

Figure 2.3: Downloading the APM Profiler Agent for the Tomcat server

10. Upon clicking the Download icon in Figure 2.3, a zip file named javaagent_<Nick_name_of_
Tomcat_server>_<Port_number_of_Tomcat_server will get downloaded. For instance, if
you have managed the Tomcat server using the nickname 'tomcat1' and the port number '8080',
then the name of the zip file will be javaagent_tomcat1_8080. Where multiple Tomcat server
instances have been managed, you will be downloading multiple zip files - one each for every
instance. The names of these zip files will automatically carry the nick name and port number you
assigned to the corresponding server instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

20

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_tomcat1_8080, should be
copied to the C:\btm\tomcat1_8080 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

13. Figure 2.4 depicts the extracted contents of the zip file.

Figure 2.4: Contents of the APM Profiler Agent zip

14. From Figure 2.4, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM-enable the Tomcat server/instance. For that, edit the btmOther.props file
in the sub-directory (of the btm directory) that corresponds to that Tomcat server/ instance. You
will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business

Chapter 2: Instal l ing and Conf iguring eG Java BTM

21

Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the Tomcat server/server instance with the path to the eg_btm.jar
and .props files. This can be done, in one of the following ways:

l Through the Tomcat control panel;

l Through the Tomcat start-up script

18. To use the control panel, do the following:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

22

l First, open the Tomcat Control Panel.

Figure 2.5: BTM-enabling the Tomcat server on Windows

l Select the Java tab page in Section 2.2 above.

l Add entries of the following format to the Java Options section of 2.2:

-javaagent:<<PATH_TO_THE_eg_btm.jar_FILE>>

-DEG_PROPS_HOME=<<PATH_TO_THE_LOCAL_FOLDER_CONTAINING_THE_PROPS_FILES>>

For instance, if the .props files and the eg_btm.jar had been copied to C:\btm\tomcat1_8080,
the above specification will be:

-javaagent:C:\btm\tomcat1_8080\eg_btm.jar

-DEG_PROPS_HOME=C:\btm\tomcat1_8080

l Click the Apply andOK buttons in 2.2.

l Restart the Tomcat service.

l Where multiple Tomcat server instances on a host are to be monitored, repeat steps 15, 16,
and 18 for each of the server instances.

19. On the other hand, if you want to configure using the Tomcat start-up script, follow the steps
below:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

23

l Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

l Insert the lines of code indicated by 2.2 to BTM-enable the Tomcat server.

Figure 2.6: Editing the catalina.bat file

l Save the file and restart the Tomcat server.

l Where multiple Tomcat server instances on a host are to be monitored, repeat steps 15, 16,
and 19 for each of the server instances.

2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform

If the target Tomcat server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target Tomcat server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple Tomcat server instances are operating on a single host, and you want to monitor each
of those instances, then you will have to manage each instance as a separate Tomcat server
component using the eG administrative interface. When doing so, make a note of theNick name
andPort number using which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

24

6. Log into the target Tomcat server. Then, create a btm directory anywhere on the target server -
say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-folder
in the following format: <Managed_Component_NickName>_<Managed_Component_Port> .
For instance, if you have managed the Tomcat server using the nick name tomcat1 and the port
number 8080, the new directory under the btm directory should be named as tomcat1_8080.

7. If you have managed multiple Tomcat server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the Tomcat server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.3 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the Tomcat server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple Tomcat server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.3, a zip file named javaagent_<Nick_name_of_
Tomcat_server>_<Port_number_of_Tomcat_server will get downloaded. For instance, if
you have managed the Tomcat server using the nickname 'tomcat1' and the port number '8080',
then the name of the zip file will be javaagent_tomcat1_8080. Where multiple Tomcat server
instances have been managed, you will be downloading multiple zip files - one each for every
instance. The names of these zip files will automatically carry the nick name and port number you
assigned to the corresponding Tomcat server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the Tomcat server
at steps 6 and 7 above. For example, the zip file named javaagent_tomcat1_8080, should be
transferred to the/opt/btm/tomcat1_8080 directory on the target Tomcat server.

13. Log out of the system and log back into the Tomcat server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.4 depicts the extracted contents of the zip file.

16. From Figure 2.4, it is evident that the zip file contains an eg_btm.jar file and a few property files,

Chapter 2: Instal l ing and Conf iguring eG Java BTM

25

namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM-enable the Tomcat server/instance. For that, edit the btmOther.props file
in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will find
the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

26

19. Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files.
This can be done by editing the start-up script of the Tomcat server. For that, first open the start-
up script.

20. Insert the following lines in the script (as depicted by Figure 2.7) to BTM-enable the server.

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_ OPTS="$JAVA_ OPTS - javaagent:<<PATH TO THE eg_ btm.jar>> - DEG_ PROPS_

HOME=<<PATH TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>

fi

For instance, if the eg_btm.jar file and .props files have been copied to the tomcat1_8080 folder
within the /opt//btm folder, then your specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/tomcat1_8080/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/tomcat1_8080

fi

Figure 2.7: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server

21. In Unix environments, if the eG agent is deployed on the same host as the Tomcat server, then

Chapter 2: Instal l ing and Conf iguring eG Java BTM

27

both the agent and the server will be running using different user privileges. In this situation, by
default, the eG Java BTM logswill not be created. In order to create the same, insert the following
entry after the -DEG_PROPS_HOME specification and before the closing quotes .

-DEG_LOG_HOME=<LogFile_Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/tomcat1_8080/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/tomcat1_8080 -DEG_LOG_HOME=/App001/eGBTMLogs

fi

22. Finally, save the file and restart the Tomcat server.

23. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 17 to 22 for
each of the server instances.

2.3 Installing eG Java BTM on an IBM WebSphere
The steps for deploying the eG Java BTM on a WebSphere server will differ based on the platform
on which the target WebSphere server is running - whether on a Windows platform or a Unix
platform.

2.3.1 BTM-Enabling aWebSphere Server Running on aWindows Platform

If the WebSphere server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to theWebSphere server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

28

3. Manage the WebSphere server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple WebSphere server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the
WebSphere server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you
name this sub-folder in the following format: <Managed_Component_NickName>_<Managed_
Component_Port> . For instance, if you have managed the WebSphere server using the nick
nameWebSphere1 and the port number 9080, the new directory under the btm directory should
be named asWebSphere1_9080.

6. If you havemanagedmultipleWebSphere server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the WebSphere server, connect
to the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.8 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate theWebSphere server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebSphere server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of themanaged instances.

Figure 2.8: Downloading the APM Profiler Agent for theWebSphere server

Chapter 2: Instal l ing and Conf iguring eG Java BTM

29

10. Upon clicking the Download icon in Figure 2.8, a zip file named javaagent_<Nick_name_of_
WebSphere_server>_<Port_number_of_WebSphere_server will get downloaded. For
instance, if you havemanaged theWebSphere server using the nickname 'WebSphere1' and the
port number '9080', then the name of the zip file will be javaagent_WebSphere1_9080. Where
multiple WebSphere server instances have been managed, you will be downloading multiple zip
files - one each for every instance. The names of these zip files will automatically carry the nick
name and port number you assigned to the corresponding server instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_WebSphere1_9080, should be
copied to the C:\btm\WebSphere1_9080 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

13. Figure 2.9 depicts the extracted contents of the zip file.

Figure 2.9: Contents of the APM Profiler Agent zip

14. From Figure 2.9, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM- enable the WebSphere server/instance. For that, edit the
btmOther.props file in the sub- directory (of the btm directory) that corresponds to that
WebSphere server/ instance. You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

Chapter 2: Instal l ing and Conf iguring eG Java BTM

30

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the WebSphere server with the path to the eg_btm.jar and .props
files. For this, first login to the WebSphere administration console. When Figure 2.10 appears,
click on theWebSphere Application Server link in the right panel.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

31

Figure 2.10: TheWebSphere Administration console

18. This will invoke Figure 2.11. In the right panel of Figure 2.11, click on the link representing the
WebSphere server instance that you want to BTM-enable.

Figure 2.11: Clicking on theWebSphere server instance to be BTM-enabled

19. Figure 2.12 will then appear.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

32

Figure 2.12: The Configuration tab page of theWebSphere server instance to be BTM-enabled

20. Keep scrolling down the right panel of Figure 2.13 until you find the Server Infrastructure
section. Expand the Java and Process Management node in that section, and click on the
Process definition link within.

Figure 2.13: Selecting the Process definition option from Java and Process Management tree

21. Figure 2.14 will then appear. From the Additional Properties section, select Java Virtual

Chapter 2: Instal l ing and Conf iguring eG Java BTM

33

Machines.

Figure 2.14: Configuring the Process definition

22. When Figure 2.15 appears, scroll down its right panel until the Generic JVM Arguments text
box comes into view.

Figure 2.15: Configuring the JVM arguments for aWebSphere Server on Windows

23. Here, specify the following:

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

Chapter 2: Instal l ing and Conf iguring eG Java BTM

34

For instance, if the eg_ btm.jar file and .props files have been copied to the
C:\btm\Websphere1_9080 directory, the above specification will be:

-javaagent:C:\btm\WebSphere1_9080\eg_btm.jar

-DEG_PROPS_HOME=C:\btm\Websphere1_9080

24. Save the changes and restart theWebSphere server.

25. Where multiple instances of WebSphere are monitored, make sure you perform step 15- 24
above for eachWebSphere server instance.

2.3.2 BTM-Enabling aWebSphere Server Running on a Unix Platform

If the target WebSphere server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target WebSphere server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple WebSphere server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate WebSphere
server component using the eG administrative interface. When doing so, make a note of theNick
name andPort number using which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

6. Log into the target WebSphere server. Then, create a btm directory anywhere on the target
server - say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed_ Component_ NickName>_ <Managed_
Component_Port> . For instance, if you have managed the WebSphere server using the nick
name tomcat1 and the port number 8080, the new directory under the btm directory should be
named as tomcat1_8080.

7. If you havemanagedmultipleWebSphere server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

35

Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the WebSphere server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.8 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate theWebSphere server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebSphere server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.8, a zip file named javaagent_<Nick_name_of_
WebSphere_server>_<Port_number_of_WebSphere_server will get downloaded. For
instance, if you havemanaged theWebSphere server using the nickname 'WebSphere1' and the
port number '9080', then the name of the zip file will be javaagent_WebSphere1_9080. Where
multiple WebSphere server instances have been managed, you will be downloading multiple zip
files - one each for every instance. The names of these zip files will automatically carry the nick
name and port number you assigned to the correspondingWebSphere server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the WebSphere
server in steps 6 and 7 above. For example, the zip file named javaagent_WebSphere1_9080,
should be transferred to the/opt/btm/WebSphere1_9080 directory on the target WebSphere
server.

13. Log out of the system and log back into theWebSphere server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.9 depicts the extracted contents of the zip file.

16. From Figure 2.9, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM- enable the WebSphere server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

36

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

19. Then, you need to configure the WebSphere server with the path to the eg_btm.jar and .props
files. For this, first login to the WebSphere administration console. When Figure 2.10 appears,
click on theWebSphere Application Server link in the right panel.

20. This will invoke Figure 2.11. In the right panel of Figure 2.11, click on the link representing the
WebSphere server instance that you want to BTM-enable.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

37

21. Figure 2.12 will then appear.

22. Keep scrolling down the right panel of Figure 2.13 until you find the Server Infrastructure
section. Expand the Java and Process Management node in that section, and click on the
Process definition link within.

23. Figure 2.14 will then appear. From the Additional Properties section, select Java Virtual
Machines.

24. When Figure 2.15 appears, scroll down its right panel until the Generic JVM Arguments text
box of Figure 2.15 comes into view.

Figure 2.16: Configuring the JVM arguments for aWebSphere Server on Unix

25. Here, specify the following:

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_ btm.jar file and .props files have been copied to the
/opt/egurkha/lib/btm/Websphere1_9080 directory, the specification will be: :

-javaagent:/opt/btm/WebSphere1_9080/eg_btm.jar

-DEG_PROPS_HOME=/opt/btm/WebSphere1_9080

26. Moreover, in Unix environments, if the eG agent is deployed on the same host as theWebSphere
server, then both the agent and the server will be running using different user privileges. In this
situation, by default, the eG Java BTM logs will not be created. In order to create the same, insert
the following entry after the -DEG_LOG_HOME specification .

-DEG_LOG_HOME=<LogFile_Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -

Chapter 2: Instal l ing and Conf iguring eG Java BTM

38

DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-javaagent:/opt/btm/WebSphere1_9080/eg_btm.jar

-DEG_PROPS_HOME=/opt/btm/WebSphere1_9080

-DEG_LOG_HOME=/App001/eGBTMLogs

27. Save the changes and restart theWebSphere server.

28. Where multiple instances of WebSphere are monitored, make sure you perform step 17- 27
above for eachWebSphere server instance.

2.4 Installing eG Java BTM on an Oracle WebLogic Server
The steps for deploying the eG Java BTM on a WebLogic server will differ based on the platform on
which the targetWebLogic server is running - whether on aWindows platform or a Unix platform.

2.4.1 BTM-Enabling aWebLogic Server Running on aWindows Platform

If the WebLogic server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to theWebLogic server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

3. Manage the WebLogic server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple WebLogic server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on theWebLogic
server - say,C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed_Component_NickName>_<Managed_Component_
Port>. For instance, if you have managed the WebLogic server using the nick name weblogic1

Chapter 2: Instal l ing and Conf iguring eG Java BTM

39

and the port number 7001 , the new directory under the btm directory should be named as
weblogic1_7001.

6. If you have managed multiple WebLogic server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the WebLogic server, connect to
the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.17 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the WebLogic server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebLogic server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of themanaged instances.

Figure 2.17: Downloading the APM Profiler Agent for theWebLogic server

10. Upon clicking the Download icon in Figure 2.17, a zip file named javaagent_<Nick_name_of_
WebLogic_ server>_ <Port_ number_ of_ WebLogic_ server will get downloaded. For
instance, if you have managed the WebLogic server using the nickname 'weblogic1' and the port
number '7001', then the name of the zip file will be javaagent_weblogic1_7001. Where multiple
WebLogic server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_weblogic1_7001, should be
copied to the C:\btm\weblogic1_7001 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

40

13. Figure 2.18 depicts the extracted contents of the zip file.

Figure 2.18: Contents of the APM Profiler Agent zip

14. From Figure 2.18, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM-enable the WebLogic server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that WebLogic server/ instance.
You will find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

41

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the WebLogic server/server instance with the path to the eg_
btm.jar and .props files. The procedure to achieve this varies, depending upon the following:

l Whether you want to BTM-enable a stand-aloneWebLogic server/server instance

l Whether you want to BTM-enable the Admin server of aWebLogic cluster

18. To BTM-enable a stand-alone WebLogic server/server instance, first login to the WebLogic
Administration console. Then, follow the steps detailed below:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

42

l When Figure 2.19 appears, click on theServers link in the right panel.

Figure 2.19: Clicking on the Servers link

l Figure 2.20 will then appear. Here, click on the server instance to be BTM-enabled.

Figure 2.20: Clicking on the server instance to be BTM-enabled

l Figure 2.21 will then appear.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

43

Figure 2.21: Viewing the configuration of the chosen server instance

l Keep scrolling down the right panel of Figure 2.21 until the Arguments text box comes into
view (see Figure 2.22).

Figure 2.22: Configuring the JVM arguments

l In theArguments text box, specify the following lines:

-javaagent:<Path_to_eg_btm.jar_file>

-DEG_PROPS_HOME=<Path_to_the_folder_containing_the_.props_files>

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\weblogic1_
7001 directory, the above specification will be:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

44

-javaagent:C:\btm\weblogic_7001\eg_btm.jar

-DEG_PROPS_HOME=C:\btm\weblogic_7001

l Finally, save the changes and restart theWebLogic server.

19. Where multiple instances of WebLogic are monitored, make sure you perform step 15-18 above
for eachWebLogic server instance.

20. To BTM-enable the Admin server of aWebLogic cluster, you need to edit the start-up script of the
Admin server. For that, follow the steps below:

l Login to the Admin server, open the start-up script, and insert the following lines in it:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:<Path_to_eg_btm.jar_file> -DEG_PROPS_

HOME=<Path_to_the_folder_containin_.props_files>"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\WebLogic_
7001 directory, the above specification will be:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:c:\btm\WebLogic_7001\eg_btm.jar -DEG_

PROPS_HOME=c:\btm\WebLogic_7001"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

Chapter 2: Instal l ing and Conf iguring eG Java BTM

45

Figure 2.23: Editing the start-up script of theWebLogic Admin server onWindows that is monitored in
an agent-basedmanner

l Finally, save the file and restart the Admin server.

2.4.2 BTM-Enabling aWebLogic Server Running on a Unix Platform

If the target WebLogic server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target WebLogic server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple WebLogic server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate WebLogic
server component using the eG administrative interface. When doing so, make a note of theNick
name andPort number using which youmanaged each instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

46

5. Next, log out of the eGadmin interface and the system.

6. Log into the target WebLogic server. Then, create a btm directory anywhere on the target server
- say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed_Component_NickName>_<Managed_Component_
Port>. For instance, if you have managed the WebLogic server using the nick name weblogic1
and the port number 7001 , the new directory under the btm directory should be named as
tomcat1_8080.

7. If you have managed multiple WebLogic server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the WebLogic server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.17 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the WebLogic server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple WebLogic server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.17, a zip file named javaagent_<Nick_name_of_
WebLogic_ server>_ <Port_ number_ of_ WebLogic_ server will get downloaded. For
instance, if you have managed the WebLogic server using the nickname 'weblogic1' and the port
number '7001', then the name of the zip file will be javaagent_weblogic1_7001. Where multiple
WebLogic server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the correspondingWebLogic server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the WebLogic
server in steps 6 and 7 above. For example, the zip file named javaagent_weblogic1_7001,
should be transferred to the/opt/btm/weblogic_7001 directory on the targetWebLogic server.

13. Log out of the system and log back into theWebLogic server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

47

15. Figure 2.18 depicts the extracted contents of the zip file.

16. From Figure 2.18, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM-enable the WebLogic server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will
find the following lines in the file:

#~~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTM PORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If

Chapter 2: Instal l ing and Conf iguring eG Java BTM

48

no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

19. Then, you need to configure the WebLogic server/server instance with the path to the eg_
btm.jar and .props files. The procedure to achieve this varies, depending upon the following:

l Whether you want to BTM-enable a stand-aloneWebLogic server/server instance

l Whether you want to BTM-enable the Admin server of aWebLogic cluster

20. To BTM-enable a stand-alone WebLogic server/server instance, first login to the WebLogic
Administration console. Then, follow the steps detailed below:

l When Figure 2.19 appears, click on theServers link in the right panel.

l Figure 2.20 will then appear. Here, click on the server instance to be BTM-enabled.

l Figure 2.21 will then appear.

l Keep scrolling down the right panel of Figure 2.21 until the Arguments text box comes into
view (see Figure 2.22).

Figure 2.24: Configuring the JVM arguments for aWebLogic server on Unix

l In theArguments text box, specify the following lines:

-javaagent:<Path_to_eg_btm.jar_file>

-DEG_PROPS_HOME=<Path_to_the_folder_containing_the_.props_files>

For instance, if the eg_btm.jar file and .props files are extracted into the /opt/btm/weblogic1_
7001 directory, the specification will be:

-javaagent:/opt/btm/weblogic1_7001/eg_btm.jar

-DEG_PROPS_HOME=/opt/btm/weblogic1_7001

l Additionally, in Unix environments, if the eG agent is deployed on the same host as the

Chapter 2: Instal l ing and Conf iguring eG Java BTM

49

WebLogic server, then both the agent and the server will be running using different user
privileges. In this situation, by default, the eG Java BTM logs will not be created. In order to
create the same, insert the following entry after the -DEG_PROPS_HOME specification .

-DEG_LOG_HOME=<LogFile_Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

-javaagent:/opt/btm/weblogic1_7001/eg_btm.jar

-DEG_PROPS_HOME=/opt/btm/webLogic_7001

-DEG_LOG_HOME=/App001/eGBTMLogs

l Finally, save the changes and restart theWebLogic server.

21. Where multiple instances of WebLogic are monitored, make sure you perform steps 17-20 above
for eachWebLogic server instance.

22. To BTM-enable the Admin server of aWebLogic cluster, you need to edit the start-up script of the
Admin server. For that, follow the steps below:

l Login to the Admin server, open the start-up script, and insert the following lines in it:

set EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:<Path_to_eg_btm.jar_file> -DEG_PROPS_

HOME=<Path_to_the_folder_containin_.props_files>"

if "%SERVER_NAME%"=="AdminServer" (

set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%

)

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES% -

Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag% %EG_JAVA_OPTIONS%

For instance, if the eg_btm.jar file and .props files are extracted into the /opt/btm/webLogic1_
7001 directory, then your specification will be as follows:

Chapter 2: Instal l ing and Conf iguring eG Java BTM

50

EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:/opt/btm/webLogic_7001/eg_btm.jar -DEG_

PROPS_HOME=/opt/btm/webLogic_7001"

l If the eG agent and the Admin server are co-hosted on the same Unix host, then to create the
log files, insert the following entry after the -DEG_PROPS_HOME specification and before the
closing quotes.

-DEG_LOG_HOME=<LogFile_Path>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then,
against, -DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where
multiple instances on the same server are to be BTM-enabled, you can use the same directory
for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

EG_JAVA_OPTIONS_ADMIN_SERVER="-javaagent:/opt/btm/weblogic1_7001/eg_btm.jar -DEG_

PROPS_HOME=/opt/btm/webLogic_7001 -DEG_LOG_HOME=/App001/eGBTMLogs"

if ["${SERVER_NAME}" = "AdminServer"] ; then

EG_JAVA_OPTIONS="${EG_JAVA_OPTIONS_ADMIN_SERVER}"

fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS} ${EG_JAVA_OPTIONS}"

l Finally, save the file and restart the Admin server.

2.5 Installing eG Java BTM on GlassFish
The steps for deploying the eG Java BTM on a GlassFish server will differ based on the platform on
which the target GlassFish server is running - whether on aWindows platform or a Unix platform.

2.5.1 BTM-Enabling aGlassFish Server Running on aWindows Platform

If the GlassFish server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to the GlassFish server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

51

3. Manage the GlassFish server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple GlassFish server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the GlassFish
server - say,C:\btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed_Component_NickName>_<Managed_Component_
Port> . For instance, if you have managed the GlassFish server using the nick name
WebSphere1 and the port number 9080, the new directory under the btm directory should be
named asWebSphere1_9080.

6. If you have managed multiple GlassFish server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the GlassFish server, connect to
the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.25 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the GlassFish server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple GlassFish server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of themanaged instances.

Figure 2.25: Downloading the APM Profiler Agent for the GlassFish server

Chapter 2: Instal l ing and Conf iguring eG Java BTM

52

10. Upon clicking the Download icon in Figure 2.25, a zip file named javaagent_<Nick_name_of_
GlassFish_ server>_ <Port_ number_ of_ GlassFish_ server will get downloaded. For
instance, if you havemanaged theGlassFish server using the nickname 'GlassFish1' and the port
number '4848', then the name of the zip file will be javaagent_GlassFish1_4848. Where multiple
GlassFish server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_GlassFish1_4848, should be
copied to the C:\btm\GlassFish1_4848 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

13. Figure 2.26 depicts the extracted contents of the zip file.

Figure 2.26: Contents of the APM Profiler Agent zip

14. From Figure 2.26, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM-enable the GlassFish server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that GlassFish server/ instance.
You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

Chapter 2: Instal l ing and Conf iguring eG Java BTM

53

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the GlassFish server with the path to the eg_btm.jar and .props
files. To achieve this, you can use one of the following two ways:

l Through theGlassFish Administration console

l By editing the start-up script of the GlassFish server instance

18. If you choose to use the GlassFish Administration console, then first, login to the console. Then,
follow the steps detailed below:

l When Figure 2.27 appears, click on the server-config node in the tree-structure in the left
panel.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

54

Figure 2.27: Clicking on the server-config node

l From the options listed in the right panel of Figure 2.27, select the JVM Settings option.
Figure 2.28 will then appear. Select the JVM Options tab page in Figure 2.28.

Figure 2.28: Clicking on the JVM Options tab page

Chapter 2: Instal l ing and Conf iguring eG Java BTM

55

l Figure 2.29 will then appear. You now need to add two new JVM options. For this, click
on theAdd JVM Option button in Figure 2.29, twice.

Figure 2.29: Clicking on the ADD JVM Option button

l Two empty rowswill then be inserted, as depicted by Figure 2.30.

Figure 2.30: Two empty rows inserted in the JVM Options tab page

l Specify each of the following lines in each of the empty rows, as indicated by Figure 2.31:

-javaagent:<Path_to_eg_btm.jar_file>

-DEG_PROPS_HOME:<Path_to_the_folder_containing_.props_files>

Chapter 2: Instal l ing and Conf iguring eG Java BTM

56

For instance, if the eg_ btm.jar file and .props files are extracted into the
C:\btm\GlassFish1_4848 directory, the above specification will be:

-javaagentC:\btm\GlassFish1_4848\eg_btm.jar

-DEG_PROPS_HOME:C:\btm\GlassFish1_4848

Figure 2.31: Specifying the Java arguments for BTM-enabling the GlassFish server

l Finally, save the changes.

l Where multiple instances of GlassFish are monitored, make sure you perform steps 15-
18above for eachGlassFish server instance.

19. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script
of the GlassFish server instance, then follow the steps below:

l Open the start-up script and enter the following lines in it, as depicted by Figure 2.32.

<jvm-options>-javaagent:<<Path_to_eg_btm.jar_file>></jvm-options>

<jvm- options>- DEG_ ROPS_ HOME=<<Path_ of_ the_ folder_ containing_.props_ files>></jvm-

options>

Chapter 2: Instal l ing and Conf iguring eG Java BTM

57

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\GlassFish1_
4848 directory, the above specification will be:

<jvm-options>-javaagent:C:\btm\GlassFish1_4848\eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=C:\btm\GlassFish1_4848</jvm-options>

Figure 2.32: Editing the start-up script of the GlassFish server instance to BTM-enable the instance

l Then, save the file.

l Where multiple instances of GlassFish are monitored, make sure you perform steps 15, 16,
and 19 above for eachGlassFish server instance.

20. Next, add the package com.eg in the boot delegation framework. If the Equinox OSGI container
is used, then edit the <<GLASSFISH_ INSTALL_
DIR>>\glassfish\osgi\equinox\configuration\config.ini file to add the package “com.eg.*". If the
Felix OSGI container is used, then edit the <<GLASSFISH_ INSTALL_
DIR>>\glassfish\osgi\felix\configuration\config.properties file to add the "com.eg.*". Figure 2.33
depicts how to add this package to the config file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

58

Figure 2.33: Adding com.eg to boot delegation framework

21. Finally, save the file and restart the Glassfish application server.

2.5.2 BTM-Enabling aGlassFish Server Running on a Unix Platform

If the target GlassFish server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target GlassFish server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple GlassFish server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate GlassFish
server component using the eG administrative interface. When doing so, make a note of theNick
name andPort number using which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

59

6. Log into the target GlassFish server. Then, create a btm directory anywhere on the target server
- say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this sub-
folder in the following format: <Managed_Component_NickName>_<Managed_Component_
Port>. For instance, if you have managed the GlassFish server using the nick name GlassFish1
and the port number 4848 , the new directory under the btm directory should be named as
GlassFish1_4848.

7. If you have managed multiple GlassFish server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the GlassFish server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.25 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the GlassFish server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple GlassFish server instances on a single host are managed, then you will have to
download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.25, a zip file named javaagent_<Nick_name_of_
GlassFish_ server>_ <Port_ number_ of_ GlassFish_ server will get downloaded. For
instance, if you havemanaged theGlassFish server using the nickname 'GlassFish1' and the port
number '4848', then the name of the zip file will be javaagent_GlassFish1_4848. Where multiple
GlassFish server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the correspondingGlassFish server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the GlassFish
server in steps 6 and 7 above. For example, the zip file named javaagent_GlassFish1_4848,
should be transferred to the/opt/btm/GlassFish1_4848 directory on the target GlassFish server.

13. Log out of the system and log back into the GlassFish server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.26 depicts the extracted contents of the zip file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

60

16. From Figure 2.26, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM-enable the GlassFish server/instance. For that, edit the btmOther.props
file in the sub-directory (of the btm directory) that corresponds to that server/ instance. You will
find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

61

19. Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this,
you need to edit the start-up script of the GlassFish server.

20. The first step towards this end is to open the start-up script. Then, insert the following lines in it:

<jvm-options>-javaagent:<<Path_to_the_eg_btm.jar_file>> </jvm-options>

<jvm- options>- DEG_ PROPS_ HOME=<<Path_ to_ the_ folder_ containing_.props_ files>></jvm-

options>

For instance, if the .props files had been copied to the /opt/btm/GlassFish1_4848 directory, the
above specification will be:

<jvm-options>-javaagent:/opt/btm/GlassFish1_4848/eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=/opt/btm/GlassFish1_4848</jvm-options>

21. In Unix environments, if the eG agent is deployed on the same host as the GlassFish server, then
both the agent and the server will be running using different user privileges. In this situation, by
default, the eG Java BTM logswill not be created. In order to create the same, insert the following
entry after the -DEG_PROPS_HOME specification .

<jvm-options>-DEG_LOG_HOME=<<LogFile_Path>></jvm-options>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

<jvm-options>-javaagent:/opt/btm/GlassFish1_4848/eg_btm.jar</jvm-options>

<jvm-options>-DEG_PROPS_HOME=/opt/btm/GlassFish1_4848</jvm-options>

<jvm-options>-DEG_LOG_HOME=/App001/eGBTMLogs</jvm-options>

22. Then, save the file.

23. Where multiple instances of GlassFish are monitored, make sure you perform steps 17-22 above
for eachGlassFish server instance.

24. Next, add the package com.eg in the boot delegation framework. If the Equinox OSGI container
is used, then edit the <<GLASSFISH_ INSTALL_

Chapter 2: Instal l ing and Conf iguring eG Java BTM

62

DIR>>/glassfish/osgi/equinox/configuration/config.ini file to add the package “com.eg.*". If the
Felix OSGI container is used, then edit the <<GLASSFISH_ INSTALL_
DIR>>/glassfish/osgi/felix/configuration/config.properties file to add the "com.eg.*". In these files,
look for the entry that begins with the org.osgi.framework.bootdelegation. Append the following
string to that entry:

,com.eg.*

25. Finally, save the file and restart the Glassfish application server.

2.6 Installing eG Java BTM on JBoss EAP
The steps for deploying the eG Java BTM on a JBoss EAP server will differ based on the platform on
which the target JBoss EAP server is running - whether on aWindows platform or a Unix platform.

2.6.1 BTM-Enabling a JBoss EAPServer Running on aWindows Platform

If the JBoss EAP server is running on a Windows operating system, then follow the steps below to
BTM-enable that server:

1. Login to the JBoss EAP server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

3. Manage the JBoss EAP server as a separate component using the eG administrative interface.
Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple JBoss EAP server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JBoss
EAP server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name
this sub- folder in the following format: <Managed_Component_ NickName>_ <Managed_
Component_Port> . For instance, if you have managed the JBoss EAP server using the nick
name JBoss1 and the port number 9990, the new directory under the btm directory should be
named as JBoss1_9990.

6. If you have managed multiple JBoss EAP server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using

Chapter 2: Instal l ing and Conf iguring eG Java BTM

63

which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the JBoss EAP server, connect to
the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.34 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss EAP server that you want to BTM-enable. Once you locate the server, click the
Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss EAP server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of themanaged instances.

Figure 2.34: Downloading the APM Profiler Agent for the JBoss EAP server

10. Upon clicking the Download icon in Figure 2.34, a zip file named javaagent_<Nick_name_of_
JBossEAP_ server>_ <Port_ number_ of_ JBossEAP_ server will get downloaded. For
instance, if you have managed the JBoss EAP server using the nickname 'JBoss1' and the port
number '9990', then the name of the zip file will be javaagent_JBoss1_9990. Where multiple
JBoss EAP server instances have beenmanaged, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_JBoss1_9990 , should be
copied to the C:\btm\JBoss1_9990 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

13. Figure 2.35 depicts the extracted contents of the zip file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

64

Figure 2.35: Contents of the APM Profiler Agent zip

14. From Figure 2.35, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM- enable the JBoss EAP server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that JBoss
EAP server/ instance. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

65

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props
files. To achieve this, you need to edit the start-up script of the JBoss EAP server. The first step
towards that is to open the start-up script.

18. Then, in the file, enter the following lines, as depicted by Figure 2.36.

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_btm.jar file and .props files are extracted into the C:\btm\JBoss1_9990
directory, the above specification will be:

-javaagent:C:\btm\JBoss1_9990\eg_btm.jar

-DEG_PROPS_HOME:C:\btm\JBoss1_9990

Chapter 2: Instal l ing and Conf iguring eG Java BTM

66

Figure 2.36: Editing the start-up script to BTM-enable a JBoss EAP server running on Windows

19. Where multiple instances of JBoss EAP are monitored, make sure you perform steps 15-18
above for each JBoss EAP server instance.

20. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home\bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home\bin directory.

Figure 2.37: Editing the domain.conf file or standalone.conf file

21. Append ",com.eg" to the following line in the file, as depicted by Figure 2.37:

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

Chapter 2: Instal l ing and Conf iguring eG Java BTM

67

22. Finally, save the file. and restart the JBoss EAP server.

2.6.2 BTM-Enabling a JBoss EAPServer Running on a Unix Platform

If the target JBoss EAP server is running on a Unix operating system, then follow the steps below to
BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target JBoss EAP server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple JBoss EAP server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate JBoss EAP
server component using the eG administrative interface. When doing so, make a note of theNick
name andPort number using which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

6. Log into the target JBoss EAP server. Then, create a btm directory anywhere on the target
server - say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed_ Component_ NickName>_ <Managed_
Component_Port> . For instance, if you have managed the JBoss EAP server using the nick
name JBoss1 and the port number 9990, the new directory under the btm directory should be
named as JBoss1_9990.

7. If you have managed multiple JBoss server instances running on a single host, then you will have
to create multiple sub-directories under the btm directory - one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the JBoss EAP server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.34 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss EAP server that you want to BTM-enable. Once you locate the server, click the

Chapter 2: Instal l ing and Conf iguring eG Java BTM

68

Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss EAP server instances on a single host are managed, then you will have
to download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.34, a zip file named javaagent_<Nick_name_of_
JBossEAP_ server>_ <Port_ number_ of_ JBossEAP_ server will get downloaded. For
instance, if you have managed the JBoss EAP server using the nickname 'JBoss1' and the port
number '9990', then the name of the zip file will be javaagent_JBoss1_9990. Where multiple
JBoss EAP server instances have beenmanaged, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding JBoss EAP server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JBoss EAP
server in steps 6 and 7 above. For example, the zip file named javaagent_JBoss1_9990, should
be transferred to the/opt/btm/JBoss1_9990 directory on the target JBoss EAP server.

13. Log out of the system and log back into the JBoss EAP server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.35 depicts the extracted contents of the zip file.

16. From Figure 2.35, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM- enable the JBoss EAP server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

Chapter 2: Instal l ing and Conf iguring eG Java BTM

69

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

19. Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props
files. To achieve this, you need to edit the start-up script of the server. The first step towards that
is to open the start-up script.

20. Then, in the file, enter the following lines, as depicted by Figure 2.38.

JAVA_OPTS="$JAVA_OPTS -javaagent:<<PATH TO the eg_btm.jar>> -DEG_PROPS_HOME=<<PATH TO

LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the eg_btm.jar file and the .props files are extracted into the /opt/btm/JBoss1_
9990 directory, the above specification will be:

JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/JBoss1_9990/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/JBoss1_9990"

Chapter 2: Instal l ing and Conf iguring eG Java BTM

70

Figure 2.38: Editing the start-up script to BTM-enable a JBoss EAP server on Unix that is monitored in an
agent-basedmanner

21. In Unix environments, if the eG agent is deployed on the same host as the JBoss EAP server,
then both the agent and the server will be running using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification, but before the closing quotes.

-DEG_LOG_HOME=<<LogFile_Path>>

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/JBoss1_9990/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/JBoss1_9990 -DEG_LOG_HOME=/App001/eGBTMLogs"

22. Then, save the file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

71

23. Where multiple instances of JBoss EAP are monitored, make sure you perform steps 17-22
above for each JBoss EAP server instance.

24. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home/bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home/bin directory.

Figure 2.39: Editing the domain.conf file or standalone.conf file

25. Append ",com.eg" to the following line in the file, as depicted by Figure 2.37:

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

26. Finally, save the file and restart the JBoss EAP server instance.

2.7 Installing eG Java BTM on JBoss WildFly
The steps for deploying the eG Java BTM on a JBossWildFly server will differ based on the platform
on which the target JBoss WildFly server is running - whether on a Windows platform or a Unix
platform.

2.7.1 BTM-Enabling a JBossWildFly Server Running on aWindows Platform

If the JBossWildFly server is running on aWindows operating system, then follow the steps below to
BTM-enable that server:

1. Login to the JBossWildFly server.

2. Open a browser on the server, connect to the eG manager, and login to the eG admin interface.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

72

3. Manage the JBoss WildFly server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple JBoss WildFly server instances are operating on a single host, and you want to BTM-
enable all the instances, then you will have to manage each instance as a separate component
using the eG administrative interface. When doing so, make a note of the Nick name and Port
number using which youmanaged each instance.

5. Next, log out of the eG admin interface. Then, create a btm directory anywhere on the JBoss
WildFly server - say, C:\btm. Under this directory, create a sub-folder. Make sure that you name
this sub- folder in the following format: <Managed_Component_ NickName>_ <Managed_
Component_Port>. For instance, if you have managed the JBoss WildFly server using the nick
nameWildFly1 and the port number 9990, the new directory under the btm directory should be
named asWildFly1_9990.

6. If you have managed multiple JBoss WildFly server instances running on a single host, then you
will have to create multiple sub-directories under the btm directory- one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

7. Once the new sub-directory(ies) is created, open a browser on the JBossWildFly server, connect
to the eG manager, and login to the eG admin interface again.

8. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

9. Figure 2.40 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss WildFly server that you want to BTM-enable. Once you locate the server, click
the Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss WildFly server instances on a single host are managed, then you will
have to download the APM Profiler Agent separately for each of themanaged instances.

Figure 2.40: Downloading the APM Profiler Agent for the JBoss WildFly server

Chapter 2: Instal l ing and Conf iguring eG Java BTM

73

10. Upon clicking the Download icon in Figure 2.40, a zip file named javaagent_<Nick_name_of_
WildFly_server>_<Port_number_of_WildFly_server will get downloaded. For instance, if
you have managed the JBoss WildFly server using the nickname 'WildFly1' and the port number
'9990', then the name of the zip file will be javaagent_WildFly1_9990. Where multiple JBoss
WildFly server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding server instance.

11. Copy the downloaded zip file(s) to the corresponding sub-directory(ies) of the btm directory (see
steps 5 and 6 above). For example, the zip file named javaagent_WildFly1_9990, should be
copied to the C:\btm\WildFly1_9990 directory .

12. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

13. Figure 2.41 depicts the extracted contents of the zip file.

Figure 2.41: Contents of the APM Profiler Agent zip

14. From Figure 2.41, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

15. Next, proceed to BTM- enable the JBoss WildFly server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that JBoss
WildFly server/ instance. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

Chapter 2: Instal l ing and Conf iguring eG Java BTM

74

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure the BTM port parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

16. Finally, save the btmOther.props file.

17. Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and
.props files. To achieve this, you need to edit the start-up script of the JBossWildFly server. The
first step towards that is to open the start-up script.

18. Then, in the file, enter the following lines, as depicted by Figure 2.42.

-javaagent:<<PATH TO THE eg_btm.jar FILE>>

-DEG_PROPS_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the eg_btm.jar file and the .props files are extracted into the C:\btm\WildFly1_
9990 directory, the above specification will be:

-javaagent:C\btm\WildFly1_9990\eg_btm.jar

Chapter 2: Instal l ing and Conf iguring eG Java BTM

75

-DEG_PROPS_HOME=C:\btm\WildFly1_9990

Figure 2.42: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agent-
basedmanner

19. Then, save the file.

20. Where multiple instances of WildFly are monitored, make sure you perform steps 15-19 above
for eachWildFly server instance.

21. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home\bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home\bin directory.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

76

Figure 2.43: Editing the domain.conf file or standalone.conf file

22. Append ",com.eg" to the following line in the file, as depicted by Figure 2.43:

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

23. Finally, save the file and restart the JBossWildFly server.

2.7.2 BTM-Enabling a JBossWildFly Server Running on a Unix Platform

If the target JBossWildFly server is running on a Unix operating system, then follow the steps below
to BTM-enable that server:

1. Login to any system in your environment that supports a browser and has network access to the
eG manager.

2. Open a browser on that system, connect to the eG manager, and login to the eG admin interface.

3. Manage the target JBoss WildFly server as a separate component using the eG administrative
interface.Whenmanaging, make a note of theNick name andPort number that you provide.

4. If multiple JBossWildFly server instances are operating on a single host, and you want to monitor
each of those instances, then you will have to manage each instance as a separate JBoss
WildFly server component using the eG administrative interface. When doing so, make a note of
theNick name andPort number using which youmanaged each instance.

5. Next, log out of the eGadmin interface and the system.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

77

6. Log into the target JBoss WildFly server. Then, create a btm directory anywhere on the target
server - say, /opt/btm. Under this directory, create a sub-folder. Make sure that you name this
sub- folder in the following format: <Managed_ Component_ NickName>_ <Managed_
Component_Port>. For instance, if you have managed the JBoss WildFly server using the nick
nameWildFly1 and the port number 9990, the new directory under the btm directory should be
named asWildFly1_9990.

7. If you have managed multiple WildFly server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory - one each for every instance.
Each of these sub-directories should be named after the Nick name and Port number using
which the corresponding instance has beenmanaged in eG.

8. Once the new sub-directory(ies) is created, log out of the JBossWildFly server. Log back into the
system you used in step 1 above. Open a browser on the system, connect to the eG manager,
and login to the eG admin interface again.

9. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

10. Figure 2.40 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the JBoss WildFly server that you want to BTM-enable. Once you locate the server, click
the Download icon corresponding to that server to download the APM Profiler Agent to that
server. If multiple JBoss WildFly server instances on a single host are managed, then you will
have to download the APM Profiler Agent separately for each of themanaged instances.

11. Upon clicking the Download icon in Figure 2.40, a zip file named javaagent_<Nick_name_of_
WildFly_server>_<Port_number_of_WildFly_server will get downloaded. For instance, if
you have managed the JBoss WildFly server using the nickname 'WildFly1' and the port number
'9990', then the name of the zip file will be javaagent_WildFly1_9990. Where multiple JBoss
WildFly server instances have been managed, you will be downloading multiple zip files - one
each for every instance. The names of these zip files will automatically carry the nick name and
port number you assigned to the corresponding JBossWildFly server instance.

12. Next, using FTP tools like putty or WinSCP, transfer the downloaded zip file (s) to the
corresponding sub-directory(ies) (of the btm directory), which you created on the JBoss WildFly
server in steps 6 and 7 above. For example, the zip file named javaagent_WildFly1_9990, should
be transferred to the/opt/btm/WildFly1_9990 directory on the target JBossWildFly server.

13. Log out of the system and log back into the JBossWildFly server.

14. Extract the contents of each zip file into the same sub-directory to which that zip file was copied.

15. Figure 2.41 depicts the extracted contents of the zip file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

78

16. From Figure 2.41, it is evident that the zip file contains an eg_btm.jar file and a few property files,
namely - btmOther.props , btmLogging.props , config.props , custom.props ,
exclude.props, and threshold.props files.

17. Next, proceed to BTM- enable the JBoss WildFly server/instance. For that, edit the
btmOther.props file in the sub-directory (of the btm directory) that corresponds to that server/
instance. You will find the following lines in the file:

#~~

Below property is BTM Server Socket Port, through which eG Agent Communicates

Restart is required, if any changes in this property

Default port is "13931"

#~~

#

BTM_Port=13931

#

By default, the BTMPort parameter is set to 13931. If you want to enable eG Java BTM on a
different port, then specify the same here. In this case, when configuring the Java Business
Transactions test or the Key Java Business Transactions test for that application server,
make sure you configure theBTMPORT parameter of the test with this port number.

Note:

When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default
setting. In this case therefore, the eG Java BTM will treat the host from which the very first
'measure request' comes in as theDesignated_Agent.

Note:

In case a specificDesignated_Agent is not provided, and the eG Java BTM treats the host from
which the very first 'measure request' comes in as the Designated_Agent , then if such a
Designated_Agent is stopped or uninstalled for any reason, the eG Java BTM will wait for a
maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If
no requests come in for 10 consecutive measure periods, then the eG Java BTM will begin
responding to 'measure requests' coming in from any other eGagent.

18. Finally, save the btmOther.props file.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

79

19. Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and
.props files. To achieve this, you need to edit the start-up script of the server. The first step
towards that is to open the start-up script.

20. Then, in the file, enter the following lines, as depicted by Figure 2.44.

JAVA_OPTS="$JAVA_OPTS -javaagent:<<PATH TO the eg_btm.jar>> -DEG_PROPS_HOME=<<PATH TO

LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the eg_btm.jar file and .props files are extracted into the /opt/btm/WildFly1_
9990 directory, the above specification will be:

JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/WildFly1_9990/eg_btm.jar -DEG_PROPS_

HOME=/opt/btm/WildFly1_9990"

Figure 2.44: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix that is monitored in
an agent-basedmanner

21. In Unix environments, if the eG agent is deployed on the same host as the JBoss WildFly server,
then both the agent and the server will be running using different user privileges. In this situation,
by default, the eG Java BTM logs will not be created. In order to create the same, insert the
following entry after the -DEG_PROPS_HOME specification, but before the closing quotes.

-DEG_LOG_HOME=<<LogFile_Path>>

Chapter 2: Instal l ing and Conf iguring eG Java BTM

80

Before providing this specification, make sure you create a folder for BTM logs - say,
eGBTMLogs - in any directory to which the target application server has access. Then, against, -
DEG_LOG_HOME, provide the full path to the eGBTMLogs directory. Where multiple instances
on the same server are to be BTM-enabled, you can use the same directory for writing log files of
all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete
specification will be as follows:

AVA_OPTS="$JAVA_OPTS -JAVA_OPTS="$JAVA_OPTS -javaagent:/opt/btm/WildFly1_9990/eg_

btm.jar -DEG_PROPS_HOME=/opt/btm/WildFly1_9990 -DEG_LOG_HOME=/App001/eGBTMLogs"

22. Then, save the file.

23. Where multiple instances of WildFly are monitored, make sure you perform steps 17-22 above
for eachWildFly server instance.

24. Next, if the JBoss server is running in domain mode, open the domain.conf file in JBoss_
Home/bin directory. If the JBoss server is running in standalone mode, open the
standalone.conf file in the JBoss_Home/bin directory.

Figure 2.45: Editing the domain.conf file or standalone.conf file

25. Append ",com.eg" to the following line in the file, as depicted by Figure 2.43:

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs="org.jboss.byteman"

26. Finally, save the file and restart the JBossWildFly server.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

81

2.8 Installing eG BTM on a Multi- Server
SAP Web Application Server Instance
In amulti-server environment, two/more Java server processes run within a single SAP WAS
instance.. For the eGagent to monitor business transactions to a ,multi-server SAP WAS instance,
you need to BTM-enable each server Java process in that instance, separately.

To achieve this, follow the steps detailed below.

1. First, login to the SAP WAS instance to be BTM-enabled.

2. Open a browser on that instance and connect to the eGmanagement console.

3. Login to the eGadmin interface.

4. Follow the Agents -> BTM Profiler Downloadmenu sequence in the eGadmin interface.

5. Figure 2.46 will appear listing the servers that can be instrumented for APM by eG. In this list,
locate the SAP Web Application server instance that you want to BTM-enable. Once you locate
the server instance, click the Download icon corresponding to that instance to download the
APM Profiler Agent to that instance.

Figure 2.46: Download the APM Profiler Agent to the SAP WAS instance

6. A zip file named javaagent_<Nick_name_of_SAPWAS_instance>_<Port_number_of_
SAPWAS_ instance will get downloaded. For instance, if you have managed the
SAP WAS instance using the nickname 'sapwas' and the port number '50000', then the name of
the zip file will be javaagent_sapwas_50000. Extract the contents of this file to any location on the
SAP WAS instance.

7. Next, navigate to the cluster folder of the SAP WAS instance. Within this folder, you will find
Java server process-specific sub-folders. Create a folder named btm under each of these sub-
folders.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

82

8.

Figure 2.47: Navigating to the cluster folder in the <SAP_WAS_INSTANCE_INSTALL_DIR>

9. Copy the contents of the javaagent_sapwas_50000 zip to the btm folder of each of the Java
server process-specific folders (indicated by Figure 2.47).

10. Next, follow the steps below for each Java server process:

o Edit the btmOther.props file in the btm folder of the Java server process.

Figure 2.48: Configuring the BTM port for a server process

Chapter 2: Instal l ing and Conf iguring eG Java BTM

83

o In the btmOther.props file, search for the BTM_Port parameter. Once found, specify a
unique BTM port for the Java server process.

Typically, each Java server process in a multi-server SAP WAS instance is assigned a node
index - eg., the node index for server0 is 0, for server1 is 1, for server2 is 2, and so on. When
configuring a BTM port for a Java server process, its recommended that the node index of that
server process be set as the last digit of the BTM port number. For instance, the BTM port for
server0 can be 13930, server1 can be 13931, server2 can be 13932 and so on.

o Finally, save the file.

o Repeat this procedure for every server process in the SAPWAS instance.

11. Next, connect to the SAP Netweaver administrator tool by providing the URL: http://<IP_
address_of_tool>:<Port_number_of_tool>/nwa/sysinfo

Figure 2.49: The login page of the SAP Netweaver administrator tool

12. A login screen then appears (see Figure 2.49). Login to the system information application using
administrator or j2ee_admin credentials. Upon successful login, Figure 2.50 will appear.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

84

Figure 2.50: Clicking the VM Additional Parameters link

13. Select the instance to be BTM-enabled from the list of Instances in Figure 2.50. Then, click the
VM Additional Parameters link indicated by Figure 2.50 . This will open the Additional
VM Parameters tab page (see Figure 2.51). Click the Add button in that tab page to add a new
VM parameter.

Figure 2.51: Clicking the Add button in the Additional VM Parameters tab page

14. Figure 2.52 will then appear.

Chapter 2: Instal l ing and Conf iguring eG Java BTM

85

Figure 2.52: Adding a new VM parameter

15. Specify the following in theName text box in Figure 2.52:

-javaagent:<Path_to_eg_btm.jar_file>

Here, you can specify the full path to the eg_btm.jar file that is in the btm folder of any of the
Java server processes in the target instance.

16. Then, in theValue text box, specify the following:

EG_PROPS_HOME=<Path_to_the_btmOther.props_file>,EG_LOG_HOME=<Path_to_the_
btmLogging.props_file>

The path to these files will be different for each Java server process in the instance. Hence, when
referring to the server process-specific sub-folder that contains these files, your path specification
should include the ${NODE_INDEX} variable. This variable represents the node index of a Java
server process - eg., the node index of server process server0 is 0, for server1 it is 1, and so on.
SAP WAS will automatically substitute this variable with the node index of the corresponding
server process, at runtime. A sample specification is provided below:

EG_PROPS_HOME=C:\usr\sap\SMJ\J02\j2ee\cluster\server${NODE_INDEX}\btm,EG_LOG_
HOME=C:\usr\sap\SMJ\J02\j2ee\cluster\server${NODE_INDEX}\btm

17. Finally, click theAdd button in Figure 2.52 to add the new VMparameter.

18. When Figure 2.52 appears, click the Save button to save the changes. A Confirmation

Chapter 2: Instal l ing and Conf iguring eG Java BTM

86

message box (see Figure 2.53) will appear prompting you to confirm whether you want to restart
the server now or later. Click Later in the message box and then click the Back button indicated
by Figure 2.53.

Figure 2.53: Saving the changes

19. Restart the Java server processes that have been BTM-enabled.

Chapter 3: Moni toring Java Business Transactions

87

Chapter 3: Monitoring Java Business Transactions

Once the eG Application Server Agent is installed and configured on the JVM nodes, it will start
tracking transaction requests and storing transaction path andmetrics in memory.

To collect thesemetrics, you then need to configure the eG agent to run the Java Business
Transactions test. To focus on only those transactions you deem important, you can optionally
configure the eGagent to run theKey Java Business Transactions test.

Themetrics reported are then captured into an Application Transactions layer. This layer will appear
as the first layer of themonitoringmodel of the application server that is BTM-enabled.

Figure 3.1: The test mapped to the Application Transactions layer

This chapter discusses how to configure these tests and details themetrics reported by each test.

3.1 Java Business Transactions Test
The responsiveness of a transaction is the key determinant of user experience with that transaction;
if response time increases, user experience deteriorates. To make users happy, a Java business
transaction should be rapidly processed by each of the JVM nodes in its path. Processing
bottlenecks on a single JVM node can slowdown/stall an entire business transaction or can cause
serious transaction errors. This in turn can badly scar the experience of users. To avoid this,

Chapter 3: Moni toring Java Business Transactions

88

administrators should promptly identify slow/stalled/errored transactions, isolate the JVM node on
which the slowness/error occurred, and uncover what caused the aberration on that node – is it
owing to SQL queries executed by the node? Or is it because of external calls – eg., async calls,
SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business Transactions test
helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests
received by that JVM, and groups requests based on user-configured pattern specifications. For
each transaction pattern, the test then computes and reports the average time taken by that JVM
node to respond to the transaction requests of that pattern. In the process, the test identifies the
slow/stalled transactions of that pattern, and reports the count of such transactions and their
responsiveness. Detailed diagnostics provided by the test accurately pinpoint the exact transaction
URLs that are slow/stalled, the total round-trip time of each transaction, and also indicate when such
transaction requests were received by that node. The slowest transaction in the group can thus be
identified.

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in
SQL query processing, the test also reports the average time the transactions of each pattern took to
execute SQL queries. If a majority of the queries are slow, then the test will instantly capture the
same and notify administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know
which are the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node,
highlights transactions that are under-performing, and takes administrators close to the root-cause
of poor transaction performance.

Target of the Test : A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test :One set of results for each grouped URL
Test parameters:

Parameter Description

Test Period How often should the test be executed.

Host The host for which this test is to be configured.

BTM Port Specify the port number specified as BTM_Port in the btmOther.props file on the JVM

Configurable parameters for the test

Chapter 3: Moni toring Java Business Transactions

89

Parameter Description

node beingmonitored. If the JVM is beingmonitored in an agent-basedmanner, then
the btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.

Max URL Segments This test groups transaction URLs based on the URL segments count configured for
monitoring and reports aggregated response timemetrics for every group. Using this
parameter, you can specify the number of URL segments based on which the
transactions are to be grouped.

URL segments are the parts of a URL (after the base URL) or path delimited by
slashes. So if you had the URL:
http://www.eazykart.com/web/shopping/sportsgear/login.jsp, then
http://www.eazykart.com will be the base URL or domain, /web will be the first URL
segment, /shopping will be the second URL segment, and /sportsgear will be the third
URL segment, and /login.jsp will be the fourth URL segment. By default, this
parameter is set to 3. This default setting, when applied to the sample URL provided
above, implies that the eG agent will aggregate response timemetrics to all transaction
URLs under /web/shopping/sportsgear. Note that the base URL or domain will not be
considered when counting URL segments. This in turnmeans that, if the JVM node
receives transaction requests for the URLs such as
http://www.eazykart.com/web/shopping/sportsgear/login.jsp,
http://www.eazykart.com/web/shopping/sportsgear/jerseys.jsp,
http://www.eazykart.com/web/shopping/sportsgear/shoes.jsp,
http://www.eazykart.com/web/shopping/sportsgear/gloves.jsp, etc., then the eG
agent will track the requests and responses for all these URLs, aggregate the results,
and present the aggregatedmetrics for the descriptor /web/shopping/sportsgear. This
way, the test will create different transaction groups based on each of the third-level
URL segments – eg. /web/shopping/weddings, /web/shopping/holiday,
/web/shopping/gifts etc. – and will report aggregatedmetrics for each group so created.

If you want, you can override the default setting by providing a different URL segment
number here. For instance, your specification can be just 2. In this case, for the URL
http://www.eazykart.com/web/shopping/login.jsp, the test will report metrics for
the descriptor web/shopping.

Excluded Patterns By default, this test does not track requests to the following URL patterns:

*.ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.lwfn, *.ffil, *.fon, *.pfm, *.pfb, *.std,
*.pro, *.xsf, *.jpg, *.jpeg, *.jpe, *.jif, *.jfif, *.jfi, *.jp2, *.j2k, *.jpf, *.jpx, *.jpm, *.jxr,
*.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png, *.apng, *.mng, *.tiff, *.tif, *.xbm, *.bmp,
*.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv, *.mov, *.rm, *.ram,
*.swf, *.flv, *.ogg, *.webm, *.mp4, *.ts, *.mid, *.midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.ogg, *.mp3, *.mp4, *.css, *.js, *.ico, *.cur, /egurkha*

If required, you can remove one/more patterns from this default list, so that such

Chapter 3: Moni toring Java Business Transactions

90

Parameter Description

patterns aremonitored, or can appendmore patterns to this list in order to exclude them
frommonitoring.

Method Exec Cutoff
(MS)

From the detailed diagnosis of slow/stalled/error transactions, you can drill down and
perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which
the transaction calls themethods. By configuring aMethod Exec Cutoff, you canmake
sure that methods that have been executing for a duration greater the specified cutoff
are alone listed when performing execution analysis. For instance, if you specify 5
here, then theExecution Analysis window for a slow/stalled/error transaction will list
only thosemethods that have been executing for over 5milliseconds. This way, you
get to focus on only thosemethods that could have caused the slowness, without
being distracted by inconsequential methods. By default, the value of this parameter is
set to 250ms.

SQL Execution
Cutoff (MS)

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By configuring a SQL Execution
Cutoff (MS), you canmake sure that queries that have been executing for a duration
greater the specified cutoff are alone listed when performing query analysis. For
instance, if you specify 5 here, then for a slow/stalled/error transaction, theSQL
Queries window will display only those queries that have been executing for over 5
milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10ms.

Healthy URL Trace By default, this flag is set toNo. This means that eGwill not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed
diagnosis capability for healthy transactions as well, then set this flag toYes.

Max Healthy URLs
per Test Period

This parameter is applicable only if the Healthy URL Trace flag is set to ‘Yes’.
Here, specify the number of top-n transactions that should be listed in the detailed
diagnosis of theHealthy transactionsmeasure, every time the test runs. By default,
this is set to 50, indicating that the detailed diagnosis of theHealthy transactions
measure will by default list the top-50 transactions, arranged in the descending order of
their response times.

Max Slow URLs per
Test Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theSlow transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theSlow transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Stalled URLs Specify the number of top-n transactions that should be listed in the detailed diagnosis

Chapter 3: Moni toring Java Business Transactions

91

Parameter Description

per Test Period of theStalled transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theStalled transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Error URLs per
Test Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theError transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theError transactionsmeasure will by
default list the top-10 transactions, in terms of the number of errors they encountered.

Show HTTP Status If you want the detailed diagnosis of this test to report the HTTP response code that
was returned when a transaction URLwas hit, then set this flag toYes. This will enable
you to instantly identify HTTP errors that may have occurred when accessing a
transaction URL. By default, this flag is set toNo, indicating that the HTTP status
code is not reported by default as part of detailed diagnostics.

Show Cookies An HTTP cookie is a small piece of data sent from awebsite and stored on the user's
computer by the user's web browser while the user is browsing. Most commonly,
cookies are used to provide a way for users to record items they want to purchase as
they navigate throughout a website (a virtual "shopping cart" or "shopping basket"). To
keep track of which user is assigned to which shopping cart, the server sends a cookie
to the client that contains a unique session identifier (typically, a long string of random
letters and numbers). Because cookies are sent to the server with every request the
client makes, that session identifier will be sent back to the server every time the user
visits a new page on the website, which lets the server know which shopping cart to
display to the user. Another popular use of cookies is for logging into websites. When
the user visits a website's login page, the web server typically sends the client a cookie
containing a unique session identifier. When the user successfully logs in, the server
remembers that that particular session identifier has been authenticated, and grants the
user access to its services. If you want to view and analyze the useful information that
is stored in such HTTP response cookies that a web server sends, then set this flag to
Yes. By default, this flag is set toNo, indicating that cookie information is not reported
by default as part of detailed diagnostics.

Show Headers HTTP headers allow the client and the server to pass additional information with the
request or the response. A request header is a header that contains more information
about the resource to be fetched or about the client itself. If you want the additional
information stored in a request header to be displayed as part of detailed diagnostics,
then set this flag toYes. By default, this flag is set toNo indicating that request
headers are not displayed by default in the detailed diagnosis.

Enable Thread CPU
Monitoring

If this flag is set toYes, then this test will additionally report the average time for which

Chapter 3: Moni toring Java Business Transactions

92

Parameter Description

the transactions of a pattern were utilizing the CPU resources. This will point you to
transaction patterns that are CPU-intensive, and will thus help you right-size your
JVMs. By default however, this test will not report the average CPU time of transaction
patterns. This is because, by default, the Enable Thread CPU Monitoring flag is set to
No for this test.

Enable Thread
Contention
Monitoring

If this flag is set toYes, then this test will additionally report the following:

l The average time for which the transactions of a pattern were waiting, before they

resumed execution;

l The average time for which the transactions of a pattern were blocked from

execution by another transaction;

If transactions of a pattern are found to bemuch slower than the rest or are stalling,
then the aforesaid metrics will help administrators determine what could have caused
the slowness - is it because the transactions were waiting for too long? or is it because
they were being blocked for too long?

By default however, this test will not report themetrics described above, because the
Enable Thread ContentionMonitoring flag is set toNo by default.

Advanced Settings To optimize transaction performance and conserve space in the eG database, many
restraints have been applied by default on the agent’s ability to collect and report
detailed diagnostics. Depending upon how well-tuned your eG database is and the level
of visibility you require into transaction performance, youmay choose to either retain
these default settings or override them. If you choose not to disturb the defaults, then
set the Advanced Settings flag toNo. If you want to modify the defaults, then set the
Advanced Settings flag toYes.

POJOMethod
Tracing Limit and
POJO
Method Tracing
Cutoff Time

These parameters will appear only if the Advanced Settings flag is set to ‘Yes’.
Typically, if theMonitoring Mode of this test is set toProfiler, then, as part of the
detailed diagnostics of a transaction, eG reports the execution time of every POJO,
non-POJO, and recursive (i.e. methods that call themselves) method call that a JVM
nodemakes when processing that transaction. Of these, POJOmethod calls are the
most expensive, as they are usually large in number. To ensure that attempts made to
collect detailedmeasures related to POJOmethod calls do not impact the overall
responsiveness of themonitored transaction, eG, by default, collects and reports the
execution time of only the following POJOmethod calls:

l The first 1000 POJOmethod calls made by the target JVM node for that transaction;

(OR)

Chapter 3: Moni toring Java Business Transactions

93

Parameter Description

l The POJOmethod calls that weremade by the target JVM node within 10 seconds

from the start of themonitored transaction on that node;

Accordingly, the POJOMethod Tracing Limit is set to 1000 by default, and the POJO
Method Tracing Cutoff Time is set to 10 (seconds) by default. Of these two limits,
whichever limit is reached first will automatically be applied by eG for determining when
to stop POJO tracing. In other words, once a JVM node starts processing a
transaction, the agent begins tracking the POJOmethod calls made by that node for
that transaction. In the process, if the agent finds that the configured tracing limit is
reached before the tracing cutoff time is reached, then the agent will stop tracking the
POJOmethod calls, as soon as the tracing limit is reached. On the other hand, if the
tracing limit is not reached, then the agent will continue tracking the POJOmethod
calls until the tracing cutoff time is reached. At the end of the cutoff time, the agent will
stop tracking the POJOmethod calls. For instance, if the JVM nodemakes 1000
POJOmethod calls within say, 6 seconds from when it began processing the
transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJOmethod call,
and report the execution time of each of the 1000 calls alone. On the other hand, if the
JVM node does not make over 1000 POJOmethod calls till the 10 second cutoff
expires, then the eG agent continues tracking the POJOmethod calls till the end of 10
seconds, and reports the details of all those that were calls made till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you
want to impose on the agent and on the transaction, you can increase / decrease the
POJOMethod Tracing Limit and POJOMethod Tracing Cutoff time specifications.

Non-POJOMethod
Tracing Limit

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, when reporting the detailed diagnosis of a transaction on a particular JVM
node, this test reports the execution time of only the first 1000 non-POJOmethod calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM nodemakes
for that transaction. This is why, the Non-POJOMethod Tracing Limit parameter is set
to 1000 by default. If you want, you can change the tracing limit to enable the test to
report the details of more or fewer non-POJOmethod calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the non-POJO
method that could have caused the transaction to slowdown on a particular JVM node,
it may alsomarginally increase the overheads of the transaction and the eG agent.

RecursiveMethod
Tracing Limit

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. A
recursivemethod is amethod that calls itself. By default, when reporting the detailed
diagnosis of a transaction on a particular JVM node, this test reports the execution time
of only the first 1000 recursivemethod calls (which includes JMS, JCO, HTTP, Java,

Chapter 3: Moni toring Java Business Transactions

94

Parameter Description

SQL, etc.) that the target JVM nodemakes for that transaction. This is why, the
RecursiveMethod Tracing Limit parameter is set to 1000 by default. If you want, you
can change the tracing limit to enable the test to report the details of more or fewer
recursivemethod calls made by a JVM node. While a high value for this parameter may
take you closer to identifying the recursivemethod that could have caused the
transaction to slowdown on a particular JVM node, it may alsomarginally increase the
overheads of the transaction and the eG agent.

Exception
Stacktrace Lines

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. As
part of detailed diagnostics, this test, by default, lists the first 10 stacktrace lines of
each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the
Exception Stacktrace Lines parameter is set to 10 by default. If required, you can have
this test display more or fewer stacktrace lines by overriding this default setting.

Included Exceptions This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a
transaction, such a transaction, by default, will not be counted as anError transaction
by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL
exceptions that have already been handled programmatically, occur. This can be
achieved by configuring a comma-separated list of these exceptions in the Included
Exceptions text box. Here, each exception you want to include has to be defined using
its fully qualified exception class name. For instance, your Included Exceptions
specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be included are
configured, then this test will count all transactions in which such exceptions are
captured as Error transactions.

Ignored Exceptions This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

Chapter 3: Moni toring Java Business Transactions

95

Parameter Description

l Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled
exceptions (or handled SQL exceptions), as they may not pose any threat to the
stability of the transaction or to the web site/web application. To achieve this,
administrators can configure a comma-separated list of such inconsequential
exceptions in the Ignored Exceptions text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For
instance, your Excluded Exceptions specification can be as follows:
java.sql.SQLException,java.io.FileNotFoundException. Note that wild card
characters cannot be used as part of your specification. Once the exceptions to
be excluded are configured, then this test will exclude all transactions in which such
exceptions are captured from its count of Error transactions.

Ignored Characters This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, eG excludes all transaction URLs that contain the ‘\’ character frommonitoring.
If you want eG to ignore transaction URLs with any other special characters, then
specify these characters as a comma-separated list in the Ignored Characters text box.
For instance, your specification can be: \\,&,~

Max Grouped URLs
per Measure Period

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. This test
groups URLs according to theMax URL Segments specification. These grouped URLs
will be the descriptors of the test. For each grouped URL, response timemetrics will be
aggregated across all transaction URLs in that group and reported.

Whenmonitoring web sites/web applications to which the transaction volume is
normally high, this test may report metrics for hundreds of descriptors. If all these
descriptors are listed in the Layers tab page of the eGmonitoring console, it will
certainly clutter the display. To avoid this, by default, the test displays metrics for a
maximum of 50 descriptors – i.e., 50 grouped URLs alone – in the eGmonitoring
console, during every measure period. This is why, theMax Grouped URLs per
Measure Period parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eGmonitoring
console, the eG BTM follows the below-mentioned logic:

l Top priority is reserved for URL groups with error transactions. This means that eG

BTM first scans URL groups for error transactions. If error transactions are found in

50 URL groups, then eGBTM computes the aggregated response time of each of

the 50 groups, sorts the error groups in the descending order of their response time,

and displays all these 50 groups alone as the descriptors of this test, in the sorted

Chapter 3: Moni toring Java Business Transactions

96

Parameter Description

order.

l On the other hand, if error transactions are found in only one / a few URL groups –
say, only 20 URL groups – then, eG BTMwill first arrange these 20 grouped URLs in
the descending order of their response time. It will then compute the aggregated
response time of the transactions in each of the other groups (i.e., the error-free
groups) that were auto-discovered during the samemeasure period. These other
groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTMwill then pick the top-30 grouped
URLs from this sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the
20 error groups are first displayed (in the descending order of their response time),
followed by the 30 ‘error-free’ groups (also in the descending order of their response
time).

At any given point in time, you can increase/decrease themaximum number of
descriptors this test should supportby modifying the value of theMax Grouped
URLs per Measure Period parameter.

Max SQl Queries per
Transaction

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’.
Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By default, eG picks the first 500
SQL queries executed by the transaction, compares the execution time of each query
with the SQL Execution Cutoff configured for this test, and displays only those queries
with an execution time that is higher than the configured cutoff. This is why, theMax
SQL Queries per Transaction parameter is set to 500 by default.

To improve agent performance, youmay want the SQL Execution Cutoff to be
compared with the execution time of a less number of queries – say, 200 queries.
Similary, to increase the probability of capturingmore number of long-running queries,
youmay want the sql execution cutoff to be compared with the execution time of a
large number of queries – say, 1000 queries. For this, you just need tomodify theMax
SQLQueries per Transaction specification to suit your purpose.

Timeout By default, the eG agent will wait for 1000milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can
change this timeout value, if required.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the

Chapter 3: Moni toring Java Business Transactions

97

Parameter Description

detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,
choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

All transactions Indicates the total number
of requests received for
transactions of this pattern
during the last
measurement period.

Number By comparing the value of this
measure across transaction patterns,
you can identify themost popular
transaction patterns. Using the
detailed diagnosis of this measure, you
can then figure out which specific
transactions of that pattern aremost
requested.

For theSummary descriptor, this
measure will reveal the total number of
transaction requests received by the
target JVM during the last
measurement period. This is a good
indicator of the transaction workload on
that JVM.

Avg response time Indicates the average time
taken by the transactions

Msecs Compare the value of this measure
across patterns to isolate the type of

Measures reported by the test

Chapter 3: Moni toring Java Business Transactions

98

Measurement Description Measurement
Unit Interpretation

of this pattern to complete
execution.

transactions that were taking too long
to execute. You can then use the
detailed diagnosis of the All
transactions measure of that group to
know how much time each transaction
in that group took to execute. This will
lead you to the slowest transaction.

For theSummary descriptor, this
measure will reveal the average
responsiveness of all the transaction
requests received by the target JVM
during the last measurement period. An
abnormally low value for this measure
for the Summary descriptor could
indicate a serious processing
bottleneck on the target JVM.

Healthy transactions Indicates the number of
healthy transactions of
this pattern.

Number By default, this measure will report the
count of transactions with a response
time less than 4000milliseconds. You
can change this default setting by
modifying the thresholds of theAvg
response timemeasure using the eG
admin interface.

For theSummary descriptor, this
measure will report the total number of
healthy transactions on the target
JVM.

Healthy transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is healthy.

Percent To know which are the healthy
transactions, use the detailed
diagnosis of this measure. For the
Summary descriptor, this measure will
report the overall percentage of healthy
transactions on the target JVM.

Slow transactions Indicates the number of
transactions of this pattern
that were slow during the
last measurement period.

Number By default, this measure will report the
number of transactions with a
response time higher than 4000
milliseconds and lesser than 60000

Chapter 3: Moni toring Java Business Transactions

99

Measurement Description Measurement
Unit Interpretation

milliseconds. You can change this
default setting by modifying the
thresholds of theAvg response time
measure using the eG admin interface.

A high value for this measure is a
cause for concern, as toomany slow
transactions means that user
experience with the web application is
poor. For theSummary descriptor, this
measure will report the total number of
slow transactons on the target JVM.
This is a good indicator of the
processing power of the target JVM.

Slow transactions
response time - avg

Indicates the average time
taken by the slow
transactions of this pattern
to execute.

Msecs For theSummary descriptor, this
measure will report the average
response time of all the slow
transactions on the target JVM.

Slow transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is currently slow.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are slow. You
can drill down from a slow transaction
to know what is causing the slowness.
For theSummary descriptor, this
measure will report the overall
percentage of slow transactions on the
monitored JVM.

Error transactions Indicates the number of
transactions of this pattern
that experienced errors
during the last
measurement period.

Number A high value is a cause for concern, as
toomany error transactions to a web
application can significantly damage
the user experience with that
application. For theSummary
descriptor, this measure will report the
total number of error transactons on the
target JVM. This is a good indicator of
how error-prone the target JVM is.

Error transactions
response time - avg

Indicates the average
duration for which the

Msecs The value of this measure will help you
discern if error transactions were also

Chapter 3: Moni toring Java Business Transactions

100

Measurement Description Measurement
Unit Interpretation

transactions of this pattern
were processed before an
error condition was
detected.

slow. For theSummary descriptor,
this measure will report the average
response time of all error transactions
on the target JVM.

Error transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is experiencing errors.

Percent Use the detailed diagnosis of this
measure to isolate the error
transactions. You can even drill down
from an error transaction in the detailed
diagnosis to determine the cause of the
error. For theSummary descriptor,
this measure will report the overall
percentage of transactions of this
pattern on the target JVM that is
currently experiencing errors.

Stalled transactions Indicates the number of
transactions of this pattern
that were stalled during the
last measurement period.

Number By default, this measure will report the
number of transactions with a
response time higher than 60000
milliseconds. You can change this
default setting by modifying the
thresholds of theAvg response time
measure using the eG admin interface.

A high value is a cause for concern, as
toomany stalled transactions means
that user experience with the web
application is poor. For theSummary
descriptor, this measure will report the
total number of stalled transactons on
the target JVM.

Stalled transactions
response time - avg:

Indicates the average time
taken by the stalled
transactions of this pattern
to execute.

Msecs For theSummary descriptor, this
measure will report the average
response time of all stalled
transactions on the target JVM.

Stalled transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is stalling.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are stalled.
You can drill down from a stalled
transaction to know what is causing

Chapter 3: Moni toring Java Business Transactions

101

Measurement Description Measurement
Unit Interpretation

that transaction to stall. For the
Summary descriptor, this measure will
report the overall percentage of
transactions of this pattern on the
target JVM that is stalling.

Slow SQL
statements executed

Indicates the number of
slow SQL queries that
were executed by the
transactions of this pattern
during the last
measurement period.

Number For theSummary descriptor, this
measure will report the total number of
slow SQL queries executed by all
transactions to the target JVM.

Avg slow SQL
statement time

Indicates the average
execution time of the slow
SQL queries that were run
by the transactions of this
pattern.

Msecs If there are toomany slow transactions
of a pattern, youmay want to check
the value of this measure for that
pattern to figure out if query execution
is slowing down the transactions. Use
the detailed diagnosis of theSlow
transactions measure to identify the
precise slow transaction. Then, drill
down from that slow transaction to
confirm whether/not database queries
have contributed to the slowness.
Deep-diving into the queries will reveal
the slowest queries and their impact on
the execution time of the transaction.

Avg CPU time Indicates the average time
for which transactions of
this pattern were utilizing
the CPU.

Msecs Compare the value of this measure
across transaction patterns to
accurately identify the CPU-intensive
transaction patterns.

For theSummary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM used the CPU.

Note:

This measure is reported only under
the following circumstances:

Chapter 3: Moni toring Java Business Transactions

102

Measurement Description Measurement
Unit Interpretation

l The Enable Thread CPU Monitoring

flag of this test is set toYes;

l The target application server's JVM

implementation supports CPU time

monitoring of threads; to verify JVM

support for CPU timemonitoring,

use the procedure described in the

Verifying JVM Support for CPU

Time and Thread Contention

Monitoring.

Avg block time Indicates the average
duration for which
transactions of this pattern
were blocked and could
not execute.

Msecs If theAvg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not prolonged
blocking is causing transactions of that
pattern to slow down or stall.

For theSummary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM were blocked.

Note:

This measure is reported only under
the following circumstances:

l The Enable Thread Contention

Monitoring flag of this test is set to

Yes;

l The target application server's JVM

implementation supports thread

contentionmonitoring; to verify JVM

support for thread contention

monitoring, use the procedure

Chapter 3: Moni toring Java Business Transactions

103

Measurement Description Measurement
Unit Interpretation

described in the Verifying JVM

Support for CPU Time and Thread

ContentionMonitoring topic.

Avg wait time Indicates the average
duration for which
transactions of this pattern
were waiting before they
resumed execution.

Msecs If theAvg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not a very high
waiting time is what is causing the
transactions to slow down/stall.

For theSummary descriptor, this
measure will report the average time
for which all the transactions on the
target JVM were waiting.

Note:

This measure is reported only under
the following circumstances:

l The Enable Thread Contention

Monitoring flag of this test is set to

Yes;

l The target application server's JVM

implementation supports thread

contentionmonitoring; to verify JVM

support for thread contention

monitoring, use the procedure

described in the Verifying JVM

Support for CPU Time and Thread

ContentionMonitoring topic.

Total transactions
per minute

Indicates the number of
transactions of this pattern
that are executed per
minute.

Number For theSummary descriptor, this
measure will report the total number of
transactions that were executed per
minute. This is a good indicator of the
transaction processing ability of the

Chapter 3: Moni toring Java Business Transactions

104

Measurement Description Measurement
Unit Interpretation

target application server.

Error transactions
per minute

Indicates the number of
error transactions of this
pattern that are executed
per minute.

Number A very low value is desired for this
measure.

Compare the value of this measure
across transaction patterns to find that
pattern of transactions that is
experiencing errors frequently.

For theSummary descriptor, this
measure will report the total number of
error transactions that were executed
per minute.

3.2 Java Key Business Transactions Test
For any business-critical application, some transactions will always be considered key from the point
of view of user experience and business impact. For instance, in the case of a retail banking web
application, fund transfers executed online are critical transactions that have to be tracked closely for
delays / errors, as problems in the transaction will cost both consumers and the company dearly.
Using the Java Key Business Transactions test, administrators can perform focused monitoring
of such critical transactions alone.

For each transaction URL pattern configured for monitoring on a JVM node, this test reports the
count of requests for that transaction pattern, and the count and percentage of transactions of that
pattern that were slow / stalling / error-prone. Detailed diagnostics provided by the test highlight the
slow / stalled / error transactions of a pattern, and pinpoint the precise reason why that key
transaction slowed down / stalled / encountered errors - is it because of an inefficient database
query? is it because of a processing bottleneck on the JVM node? or is it owing to slow remote
service calls? This way, the test enables you to quickly detect inconsistencies in the performance of
your critical business transactions and accurately isolate its root-cause, so that you can fix the issues
well before users notice them.

Target of the Test : A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test :One set of results for each URL pattern configured for monitoring.

Test parameters:

Chapter 3: Moni toring Java Business Transactions

105

Parameter Description

Test Period How often should the test be executed.

Host The host for which this test is to be configured.

BTM Port Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node beingmonitored. If the JVM is beingmonitored in an agent-basedmanner, then
the btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.

URL Patterns Provide a comma-separated list of PatternName:URLPattern pairs to bemonitored.
ThePatternName can be any name that uniquely identifies the pattern. These
PatternNames will be the descriptors of this test. For the URLPattern, you can either
provide the exact URL to bemonitored , or can provide a pattern. For instance, if you
want to monitor requests to distinct and specific web pages - say, login.jsp and
payment.jsp of a web application - then you can specify the exact URL of these web
pages as yourURL PATTERNS. In this case your specification will
be,Login:/web/login.jsp,Payment:/web/payment.jsp. On the other hand, if you want
to monitor requests to all payment-related web pages in a web application - say,
payment.jsp, creditcardpayment.jsp, debitcardpayment.jsp, onlinepayment.jsp,
andmore - and you want themetrics to be grouped under a single head called
Payment, then you can specify a pattern instead of the exact URL. In this case, your
URL PATTERNS specification will bePayment:*payment*. The leading '*' in the
specification signifies any number of leading characters, while the trailing '*' signifies
any number of trailing characters. This means that the specification in our example will
track requests to all pages with names that contain the word payment. Your
URLPattern can also be *expr or expr* or *expr1*expr2* or expr1*expr2, etc.

Key Excluded
Patterns

By default, this test does not track requests to the following URL patterns:

*.ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.lwfn, *.ffil, *.fon, *.pfm, *.pfb, *.std,
*.pro, *.xsf, *.jpg, *.jpeg, *.jpe, *.jif, *.jfif, *.jfi, *.jp2, *.j2k, *.jpf, *.jpx, *.jpm, *.jxr,
*.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png, *.apng, *.mng, *.tiff, *.tif, *.xbm, *.bmp,
*.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv, *.mov, *.rm, *.ram,
*.swf, *.flv, *.ogg, *.webm, *.mp4, *.ts, *.mid, *.midi, *.rm, *.ram, *.wma, *.aac,
*.wav, *.ogg, *.mp3, *.mp4, *.css, *.js, *.ico, *.cur, /egurkha*

If required, you can remove one/more patterns from this default list, so that such
patterns aremonitored, or can appendmore patterns to this list in order to exclude them
frommonitoring.

Method Exec Cutoff
(MS)

From the detailed diagnosis of slow/stalled/error transactions, you can drill down and
perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which

Configurable parameters for the test

Chapter 3: Moni toring Java Business Transactions

106

Parameter Description

the transaction calls themethods. By configuring aMethod Exec Cutoff (MS), you can
make sure that methods that have been executing for a duration greater the specified
cutoff are alone listed when performing execution analysis. For instance, if you specify
5 here, then theExecution Analysis window for a slow/stalled/error transaction will
list only thosemethods that have been executing for over 5milliseconds. This way,
you get to focus on only thosemethods that could have caused the slowness, without
being distracted by inconsequential methods. By default, the value of this parameter is
set to 250ms.

SQL Execution
Cutoff (MS)

Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By configuring a SQL Execution
Cutoff (MS), you canmake sure that queries that have been executing for a duration
greater the specified cutoff are alone listed when performing query analysis. For
instance, if you specify 5 here, then for a slow/stalled/error transaction, theSQL
Queries window will display only those queries that have been executing for over 5
milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10ms.

Healthy URL Trace By default, this flag is set toNo. This means that eGwill not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed
diagnosis capability for healthy transactions as well, then set this flag toYes.

Max Healthy URLs
per Test Period

This parameter is applicable only if the Healthy URL Trace flag is set to ‘Yes’.
Here, specify the number of top-n transactions that should be listed in the detailed
diagnosis of the Healthy transactions measure, every time the test runs. By default,
this is set to 50, indicating that the detailed diagnosis of theHealthy transactions
measure will by default list the top-50 transactions, arranged in the descending order of
their response times.

Max Slow URLs per
Test Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theSlow transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theSlow transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Stalled URLs
per Test Period

Specify the number of top-n transactions that should be listed in the detailed diagnosis
of theStalled transactionsmeasure, every time the test runs. By default, this is set to
10, indicating that the detailed diagnosis of theStalled transactionsmeasure will by
default list the top-10 transactions, arranged in the descending order of their response
times.

Max Error URLs per Specify the number of top-n transactions that should be listed in the detailed

Chapter 3: Moni toring Java Business Transactions

107

Parameter Description

Test Period diagnosis of the Error transactions measure, every time the test runs. By
default, this is set to 10 , indicating that the detailed diagnosis of the Error
transactions measure will by default list the top-10 transactions, in terms of the
number of errors they encountered.

Show HTTP Status If you want the detailed diagnosis of this test to report the HTTP response code that
was returned when a transaction URLwas hit, then set this flag toYes. This will enable
you to instantly identify HTTP errors that may have occurred when accessing a
transaction URL. By default, this flag is set toNo, indicating that the HTTP status
code is not reported by default as part of detailed diagnostics.

Show Cookies An HTTP cookie is a small piece of data sent from awebsite and stored on the user's
computer by the user's web browser while the user is browsing. Most commonly,
cookies are used to provide a way for users to record items they want to purchase as
they navigate throughout a website (a virtual "shopping cart" or "shopping basket"). To
keep track of which user is assigned to which shopping cart, the server sends a cookie
to the client that contains a unique session identifier (typically, a long string of random
letters and numbers). Because cookies are sent to the server with every request the
client makes, that session identifier will be sent back to the server every time the user
visits a new page on the website, which lets the server know which shopping cart to
display to the user. Another popular use of cookies is for logging into websites. When
the user visits a website's login page, the web server typically sends the client a cookie
containing a unique session identifier. When the user successfully logs in, the server
remembers that that particular session identifier has been authenticated, and grants the
user access to its services. If you want to view and analyze the useful information that
is stored in such HTTP response cookies that a web server sends, then set this flag to
Yes. By default, this flag is set toNo, indicating that cookie information is not reported
by default as part of detailed diagnostics.

Show Headers HTTP headers allow the client and the server to pass additional information with the
request or the response. A request header is a header that contains more information
about the resource to be fetched or about the client itself. If you want the additional
information stored in a request header to be displayed as part of detailed diagnostics,
then set this flag toYes. By default, this flag is set toNo indicating that request
headers are not displayed by default in the detailed diagnosis.

Enable Thread CPU
Monitoring

If this flag is set toYes, then this test will additionally report the average time for which
the transactions of a pattern were utilizing the CPU resources. This will point you to
transaction patterns that are CPU-intensive, and will thus help you right-size your
JVMs. By default however, this test will not report the average CPU time of transaction
patterns. This is because, by default, the Enable Thread CPU Monitoring flag is set to
No for this test.

Chapter 3: Moni toring Java Business Transactions

108

Parameter Description

Enable Thread
Contention
Monitoring

If this flag is set toYes, then this test will additionally report the following:

l The average time for which the transactions of a pattern were waiting, before they

resumed execution;

l The average time for which the transactions of a pattern were blocked from

execution by another transaction;

If transactions of a pattern are found to bemuch slower than the rest or are stalling,
then the aforesaid metrics will help administrators determine what could have caused
the slowness - is it because the transactions were waiting for too long? or is it because
they were being blocked for too long?

By default however, this test will not report themetrics described above, because the
Enable Thread ContentionMonitoring flag is set toNo by default.

Advanced Settings To optimize transaction performance and conserve space in the eG database, many
restraints have been applied by default on the agent’s ability to collect and report
detailed diagnostics. Depending upon how well-tuned your eG database is and the level
of visibility you require into transaction performance, youmay choose to either retain
these default settings or override them. If you choose not to disturb the defaults, then
set the Advanced Settings flag toNo. If you want to modify the defaults, then set this
flag toYes.

POJOMethod
Tracing Limit and
POJO
Method Tracing
Cutoff Time

These parameters will appear only if the Advanced Settings flag is set to ‘Yes’.
Typically, if themonitoringmode of this test is set to Profiler , then, as part of the
detailed diagnostics of a transaction, eG reports the execution time of every POJO,
non-POJO, and recursive (i.e. methods that call themselves) method call that a JVM
nodemakes when processing that transaction. Of these, POJOmethod calls are the
most expensive, as they are usually large in number. To ensure that attempts made to
collect detailedmeasures related to POJOmethod calls do not impact the overall
responsiveness of themonitored transaction, eG, by default, collects and reports the
execution time of only the following POJOmethod calls:

l The first 1000 POJOmethod calls made by the target JVM node for that transaction;

(OR)

l The POJOmethod calls that weremade by the target JVM node within 10 seconds

from the start of themonitored transaction on that node;

Accordingly, the POJOMethod Tracing Limit is set to 1000 by default, and the POJO
Method Tracing Cutoff Time is set to 10 (seconds) by default. Of these two limits,

Chapter 3: Moni toring Java Business Transactions

109

Parameter Description

whichever limit is reached first will automatically be applied by eG for determining when
to stop POJO tracing. In other words, once a JVM node starts processing a
transaction, the agent begins tracking the POJOmethod calls made by that node for
that transaction. In the process, if the agent finds that the configured tracing limit is
reached before the tracing cutoff time is reached, then the agent will stop tracking the
POJOmethod calls, as soon as the tracing limit is reached. On the other hand, if the
tracing limit is not reached, then the agent will continue tracking the POJOmethod
calls until the tracing cutoff time is reached. At the end of the cutoff time, the agent will
stop tracking the POJOmethod calls. For instance, if the JVM nodemakes 1000
POJOmethod calls within say, 6 seconds from when it began processing the
transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJOmethod call,
and report the execution time of each of the 1000 calls alone. On the other hand, if the
JVM node does not make over 1000 POJOmethod calls till the 10 second cutoff
expires, then the eG agent continues tracking the POJOmethod calls till the end of 10
seconds, and reports the details of all those that were calls made till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you
want to impose on the agent and on the transaction, you can increase / decrease the
POJOMethod Tracing Limit and POJOMethod Tracing Cutoff Time specifications.

Non-POJOMethod
Tracing Limit

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, when reporting the detailed diagnosis of a transaction on a particular JVM
node, this test reports the execution time of only the first 1000 non-POJOmethod calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM nodemakes
for that transaction. This is why, the non-pojomethod tracing limit parameter is set to
1000 by default. If you want, you can change the tracing limit to enable the test to report
the details of more or fewer non-POJOmethod calls made by a JVM node. While a high
value for this parameter may take you closer to identifying the non-POJOmethod that
could have caused the transaction to slowdown on a particular JVM node, it may also
marginally increase the overheads of the transaction and the eG agent.

RecursiveMethod
Tracing Limit

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. A
recursivemethod is amethod that calls itself. By default, when reporting the detailed
diagnosis of a transaction on a particular JVM node, this test reports the execution time
of only the first 1000 recursivemethod calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM nodemakes for that transaction. This is why, the
RecursiveMethod Tracing Limit parameter is set to 1000 by default. If you want, you
can change the tracing limit to enable the test to report the details of more or fewer
recursivemethod calls made by a JVM node. While a high value for this parameter may
take you closer to identifying the recursivemethod that could have caused the
transaction to slowdown on a particular JVM node, it may alsomarginally increase the

Chapter 3: Moni toring Java Business Transactions

110

Parameter Description

overheads of the transaction and the eG agent.

Exception
Stacktrace Lines

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. As
part of detailed diagnostics, this test, by default, lists the first 10 stacktrace lines of
each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the
Exception Stacktrace Lines parameter is set to 10 by default. If required, you can have
this test display more or fewer stacktrace lines by overriding this default setting.

Included Exceptions This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a
transaction, such a transaction, by default, will not be counted as anError transaction
by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL
exceptions that have already been handled programmatically, occur. This can be
achieved by configuring a comma-separated list of these exceptions in the Included
Exceptions text box. Here, each exception you want to include has to be defined using
its fully qualified exception class name. For instance, your Included Exceptions
specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be included are
configured, then this test will count all transactions in which such exceptions are
captured as Error transactions.

Ignored Exceptions This parameter will appear only if the Advanced settings flag is set to ‘Yes’. By
default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

l All unhandled exceptions;

l Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled
exceptions (or handled SQL exceptions), as they may not pose any threat to the
stability of the transaction or to the web site/web application. To achieve this,
administrators can configure a comma-separated list of such inconsequential

Chapter 3: Moni toring Java Business Transactions

111

Parameter Description

exceptions in the Ignored Exceptions text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For
instance, your Excluded Exceptions specification can be as follows:
java.sql.SQLException,java.io.FileNotFoundException. Note that wild card
characters cannot be used as part of your specification. Once the exceptions to
be excluded are configured, then this test will exclude all transactions in which such
exceptions are captured from its count of Error transactions.

Ignored Characters This parameter will appear only if the Advanced Settings flag is set to ‘Yes’. By
default, eG excludes all transaction URLs that contain the ‘\’ character frommonitoring.
If you want eG to ignore transaction URLs with any other special characters, then
specify these characters as a comma-separated list in the Ignored Characters text box.
For instance, your specification can be: \\,&,~

Max Grouped URLs
per Measure Period

This parameter will appear only if the Advanced Settings flag is set to ‘Yes’.
This test groups URLs according to theMax URL Segments specification. These
grouped URLs will be the descriptors of the test. For each grouped URL, response time
metrics will be aggregated across all transaction URLs in that group and reported.

Whenmonitoring web sites/web applications to which the transaction volume is
normally high, this test may report metrics for hundreds of descriptors. If all these
descriptors are listed in the Layers tab page of the eGmonitoring console, it will
certainly clutter the display. To avoid this, by default, the test displays metrics for a
maximum of 50 descriptors – i.e., 50 grouped URLs alone – in the eGmonitoring
console, during every measure period. This is why, theMax Grouped URLs per
measure period parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eGmonitoring
console, the eG BTM follows the below-mentioned logic:

l Top priority is reserved for URL groups with error transactions. This means that eG

BTM first scans URL groups for error transactions. If error transactions are found in

50 URL groups, then eGBTM computes the aggregated response time of each of

the 50 groups, sorts the error groups in the descending order of their response time,

and displays all these 50 groups alone as the descriptors of this test, in the sorted

order.

l On the other hand, if error transactions are found in only one / a few URL groups –
say, only 20 URL groups – then, eG BTMwill first arrange these 20 grouped URLs in
the descending order of their response time. It will then compute the aggregated
response time of the transactions in each of the other groups (i.e., the error-free
groups) that were auto-discovered during the samemeasure period. These other

Chapter 3: Moni toring Java Business Transactions

112

Parameter Description

groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTMwill then pick the top-30 grouped
URLs from this sorted list.

In this case, when displaying the descriptors of this test in theLayers tab page, the
20 error groups are first displayed (in the descending order of their response time),
followed by the 30 ‘error-free’ groups (also in the descending order of their response
time).

At any given point in time, you can increase/decrease themaximum number of
descriptors this test should support by modifying the value of theMax Grouped
URLs per Measure Period parameter.

Max SQl Queries per
Transaction

This parameter will appear only if the Advanced Settings flag is set to ‘true’.
Typically, from the detailed diagnosis of a slow/stalled/error transaction on a JVM
node, you can drill down to view the SQL queries (if any) executed by that transaction
from that node and the execution time of each query. By default, eG picks the first 500
SQL queries executed by the transaction, compares the execution time of each query
with the SQL Execution Cutoff configured for this test, and displays only those queries
with an execution time that is higher than the configured cutoff. This is why, theMax
SQLQueries per Transaction parameter is set to 500 by default.

To improve agent performance, youmay want the SQL execution cutoff to be
compared with the execution time of a less number of queries - say, 200 queries.
Similary, to increase the probability of capturingmore number of long-running queries,
youmay want the sql execution cutoff to be compared with the execution time of a
large number of queries - say, 1000 queries. For this, you just need tomodify theMax
SQLQueries per Transaction specification to suit your purpose.

Timeout By default, the eG agent will wait for 1000milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can
change this timeout value, if required.

DD Frequency Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailedmeasures will be
generated every time this test runs, and also every time the test detects a problem.
You canmodify this frequency, if you so desire. Also, if you intend to disable the
detailed diagnosis capability for this test, you can do so by specifying none against
DD frequency.

Detailed Diagnosis Tomake diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be
configured to run detailed, more elaborate tests as and when specific problems are
detected. To enable the detailed diagnosis capability of this test for a particular server,

Chapter 3: Moni toring Java Business Transactions

113

Parameter Description

choose theOn option. To disable the capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be
available only if the following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Measurement Description Measurement
Unit Interpretation

All transactions Indicates the total number
of requests received for
transactions of this pattern
during the last
measurement period.

Number By comparing the value of this
measure across transaction patterns,
you can identify themost popular
transaction patterns. Using the
detailed diagnosis of this measure, you
can then figure out which specific
transactions of that pattern aremost
requested.

Avg response time Indicates the average time
taken by the transactions
of this pattern to complete
execution.

Secs Compare the value of this measure
across patterns to isolate the type of
transactions that were taking too long
to execute. You can then use the
detailed diagnosis of the All
transactions measure of that group to
know how much time each transaction
in that group took to execute. This will
lead you to the slowest transaction.

Healthy transactions Indicates the number of
healthy transactions of
this pattern.

Number

Healthy transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is healthy.

Percent To know which are the healthy
transactions, use the detailed
diagnosis of this measure.

Slow transactions Indicates the number of Number This measure will report the number of

Measures reported by the test:

Chapter 3: Moni toring Java Business Transactions

114

Measurement Description Measurement
Unit Interpretation

transactions of this pattern
that were slow during the
last measurement period.

transactions with a response time
higher than the configured Slow
Transaction Cutoff (MS). A high value
is a cause for concern, as toomany
slow transactions means that user
experience with the web application is
poor.

Slow transaction
response time

Indicates the average time
taken by the slow
transactions of this pattern
to execute.

Secs

Slow transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is currently slow.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are slow. You
can drill down from a slow transaction
to know what is causing the slowness.

Error transactions Indicates the number of
transactions of this pattern
that experienced errors
during the last
measurement period.

Number A high value is a cause for concern, as
toomany error transactions to a web
application can significantly damage
the user experience with that
application.

Error transactions
response time

Indicates the average
duration for which the
transactions of this pattern
were processed before an
error condition was
detected.

Secs The value of this measure will help you
discern if error transactions were also
slow.

Error transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is experiencing errors.

Percent Use the detailed diagnosis of this
measure to isolate the error
transactions. You can even drill down
from an error transaction in the detailed
diagnosis to determine the cause of the
error.

Stalled transactions Indicates the number of
transactions of this pattern
that were stalled during the
last measurement period.

Number This measure will report the number of
transactions with a response time
higher than the configured Stalled
Transaction Cutoff (MS). A high value

Chapter 3: Moni toring Java Business Transactions

115

Measurement Description Measurement
Unit Interpretation

is a cause for concern, as toomany
stalled transactions means that user
experience with the web application is
poor.

Stalled transactions
response time:

Indicates the average time
taken by the stalled
transactions of this pattern
to execute.

Secs

Stalled transactions
percentage

Indicates what percentage
of the total number of
transactions of this pattern
is stalling.

Percent Use the detailed diagnosis of this
measure to know which precise
transactions of a pattern are stalled.
You can drill down from a stalled
transaction to know what is causing
that transaction to stall.

Slow SQL
statements executed

Indicates the number of
slow SQL queries that
were executed by the
transactions of this pattern
during the last
measurement period.

Number

Slow SQL statement
time

Indicates the average
execution time of the slow
SQL queries that were run
by the transactions of this
pattern.

Secs If there are toomany slow transactions
of a pattern, youmay want to check
the value of this measure for that
pattern to figure out if query execution
is slowing down the transactions. Use
the detailed diagnosis of theSlow
transactions measure to identify the
precise slow transaction. Then, drill
down from that slow transaction to
confirm whether/not database queries
have contributed to the slowness.
Deep-diving into the queries will reveal
the slowest queries and their impact on
the execution time of the transaction.

Avg CPU time Indicates the average time
for which transactions of
this pattern were utilizing

Msecs Compare the value of this measure
across transaction patterns to
accurately identify the CPU-intensive

Chapter 3: Moni toring Java Business Transactions

116

Measurement Description Measurement
Unit Interpretation

the CPU. transaction patterns.

Note:

This measure is reported only under
the following circumstances:

l The Enable Thread CPU Monitoring

flag of this test is set toYes;

l The target application server's JVM

implementation supports CPU time

monitoring of threads; to verify JVM

support for CPU timemonitoring,

use the procedure described in the

Verifying JVM Support for CPU

Time and Thread Contention

Monitoring.

Avg block time Indicates the average
duration for which
transactions of this pattern
were blocked and could
not execute.

Msecs If theAvg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not prolonged
blocking is causing transactions of that
pattern to slow down or stall.

Note:

This measure is reported only under
the following circumstances:

l The Enable Thread contention

Monitoring flag of this test is set to

Yes;

l The target application server's JVM

implementation supports contention

monitoring of threads; to verify JVM

support for thread contention

Chapter 3: Moni toring Java Business Transactions

117

Measurement Description Measurement
Unit Interpretation

monitoring, use the procedure

described in the Verifying JVM

Support for CPU Time and Thread

ContentionMonitoring.

Avg wait time Indicates the average
duration for which
transactions of this pattern
were waiting before they
resumed execution.

Msecs If theAvg response time for any
transaction pattern is very high, you
may want to check the value of this
measure for that pattern. This will help
you figure out whether/not a very high
waiting time is what is causing the
transactions to slow down/stall.

Note:

This measure is reported only under
the following circumstances:

l The Enable Thread Contention

Monitoring flag of this test is set to

Yes;

l The target application server's JVM

implementation supports contention

monitoring of threads; to verify JVM

support for thread contention

monitoring, use the procedure

described in the Verifying JVM

Support for CPU Time and Thread

ContentionMonitoring.

Total transactions
per minute

Indicates the number of
transactions of this pattern
that are executed per
minute.

Number This is a good indicator of the
transaction processing ability of the
target application server.

Error transactions
per minute

Indicates the number of
error transactions of this
pattern that are executed
per minute.

Number A very low value is desired for this
measure.

Compare the value of this measure

Chapter 3: Moni toring Java Business Transactions

118

Measurement Description Measurement
Unit Interpretation

across transaction patterns to find that
pattern of transactions that is
experiencing errors frequently.

3.3 Detailed Diagnostics
By reporting detailed diagnostics on transaction responsiveness and errors, eG Enterprise not only
points you to the slow/stalled/error transaction URLs, but also reveals what could be causing the
slowness/errors.

Figure 3.2 reveals detailed diagnosis of the Slow transactions percentage measure of the Java
Business Transactions test.

Figure 3.2: Detailed diagnosis of the Slow transactions percentagemeasure of the Java Business
Transactions test

The detailed diagnosis reveals the individual transaction URLs in the grouped URL that users
requested for, the total response time of each transaction, the client (remote host) from which each
transaction request was received, the thread executing the transaction, and the query string of the
transaction URL.

The per-transaction response time displayed in Figure 3.2 includes the following:

l The total time for which the transaction request was processed by the target JVM and by other
BTM-enabled JVMs in the transaction path thereafter, until the time the response for that
transaction request was sent out by the target JVM;

Chapter 3: Moni toring Java Business Transactions

119

l The time taken by external calls (SQL query / HTTP / JMX / Java / JMS / SAP JCO / async) to
other JVMs or backends in the transaction path;

Additionally, the overall experience of the users with each transaction – whether it is slow, stalled, or
error - is also revealed in the REQUEST PROCESSING TIME column. Furthermore, the
HTTP headers, cookies, the HTTP status code returned by the monitored node in response to the
transaction request, and the type of HTTP method invoked by the transaction on that node are also
revealed. In addition, the following are displayed as part of detailed diagnostics:

l How much time each transaction used the CPU;

l How much time was every transaction blocked;

l How much time did each transaction spend waiting;

CPU-intensive transactions, blocked transactions, and waiting transactions of the chosen pattern
can thus be isolated. Also, for the Slow or Stalled transactions, this information will help you
determine the probable cause for the transaction slowness - is it because the transactions were
blocked for too long and could not execute? or is it because the transactions were waiting for too
long a time to continue execution?

The per-transaction statistics are also sorted in the descending order of the transaction response
time, starting with the slowest transaction and ending with the healthiest one. In the event that the
Avg response time of a grouped URL registers an abnormally high value, you can use these detailed
metrics to quickly and accurately identify the exact transaction in the group that is significantly
contributing to the poor user experience with the group.

Besides the above, the detailed diagnosis also includes two columns, namely - User Name and
Business Context.By default, these two columns will not display any values. This has been done so
that administrators can use these columns to display any additional information that they deem
useful for troubleshooting transaction slowness. For instance, administrators can configure
eG Enterprise to capture the name of the user who initiated each transaction and display the same in
the User Name column for every transaction URL in the Detailed Diagnosis page. Likewise,
administrators can also tweak eG Enterprise to capture and display information such as fetch type,
class name, method name, method signature, session attribute name, URL pattern, etc. against
Business Context. Such custom information can also be captured for specific transaction URLs or
URL patterns alone. To know how this can be achieved, refer to the Section 3.3.1 topic.

Detailed diagnostics are also available for the Slow transaction percentage, Stalled transaction
percentage, and Error transaction percentage measures of the Java Business Transactions test.

Chapter 3: Moni toring Java Business Transactions

120

With the help of these detailed measures, you will be able to quickly and accurately identify the slow,
stalled, and error transactions in a grouped URL.

Once a slow/stalled transaction is revealed, the next question is what is causing the transaction to
slowdown. Transaction responsiveness can be impacted by any of the following factors:

l An inefficient database query run by the target JVM node;

l In a multi-JVM environment, a time-consuming POJO / non-POJO method called by any JVM
node;

l A poorly responsiveness remote service call made by the target JVM node;

With the help of illustrated examples, the links below describe how drill-downs from the detailed
diagnostics enable accurate isolation of the root-cause of a transaction slowdown / errors in a
transaction.

l Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow
Transaction

l Detailed Diagnostics Revealing that a Slow JVMNode is Causing Transactions to Slowdown

l Detailed Diagnostics Revealing the Root-cause of an Error Transaction

l Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction
SlowedDown

3.3.1 Configuring User Name and Business Context

As part of detailed diagnosis, eG BTM displays two columns, namely - User Name and Business
Context. By default, these two columns will not display any values. This has been done so that
administrators can use these columns to display any additional information that they deem useful for
troubleshooting transaction slowness. For instance, administrators can configure eG Enterprise to
capture the name of the user who initiated each transaction and display the same in the User Name
column for every transaction URL in the Detailed Diagnosis page. Likewise, administrators can also
tweak eG Enterprise to capture and display information such as fetch type, class name, method
name, method signature, session attribute name, URL pattern, etc. against Business Context. Such
custom information can also be captured for specific transaction URLs or URL patterns alone.

To achieve this, follow the steps below:

1. Edit the exclude.props file in the <EG_BTM_INSTALL_DIR>\lib\btm directory.

2. In the file, locate the IC for APM Configuration section.

Chapter 3: Moni toring Java Business Transactions

121

3. In this section, first create an entry called IC_IDS and indicate for how many URLs/URL patterns you
want a User Name and/or Business Context to be displayed.

IC_IDS=1~|~2~|~3~|........|~N

For instance, if you want to configure a User Name and/or Business Context to be displayed for 4
patterns of URLs. then your IC_IDS specification will be as follows:

IC_IDS=1~|~2~|~3~|~4

4. Next, append an IC entry for every URL/URL pattern for which a User Name and/or a Business Context
is to be displayed. Each IC specification should be configured in the following format:

IC_<<URLIndex>>=<<Entry Description>>~|~<<Field Type>>~|~<<Fetch Type>>~|~<<Fully
Qualified Class Name>>~|~<<Method Name>>~|~<<Method Signature>>~|~<<Method Argument
Index>>~|~<<Fetch Once>>~|~<<Pass Request Object>>~|~<<Execute at Start of the
Transaction>>~|~<<Session Attribute Name>>~|~<<Matching URL Pattern>>

5. Let us take a look at each variable in the specification. <<URLIndex>> refers to the serial number that
identifies the URL/URL pattern to which the IC specification applies. This can be any number,
depending upon the total number of URLs/URL patterns for which IC specifications need to be defined.
For instance, if you want to display a user name and/or business context for 3 URLs/URL patterns,
then, you will have to insert three separate IC specifications here, each with the <<URLIndex>> 1, 2,
and 3, respectively, as shown below.

IC_1=
IC_2=
IC_3=

The <<URLIndex>> has to be sequentially incremented, as and when a new IC specification is
appended.

6. <<Entry Description>> can be a text string or a keyword that uniquely identifies the
URL/URL pattern to which the IC specification applies. For instance, if you are configuring an
IC specification for the URL pattern, */sports*, then you can configure sports as the <<Entry
Description>>.

Chapter 3: Moni toring Java Business Transactions

122

7. <<Field Type>> should indicate whether you want to fetch a User Name for the
URL/URL pattern or a BusinessContext. The <<Field Type>> should be either 1 or 2, where 1
denotesUser Name and 2 denotes BusinessContext.

8. <<Fetch Type>> refers to the approach using which you want to capture the User Name or Business
Context for a transaction URL. eG Enterprise prescribes three approaches to capturing the same:

o Method Argument - If you have written a Java method that takes input arguments for
capturing the user name or business context, then use theMethod Argument approach.

o Static Method - A Static method belongs to the class and not to the object(instance). A static
method can access only static data. It cannot access non-static data (instance variables). A
static method can call only other static methods and can not call a non-static method from it.
If you have written a static Java method for retrieving the user name or business context,
then use this approach.

o Session Attribute - If the User Name or Business Context is available as a session attribute,
then you can configure the eG agent to access that session attribute and retrieve the
required information.

The rest of the specification will change based on the approach you choose. In the specification, type 1
to choose the Method Argument approach, 2 to choose the Static Method approach, and 3 to pick the
Session Attribute approach.

9. <<Fully Qualified Class Name>> is applicable only if the <<Fetch Type>> is either 1 or 2. If so,
then specify the name of the class that contains the method definitions for fetching the User
Name or Business Context. If a packaged class is to be used, then specify the fully qualified
class name - eg., com/samples/MyProgram. If its not a packaged class, then simply specify the
class name - eg.,MyProgram.

10. <<Method Name>> refers to the method that should be invoked for capturing the User Name
or BusinessContext. Specify the name of that method here.

11. <<Method Signature>> is applicable only if the <<Fetch Type>> is 1. If the <<Method Name>>
configured takes one/more input arguments, then specify a comma-separated list of such arguments in
the place of <<Method Signature>>. Typically, if these input arguments are of primitive type, then you
can specify them as is . However, if they are objects or wrapper classes, then they should be specified
using the fully qualified object name or wrapper class name - eg., /java/lang/String.

On the other hand, if the <<Method Name>> configured does not take any input parameters, then enter
null here.

Chapter 3: Moni toring Java Business Transactions

123

12. <<Method Argument Index>> is applicable only if <<Fetch Type>> is 1. If the <<Fetch Type>>
is 2 or 3, then replace <<MethodArgumentIndex>> with none. For <<Fetch Type>> 1, in the
place of <<Method Argument Index>> , you need to define at what position of the method
invocation call, the information you need - i.e., whether User Name or Business Context -
resides. For instance, if the method invocation call is Method1(int userID, string userName),
then to fetch the User Name, the <<Method Argument Index>> will be 2. This is because, the
second argument, string userName, is the one that fetches the User Name information.

13. <<Fetch Once>> takes the value true or false. This is presently not handled. Nevertheless, you
need to set it to either true or false. The value you set will not in any way impact the functionality
or the output of themethod.

14. <<Pass Request Object>> is applicable only if <<FetchType>> is 2 - i.e., the static method
approach. The static method that you use to fetch the User Name or Business Context should
either take only one request object or no request objects. If the static method you use uses a
single request object, enter true in the place of <<Pass Request Object>>. If the method you
have written does not use any request objects, then specify false. If the <<Fetch Type>> is 1 or
3, then enter none.

15. <<Execute at Start of Trans>> is applicable only if <<Fetch Type>> is 2 or 3. If <<Fetch
Type>> is 1, then set this flag to none. On the other hand, if << Fetch Type>> is 2 or 3, then set
the value of this flag to true or false. For example, say, you want to fetch the value of User
Name from a session attribute and have hence set <<Fetch Type>> to 3. Let's say that the
session attribute captures the user name only when the transaction is in progress; not when it
begins. In this case, you have to set the <<Execute at Start of Trans>> to false, so that the user
name is obtained from the session attribute towards the end of the transaction. On the other
hand, if the session attribute captures the user name at the beginning of the transaction, set this
flag to true. In this case, the user name is obtained from the session attribute at the start of the
transaction itself.

16. <<Session Attribute Name>> is applicable only if <<Fetch Type>> is 3. If so, then specify the
name of the session attribute from which the User Name or Business Context has to be
fetched.

17. <<URL Pattern>> is applicable to all <<Fetch Types>>. Here, specify a comma-separated list
of URLs or URL patterns for which the User Name or Business Context has to be captured and
displayed as part of detailed diagnosis. The URL patterns can include wild card patterns - eg.,
/WebPoc,*Web*

18. A sample IC specification is as follows:

Chapter 3: Moni toring Java Business Transactions

124

IC_
1=MethodParams~|~1~|~1~|~com/egi/poc/UserName~|~isValidUser~|~null~|~1~|~true~|~false~|~tru
e~|~null~|~*/WebPoc*

Finally, save the file.

19. Then, restart the application.

Note:

Some of the limitations of each of the approaches are as follows:

Method Argument Approach

l Not possible to get the argument values of predefinedmethods.

l Not possible to capture all the argument values of amethod.

Static Method Approach

l Not possible to get the return value of private staticmethods.

l Not possible to get the output of staticmethods that havemore than one parameter.

Session Attribute Approach

Not possible to get the session value if the response is committed at the end of the transaction.

3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the
Reason for a Slow Transaction

Let us consider the example of a web application that has been deployed on the Oracle WebLogic
server, Address-Validation-Service1:7001. Users of the web application complained that every time
they tried to browse the LanguageService web page on the web application, the response was very
poor. Using eG’s Java Business Transactions test of the Oracle WebLogic server,Address-
Validation-Service1:7001, you can promptly capture this anomaly! As you can see in Figure 1 below,
the Java Business Transactions test has accurately captured and reported that the Slow
transactions percentage for the /cms/LanguageService.jsp is 100%. This means that 100% of the
requests for the LanguageService.jsp transaction were serviced slowly (see Figure 3.3)!

Chapter 3: Moni toring Java Business Transactions

125

Figure 3.3: The Layers tab page indicating that all requests for /Easykart/PaymentPage.jsp were slow

To know which request received the slowest response, click the DIAGNOSIS icon against the Slow
transactions percentage measure in 3.3.2. Figure 3.4 will then appear listing all the transaction
requests that were slow, the time at which each request was sent, the total response time of every
request, the client fromwhich the request was received, the query string of the transaction URL, and
more.

Figure 3.4: Detailed Diagnosis of the Slow transactions percentagemeasure

Since the requests are arranged in the descending order of their response time, a quick look at the
detailed diagnostics will lead you to the precise request that is the slowest. But, why is response to
this request slow? To answer this question, click the ‘magnifying glass’ icon against Slow in n the
slowest request (i.e., the topmost request in Figure 3.4).

Figure 3.5 will then appear revealing the cross-application flow of the slow transaction. This flow
diagram clearly reveals the following:

l The JVMs and backends through which the transaction travelled;

l The time for which the transaction request was processed at each BTM-enabled JVM; note that
this time will not be computed for JVMs that are in the transaction path, but are not
BTM-enabled and those that are BTM-enabled but are not managed by eG;

l The exit calls made by each BTM-enabled node to another node as part of the transaction's
journey, the time consumed by each exit call,and the number of times each type of call wasmade;

Chapter 3: Moni toring Java Business Transactions

126

the following exit calls are supported by eG BTM:

o DatabaseQuery

o HTTP

o Web service

o JMS

o LDAP

o RMI

o Javamail API

o EJB

o JSF (Java Server Faces)

o Runtime

Note that the EJB exit call is supported only for JBoss, WebLogic, and WebSphere
nodes.

Figure 3.5: Cross-application transaction flow

Note:

Chapter 3: Moni toring Java Business Transactions

127

l If a BTM-enabled node appears 'grayed out' in the cross-application transaction flow, it
denotes that eG BTM could not collect detailed diagnostics for that node. The reasons for this
could be either or both of the following:

l Transaction responsiveness on the 'grayed out' node was either healthy or was only slightly
slow, and hence, did not appear in the list of Top-N slow transactions.

l Slow data transmission from eG agent to manager;

l If a JVM node makes a JMS call to a messaging server, then. in the transaction topology, that
messaging server will be identified by the name of the messaging service provider and the
name of the exact queue/topic that is managing the JMS request. If a JVM node makes a
SQL query call on a database server, then the details displayed for that database server in the
transaction topology depends upon whether/not that database server is managed by
eG Enterprise. If the database server is not managed by eG Enterprise, then such a database
server will be represented in the topology using the server type (whether Oracle, Microsoft
SQL etc.) and the name of the database that was accessed by the SQL query. To know the IP
and port number of the unmanaged database server, you can drill-down from the Database
queriescall in the topology. On the other hand, if the database server in question is being
monitored by eG Enterprise, then such a server will be represented in the topology using the
server type, nick name, port number, and the database name. Additionally, the SID will be
displayed in case of an Oracle database server, and the instance name will be displayed in
case of an instance-basedMicrosoft SQL server.

l EJB calls from a client and to a server on the same host will not be captured by eG BTM, and
will hence not be displayed in the cross-application transaction topology.

l Sometimes, empty nodes – i.e., nodes without any details – will be visible in the cross-
application transaction flow topology. Likewise, the time spent on certain external calls may
also not be displayed in the topology. This is owing to inconsistencies in the collection of
detailed diagnostics.

Using conventional color codes and intuitive icons, the transaction flow chart precisely pinpoints
where the transaction slowed down. In the case of Figure 3.5 above, from the color-coding it is clear
that the Database Query executed by the Oracle WebLogic server – Address- Validation-
Service1:7001 - is taking a long time for execution. The question now is which query is this. To
determine that, click onDatabase Query in Figure 3.5.

Drilling down from Database Query in Figure 3.5 automatically opens the list of SQL Queries
executed by the slow transaction in question (see Figure 3.6). The execution time of each query and
what percentage of the total response time of the transaction each query is consuming will be
displayed here. From Figure 3.6, it is evident that a SELECT DISTINCT specials. . . query is taking

Chapter 3: Moni toring Java Business Transactions

128

over 19000milliseconds for execution – this is apparently 97% of the total response time of the target
transaction. This time-consuming query is what is causing the transaction to slow down. To view the
complete query, click on that query in the SQL Queries list of Figure 3.6. The detailed query will
then be displayed in theQuery section of Figure 3.6.

Figure 3.6: Analyzing the slow query

This way, using a short sequence of mouse clicks, you have zeroed- in on the source of the
transaction slowness.

The TRANSACTION SNAPSHOT section in Figure 3.5 leads you to the same root-cause, without
requiring any clicks! The details provided by this section are as follows:

l User Experience: The user experience with the LanguageService transaction; in our example,
this is Slow

l Execution Time: The total response time of the LanguageServicetransaction;

l Slow Segment:Where exactly the LanguageService transaction slowed down;

From the Slow Segment display, it is evident that a database query executed by the
LanguageService.jsp transaction on the Customers-DB database took over 19000 millisecs for

Chapter 3: Moni toring Java Business Transactions

129

execution, thereby slowing down the entire transaction! This corroborates our findings from the
cross-application transaction flow and the subsequent query analysis.

Now, click on the down-arrow button at the bottom tip of the TRANSACTION SNAPSHOT section
(as indicated by Figure 3.5). Doing so will reveal a tier-wise breakup of the transaction response time
(see Figure 3.7). This way, you can quickly compare response time across tiers, and accurately
isolate where the bottleneck lies – in this case, it is in the database queries.

Figure 3.7: Tier-wise response time breakup

To close the tier-wise breakup, click on the up arrow button indicated by Figure 3.7.

You can even close the transaction snapshot pop-up if you want to by clicking on the button
alongside the title TRANSACTION SNAPSHOT (as indicated by Figure 3.7).

Let us now revisit the cross-application flow diagram of the LanguageService transaction. You can
use the top-down slider at the bottom, left corner of the flow diagram (as indicated by Figure 3.5) to
zoom your diagram in and out.

Moreover, by default, the time spent by the transaction at every point cut is reported in milliseconds
in the flow diagram. You can reconfigure the flow diagram to express the time spent as a percentage
of total transaction response time instead. For this, first click the button at the right, top corner of the
flow diagram. The options depicted by 3.3.2 will then appear.

Chapter 3: Moni toring Java Business Transactions

130

Figure 3.8: Expressing the time spent at every point cut as a percentage of total transaction response time

Uncheck the Time spent in ms check box in 3.3.2 and select the Time spent in % check box to
make sure that the response time at every point cut is displayed as a percentage of total transaction
response time. The percentage will enable you to better judge where the transaction spent
maximum time.

You can also choose the Component type or Component name options in 3.3.2 to have the
component type only or the component name only (as the case may be) displayed for each of the
nodes in the cross-application transaction flow. By default, both component type and name will be
displayed for each node.

Let us now explore the Summary section of the call drill down. For that, click the Summary option
in the left panel of Figure 3.6. Figure 3.9 will appear.

Chapter 3: Moni toring Java Business Transactions

131

Figure 3.9: A summary of the performance of the JVM node, Address-Validation-Service1:7878

The Summary section provides a quick summary of the performance of the monitored transaction,
LanguageService.jsp, on the JVM node that executed the slow database query – i.e., the Oracle
WebLogic server, Address-Validation-Service1:7001. .

From the Summary, you can infer that the LanguageService transaction was processed for a total
of 19814 milliseconds on Address-Validation-Service1:7001. If you take a look at the transaction
topology now (see Figure 3.10), you will be able to understand that this processing time is the sum of
the following:

l The time for which the transaction was processed internally by the Address-Validation-
Service1:7001 server – 151ms

l The time taken by Address-Validation-Service1:7001 to execute a database query for
the transaction and retrieve results – 19339ms

l The time taken by Address-Validation-Service1:7001 to make a JMS call to a messaging
server and pull data from themessage queueOrderQueue – 319ms

l The time taken by Address-Validation-Service1:7001 to make a SAP JCO call to a SAP
server – 5ms

Chapter 3: Moni toring Java Business Transactions

132

Figure 3.10: How the total processing time of the transaction on Address-Validation-
Service1:7001 is computed

The Breakup of Processing Time section in Figure 3.9 clearly indicates how the Total
Processing time is computed. From this section, you can also glean where the slowdown
originated – within the JVM node? Or when making external calls from the JVM node? In the case of
our example, the problem is with the remote calls.

Next, take a look at the URL displayed in the Summary section. As you can see, the URL is that of the
Business Transaction that was zoomed into - i.e., LanguageService.jsp. However, sometimes, while the
Business Transaction may continue to be LanguageService.jsp, the URL could be different. This is
because, the URL refers to the URL that was hit when an HTTP call is made by one JVM node to another.
This means that when accessing the LanguageService.jsp web page on Address-Validation-Service1:7001, if
that web page had hit another URL, then that URL will be displayed against URL.

Additionally, the Summary section also reports the Query String of the URL, the Session ID of
the session in which the transaction is processed on the Address-Validation-Service1:7878 server,
and Thread Name of the thread that processed the transaction.

The Summary section also differentiates between the overall User Experience of a transaction
and the Java Processing Status of that transaction on a particular JVM node. In the case of our
example, the Summary section clearly reveals that the User Experience of the transaction is
Slow. At the same time, eG has also detected that the slowness did not occur because of a
processing bottleneck on the Address-Validation-Service1:7001 server. This is why, eG maintains
that the Java Processing Status of the Address-Validation-Service1:7001 server is Healthy.

Chapter 3: Moni toring Java Business Transactions

133

3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing
Transactions to Slowdown

Let us consider the example of a web application, where the following transactions are slow.

Figure 3.11: Detailed diagnosis of the Avg response timemeasure

Let us focus on the slow /Easykart/ProductStatus.jsp in Figure 3.11. To zoom into the transaction,
click on it. The flow of the ProductStatus.jsp transaction will then be displayed as depicted by Figure
3.12.

Figure 3.12: The cross-application flow of the ProductStatus.jsp transaction

Chapter 3: Moni toring Java Business Transactions

134

From the transaction flow, it is evident that the transaction slowed down on the Oracle WebLogic
server, Merchandising-Engine1:7001. The question now is what type of processing on the Oracle
WebLogic server delayed the transaction in question. A closer look at the WebLogic server icon in
Figure 3.12 will answer this question as well! As indicated by Figure 3.12, the Merchandising-
Engine1:7001 server processed Java methods synchronously for 2107 milliseconds and
asynchronously for over 6000 milliseconds. Comparing the two execution times points the needle of
suspicion towards the synchronous Java call made by the WebLogic server. If so, which exact Java
method is slowing down the transaction? To identify the same, let us zoom into theWebLogic server
by clicking on it in Figure 3.12. An intermediate window depicted by Figure 3.13 will then appear.

Figure 3.13: An intermediate modular window

This intermediate window will appear only under the following circumstances:

l If a node receives and processes multiple synchronous / asynchronous requests from
one/more external sources; and/or

l If one/more asynchronous threads are invoked by a node in response to requests to it;

Typically, from this window, you will be able to quickly determine the number of synchronous and
asynchronous calls that a particular JVM node processed. In the case of our example, we can clearly
infer from the intermediate window that the Merchandising- Engine1:7001 server executed a
synchronous and an asynchronous call.

Chapter 3: Moni toring Java Business Transactions

135

For each synchronous and asynchronous call, this window will also display the self execution time
and total execution time of that call. Self execution time is the time it took for the
synchronous/asynchronous call to perform Java processing alone. Total execution time is the time
taken by the synchronous/asynchronous call to perform both Java and non-Java (eg., HTTP,
Database, etc.) processing. By comparing the self and total execution times across calls, you will be
able to accurately identify the exact call that took too long to execute, the call type, and whether such
a call was slow in processing Java or non-Java. Accordingly, we can clearly deduce from the
intermediate window of Figure 3.13 that the synchronous call made by Merchandising-
Engine1:7001 server in our example performed Java processing for a much longer time than
desired. To be able to precisely identify the exact Java method that caused the delay, click on the
synchronous call in Figure 3.13. Figure 3.14 will then appear.

Figure 3.14: The call graph of the synchronous call

Figure 3.14 provides a detailed Execution Analysis of the synchronous call. As part of this
analysis, a pie chart is presented that quickly reveals the percentage of time the WebLogic server in
our example spent processing the server’s Java code and making external JMS / SAP JCO / SQL
query calls. The table below the pie chart in Figure 3.14 lists the exact methods that performed Java
processing or made the remote calls. A quick look at this table reveals that the Java method,
org.apache.jsp.BrowseProducts_jsp_jspService..., invoked a series of child methods and external
calls, which together took over 25000 milliseconds to execute. However, the method itself took only

Chapter 3: Moni toring Java Business Transactions

136

around 1 millisecond to execute (self execution time)! Browsing the child methods called by the
parent method reveals that the transaction spent over 90% of its time on the HTTP call,
'sun.net.www.protocol..'. This means that the 'sun.net.www.protocol..' is the method that is delaying
the BrowseProducts.jsp transaction. To know the exact URL that this HTTP call hit, move your
mouse pointer over the call in Figure 3.14.

Figure 3.15: The URL hit by an HTTP call

Figure 3.15 will then appear revealing that the /EasyKart/SearchDetails.jsp was the URL that was
hit by the HTTP call.

This way, eG BTM enables you to diagnose the root-cause of slowness in your synchronous and
asynchronous calls using just a few mouse clicks!

3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction

The detailed diagnosis of the Error transactions measure reveals the complete URLs of the error
transactions of a particular business transaction pattern. The total response time of each error
transaction and the time at wihich every such transaction was requested can be ascertained from
the detailed diagnosis. To zoom into the nature of the error and where it occurred, click on the
‘magnifying glass’ icon against the corresponding ‘Error’ icon in the TRANSACTION USER
EXPERIENCE column of Figure 3.16.

Chapter 3: Moni toring Java Business Transactions

137

Figure 3.16: The detailed diagnosis of the Error transactions measure

3.3.4 will then appear, which will chart the entire path of the error transaction end-to-end. Using
conventional color-codes, this visual representation will accurately pinpoint where the error has
occurred.

Figure 3.17: The error transaction path revealing where the error has occurred

In the example of 3.3.4 above, the error seems to have occurred on the Shipping-Engine1:7001
(Oracle WebLogic) server being monitored. To know what the error is, click on the Shipping-
Engine1:7001 server in 3.3.4.

Figure 3.18 that appears next opens an Error Details section, which displays the complete details
of the error.

Chapter 3: Moni toring Java Business Transactions

138

Figure 3.18: Error details

3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason
Why a Transaction Slowed Down

According to Figure 3.19 below, slowness has been detected in 9 transactions of the pattern,
/Easykart/Login.jsp. To know the exact URLs of the slow transactions, click on the ‘magnifying glass’
icon against Slow transactions in Figure 3.19.

Chapter 3: Moni toring Java Business Transactions

139

Figure 3.19: The Layers tab page revealing that 100% of the transactions of the pattern
/zapstore/returnProduct are slow

Figure 3.20 will then appear listing the slow transactionsURLs. To drill down to the source of the
slowness of any of these transactions, click on the ‘magnifying glass’ icon alongside the ‘Slow’ icon of
that transaction.

Figure 3.20: Detailed diagnosis listing the slow transactions of the pattern /zapstore/returnProduct

Chapter 3: Moni toring Java Business Transactions

140

Figure 3.21 will then appear depicting how the transaction flows. FromFigure 3.21, it is clear that a
Web service call made by theOracleWebLogic server, Shipping-Engine1:7001, to a delivery
intercept service in the backend is slowing down the transaction.

Figure 3.21: Cross-application transaction flow depicting that the problem is with theWeb Service call

To know more about this call, click theWeb Service icon in Figure 3.21. A Remote Call Details
window will then open listing all the remote callsmade by the Shipping-Engine1:7001 server. From
this window you can infer that theWeb Service call made to the delivery intercept service is
consuming nearly 75% of the transaction execution time. As you can see, a few quickmouse clicks
from a Slow transaction in Figure 3.20 has lead you to the precise web service call that is delaying
the transaction.

Chapter 3: Moni toring Java Business Transactions

141

Figure 3.22: List of remote service calls made by the Shipping-Engine1:7001 server

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	1.1 The eG Java Business Transaction Monitor (BTM)
	1.2 Pre-requisites for Java Business Transaction Monitoring Using eG Enterprise
	1.3 How does the eG Java BTM Work?
	1.4 How does the eG Java BTM Communicate with the eG Agent?
	1.5 Performance Overhead of the eG Java Business Transaction Monitor

	Chapter 2: Installing and Configuring eG Java BTM
	2.1 Installing eG Java BTM on a Generic JVM Node
	2.1.1 BTM-Enabling a Generic JVM Node Running on a Windows Platform
	2.1.2 BTM-Enabling a Generic JVM Node Running on a Unix Platform

	2.2 Installing eG Java BTM on an Apache Tomcat Server
	2.2.1 BTM-Enabling a Tomcat Server Running on a Windows Platform
	2.2.2 BTM-Enabling a Tomcat Server Running on a Unix Platform

	2.3 Installing eG Java BTM on an IBM WebSphere
	2.3.1 BTM-Enabling a WebSphere Server Running on a Windows Platform
	2.3.2 BTM-Enabling a WebSphere Server Running on a Unix Platform

	2.4 Installing eG Java BTM on an Oracle WebLogic Server
	2.4.1 BTM-Enabling a WebLogic Server Running on a Windows Platform
	2.4.2 BTM-Enabling a WebLogic Server Running on a Unix Platform

	2.5 Installing eG Java BTM on GlassFish
	2.5.1 BTM-Enabling a GlassFish Server Running on a Windows Platform
	2.5.2 BTM-Enabling a GlassFish Server Running on a Unix Platform

	2.6 Installing eG Java BTM on JBoss EAP
	2.6.1 BTM-Enabling a JBoss EAP Server Running on a Windows Platform
	2.6.2 BTM-Enabling a JBoss EAP Server Running on a Unix Platform

	2.7 Installing eG Java BTM on JBoss WildFly
	2.7.1 BTM-Enabling a JBoss WildFly Server Running on a Windows Platform
	2.7.2 BTM-Enabling a JBoss WildFly Server Running on a Unix Platform

	2.8 Installing eG BTM on a Multi-Server SAP Web Application Server Instance

	Chapter 3: Monitoring Java Business Transactions
	3.1 Java Business Transactions Test
	3.2 Java Key Business Transactions Test
	3.3 Detailed Diagnostics
	3.3.1 Configuring User Name and Business Context
	3.3.2 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction
	3.3.3 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown
	3.3.4 Detailed Diagnostics Revealing the Root-cause of an Error Transaction
	3.3.5 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down

	About eG Innovations

