
Extending the Monitoring Capabilities of eG

Enterprise

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice.
No part of this document may be reproduced or disclosed to others without the prior permission
of eG Innovations Inc. eG Innovations Inc. makes no warranty of any kind with regard to the
software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 2012, Windows 2016, Windows 7, Windows 8
and Windows 10 are either registered trademarks or trademarks of Microsoft Corporation in
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Copyright

©2018 eG Innovations Inc. All rights reserved.

Table of contents
CHAPTER 1: INTRODUCTION 1

1.1 System Requirements 2

1.2 Licensing 2

CHAPTER 2: ADDING/MODIFYING TESTS USING THE INTEGRATION CONSOLE 3

2.1 Adding a Custom Test 4

2.1.1 Adding a Custom Performance Test 4

2.2 Adding a Custom Configuration Test 19

2.2.1 Adding a Descriptor-based Configuration Test 19

2.3 Test Generator API 26

2.3.1 System Requirements 27

2.3.2 Summary of Methods 27

2.4 Adding a Script/Batch File-based Test 41

2.5 Adding an SQLQuery/Stored Procedure-based Test 50

2.5.1 Using a SQL Query 50

2.5.2 Using Stored Procedure 55

2.6 Adding a Perfmon-based Test 62

2.7 Adding an SNMP-based Test 68

2.7.1 Adding a Non-Descriptor-Based SNMP Test 69

2.8 Adding a JMX-based Test 86

2.8.1 Enabling JMX Support for the JRE of the Target Application 87

2.8.2 Adding a New Jmx Test 100

2.8.3 Modifying/Deleting Tests Added Using the Integration Console 119

2.9 Adding Help Pages for the New Test 125

2.9.1 Creating New Help Pages Using the Integration Console 125

2.9.2 Uploading Help Pages that Pre-exist to the eGManager 134

CHAPTER 3: ADDING/MODIFYING LAYERS USING THE INTEGRATION CONSOLE 135

3.1 Adding a New Layer and Associating Tests with the User-Defined Layer 135

3.2 Associating Tests with a Pre-defined Layer 139

CHAPTER 4: ADDING/MODIFYINGNEW COMPONENT TYPES USING THE INTEGRATION
CONSOLE 142

4.1 Creating a New Component-type Using the Integration Console 142

4.2 Building a Layer Model for a New Component Type 146

4.3 Associating/Disassociating Tests from aNew Component Type 149

CHAPTER 5: BACKINGUP AND RESTORING THE CONFIGURATION OF EGENTERPRISE 153

Table of Figures
Figure 2.1: Selecting the Test option from the Integration Console tile 5

Figure 2.2: List of user-defined tests that pre-exist 5

Figure 2.3: A message box stating that the test name should end with “_ex” 6

Figure 2.4: Specifying the inputs corresponding to a new Custom test 6

Figure 2.5: Duplicating a test 7

Figure 2.6: The Parameter tab page 8

Figure 2.7: Adding a new test parameter 8

Figure 2.8: The Measure tab page indicating that measures are yet to be configured for the MsFileTest_ex 11

Figure 2.9: Adding a new measure 11

Figure 2.10: A message box requesting you to confirm whether/not you want to add more measures for the
MsFileTest_ex 13

Figure 2.11: Adding the second measure of the MsFileTest_ex 13

Figure 2.12: Specifying a test’s implementation 14

Figure 2.13: Uploading the class file to the eGmanager 14

Figure 2.14: Viewing the measures of the MsFileTest_ex 15

Figure 2.15: Configuring the thresholds for a measure of the MsFileTest_ex 16

Figure 2.16: Configuring detailed diagnosis for the MsFileTest_ex 16

Figure 2.17: The Detailed Diagnosis tab page 17

Figure 2.18: Configuring detailed diagnosis for the File_locks_count measure of the MsFileTest_ex 18

Figure 2.19: A summary of the detailed diagnosis specification of the MsFileTest_ex 18

Figure 2.20: Specifying the detailed diagnosis implementation 19

Figure 2.21: Adding a descriptor-based configuration test 20

Figure 2.22: Specifying the parameters of the new test 20

Figure 2.23: Configuring the first measure for the configuration test 21

Figure 2.24: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex
test 21

Figure 2.25: Adding the second measure of the NetShare_cf_ex test 21

Figure 2.26: Generating a test 22

Figure 2.27: Adding a new non-descriptor-based test 23

Figure 2.28: Viewing the details of the non-descriptor-based test 24

Figure 2.29: Clicking the Add New Measure button to add a new measure for the NetShareCount_cf_ex test 24

Figure 2.30: Configuring the No_of_share_folders measure of the NetShareCount_cf_ex test 24

Figure 2.31: A message box requesting your confirmation to continue adding measures for the NetShareCount_
cf_ex test 25

Figure 2.32: Generating the non-descriptor-based test 25

Figure 2.33: Architecture of eG’s test generator API 26

Figure 2.34: Providing the details of the new test of type Script/Batch File 42

Figure 2.35: The Parameter tab page of the DiskSpaceTest_ex 43

Figure 2.36: The Measure tab page of the DiskSpaceTest_ex 43

Figure 2.37: Specification of a measure (PercentUtil) of the DiskSpaceTest_ex 44

Figure 2.38: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex
test 45

Figure 2.39: Generating a test of type Script/Batch File 45

Figure 2.40: Specifying the threshold values of the measures of the DiskSpaceTest_ex 50

Figure 2.41: Providing the new test details 51

Figure 2.42: Modifying the details of the SqlTest_ex 52

Figure 2.43: The Measure tab page reporting that no measures have been configured for the SQL query-based
test 52

Figure 2.44: Adding the CurrentUsers measure for the SQL query-based test 53

Figure 2.45: Specifying the Sql query associated with the SqlTest_ex 54

Figure 2.46: Specifying the threshold values of the CurrentUsers measure 55

Figure 2.47: Providing the details of the SQL stored procedure-based test 56

Figure 2.48: Adding a new test parameter for the SQL stored procedure-based test 57

Figure 2.49: Reviewing the parameter specification of the SQL stored procedure-based test 57

Figure 2.50: The Measure tab page indicating that no measures have been configured yet for the SQL stored pro-
cedure-based test 58

Figure 2.51: Adding the Avg_cpu_util measure of the SQL stored procedure-based test 58

Figure 2.52: Specifying the stored procedure associated with the Ag_cpu_util measure 59

Figure 2.53: Specifying the threshold values of the Avg_cpu_util measure 62

Figure 2.54: Adding a new test of type Perfmon 64

Figure 2.55: The Parameter tab page that appears when configuring a test of type Perfmon 64

Figure 2.56: The Measure tab page indicating that no measures have been configured yet for the Perfmon Test 65

Figure 2.57: Specification of the first output (Privileged_Time) of the ProcessorTest_ex of type Perfmon 65

Figure 2.58: The Add Counters dialog box 66

Figure 2.59: Specifying the object and instance names associated with the measures 66

Figure 2.60: Configuring the implementation of the Perfmon test 67

Figure 2.61: The performance object associated with our example 67

Figure 2.62: Specifying the threshold values for the measures of the ProcessorTest_ex 68

Figure 2.63: Adding a new test of type Snmp 70

Figure 2.64: Viewing a summary of the details of the BaySwitchTest_ex 70

Figure 2.65: Specification of the No_of_services measure for the BaySwitchTest_ex 71

Figure 2.66: A portion of the MIB tree of the Bay switch 72

Figure 2.67: The MIB Browser 74

Figure 2.68: Specifying the full path to the MIB file to be uploaded 74

Figure 2.69: The MIB Files list displaying the newly uploaded MIB file 75

Figure 2.70: Expanding the MIB tree to figure out the OID of the No_of_services measure 76

Figure 2.71: Generating the test of type SNMP 76

Figure 2.72: Configuring thresholds for the non-descriptor-based SNMP test newly created 77

Figure 2.73: Adding a descriptor-based test of type SNMP 78

Figure 2.74: Viewing the default parameters of the TuxedoDomainTest_ex 79

Figure 2.75: The Measure tab page indicating that no measures have been configured yet for the descriptor-
based SNMP test 79

Figure 2.76: Adding the Curr_machines measure to the eG Enterprise system 80

Figure 2.77: A portion of the MIB for the Tuxedo domain server 81

Figure 2.78: Adding the Curr_servers measure to the eG Enterprise system 84

Figure 2.79: Configuring a descriptor-based TuxedoDomainTest_ex 85

Figure 2.80: Configuring thresholds for the measures of the descriptor-based SNMP test 86

Figure 2.81: Selecting the Properties option 91

Figure 2.82: The Properties dialog box 91

Figure 2.83: Deselecting the ‘Use simple file sharing’ option 92

Figure 2.84: Clicking the Advanced button 93

Figure 2.85: Verfying whether the Owner of the file is the same as the application Owner 93

Figure 2.86: Disinheriting permissions borrowed from a parent directory 94

Figure 2.87: Copying the inherited permissions 95

Figure 2.88: Granting full control to the file owner 96

Figure 2.89: Scrolling down the jmxremote.password file to view 2 commented entries 97

Figure 2.90: The jmxremote.access file 98

Figure 2.91: Uncommending the ‘controlRole’ line 98

Figure 2.92: Appending a new username password pair 99

Figure 2.93: Assigning rights to the new user in the jmxremote.access file 100

Figure 2.94: Adding a new JMX test 101

Figure 2.95: Viewing the default parameters of the Jmx test 102

Figure 2.96: Adding a new measure for the new Jmx test 103

Figure 2.97: Configuring the auto-discovery of MBeans 104

Figure 2.98: Selecting a domain for MBean discovery 105

Figure 2.99: Adding the Heap_memory_used measure of the Jmx test using the MBean auto-discovery method 107

Figure 2.100: Selecting the option to load MBeans from a file 110

Figure 2.101: Browsing for the file and uploading it 110

Figure 2.102: The path to which the MBean file is uploaded being displayed against Path of the file 111

Figure 2.103: Configuring the Heap_memory_used measure by loading MBeans from a file uploaded to the eG
manager 112

Figure 2.104: Using an existing MBean file 113

Figure 2.105: Selecting a domain from the domains discovered from an existing MBean file 113

Figure 2.106: Adding the Heap_memory_used measure by discovering domains from an existing MBean file 114

Figure 2.107: Configuring the Heap_memory_used measure manually 115

Figure 2.108: Jconsole 116

Figure 2.109: Drilling down to the ‘used’ attribute 117

Figure 2.110: Generating the Jmx test 118

Figure 2.111: Defining the thresholds for the measures configured for the JavaHeapMemory_ex test 118

Figure 2.112: List of tests that pre-exist 119

Figure 2.113: A message box that appears requesting your confirmation to delete a test 119

Figure 2.114: Modifying a test’s specification 120

Figure 2.115: Adding/modifying test parameters 120

Figure 2.116: Modifying a user-defined parameter 121

Figure 2.117: Viewing the default parameters of an Snmp test 121

Figure 2.118: Modifying the default value of a default parameter 122

Figure 2.119: Viewing the measures configured for a test 122

Figure 2.120: Modifying a measure 123

Figure 2.121: Modifying the test implementation 124

Figure 2.122: A warning message that appears when a test is modified and regenerated 125

Figure 2.123: A message box requesting your confirmation to define a help page for the new test 126

Figure 2.124: The Help tab page 126

Figure 2.125: The strings containing instructions on how to edit the Admin template 128

Figure 2.126: The edited HTML block in the Admin template 128

Figure 2.127: The strings containing instructions on how to edit the Monitor template 131

Figure 2.128: The edited HTML block in the Monitor template 131

Figure 2.129: Modifying a help page created using the Integration Console 133

Figure 2.130: Uploading the help pages 134

Figure 3.1: Viewing the list of pre-defined and user-defined layers. 136

Figure 3.2: Adding a new layer 136

Figure 3.3: Duplicating a layer 137

Figure 3.4: The new layer listed in the User defined layers panel 137

Figure 3.5: Selecting the test to be associated with the user-defined layer 138

Figure 3.6: A message box requesting your confirmation to associate the test with all components that support
the chosen layer 139

Figure 3.7: Selecting the test to be associated with a pre-defined layer 140

Figure 3.8: A message box requesting your confirmation to associate the test with all components that support
the chosen layer 140

Figure 4.1: Viewing the user-defined and pre-defined component types 143

Figure 4.2: Adding a new component type using Integration Console 143

Figure 4.3: Duplicating a component type 144

Figure 4.4: The User-defined components panel displaying the newly added component-type 145

Figure 4.5: Modifying the details of a user-defined component-type 145

Figure 4.6: Selecting the layer to be associated with the new component-type 146

Figure 4.7: Associating a layer with a new component-type 147

Figure 4.8: Associating multiple layers with the new component-type 147

Figure 4.9: An error message prompting you to change the position of the Operating System layer 148

Figure 4.10: Selecting the tests to be disassociated from the new component-type 150

Figure 4.11: Disassociating tests for a component-type 150

Figure 4.12: Selecting the configuration tests to be associated with a new component-type 152

Figure 5.1: Backing up/Restoring the configurations performed using IC 153

Chapter 1: Introduction

1

Chapter 1: Introduction

eG Enterprise includes extensive built- in monitoring capabilities for a majority of off- the- shelf
applications. However, in any realistic environment, one may encounter applications that are not
supported by the eG products. Moreover, administrators may prefer to extend eG’s built- in
application models to suit their needs and preferences (e.g., to add specific tests from the model).
This chapter is intended for users who want to customize and extend eG’smonitoring capabilities for
their target environment.

To support these capabilities, eG Enterprise includes the Integration Console. This is a GUI-based
component of the eG manager that allows users to add new servers for monitoring, include new
layers for diagnosing specific components, and enhance eG’s measurement capability to expose
additional information relating to themanaged components.

The key features of the Integration Console are:

l Customized monitoring capabilities : Monitor new and custom applications or network
elements. Modify eG’s built-in models to suit the specific requirements of the target infrastructure.

l Integrated, end-to-end monitoring: Monitor the entire target infrastructure; A single integrated
interface fromwhere out -of-the-box and custom applications can bemonitored.

l Seamless integration : Custom applications or network elements are integrated into the eG
Enterprise system in the same manner as out-of-the-box applications/network elements. Custom
measurements can be made, thresholds computed, and the status of the custom applications can
be displayed using eG’s web-basedmonitoring interface.

l Complete flexibility in the integration: Integrate a custom application/network element into
the eG Enterprise system by choosing any approach that is suitable for the target
application/network element. Simple, easy to use templates allow users to develop new
monitoring capabilities by reading statistics logged into a file, using SNMP, by invoking
application-specific APIs, using OS-level scripting, by accessing custom databases, etc.

l Auto-upgrade of the agents: No need to bother about manually updating all of the agents.
Register the new application/network element to bemonitored with the eGmanager and have the
agents automatically discover and implement the new monitoring capabilities, without needing
anymanual intervention!

Chapter 1: Introduction

2

1.1 System Requirements

The eG Integration Console is a manager-side component, and is included as part of eG Enterprise.
The system requirements for the Integration Console are the same as the requirements for the eG
manager (i.e., the Integration Console does not have any special requirements).

1.2 Licensing

The eG Integration Console is enabled as an optional component of the eG manager. To see if this
capability is enabled for your target environment, login to the eG administration console. If you find
an Integration Console tile, in the Admin tile menu, it is a clear indication that the manager’s
license has the Integration Console option enabled.

This document elaborately discusses how the Integration Console plugin can be used to:

l Add new performance/configuration tests to the eGEnterprise system;

l Modify performance/configuration tests so added;

l Create new layers and associate new/existing tests with those layers;

l Configure a new component type and build a new layer model for that component type using
new/existing layers;

The following sections go into details of the usage of the Integration Console.

Chapter 2: Adding/Modifying Tests Using the Integration Console

3

Chapter 2: Adding/Modifying Tests Using the Integration
Console

Before attempting to add a new test using the Integration Console plugin, consider the following:

a. What is the purpose of the test? – should it monitor the performance of the target component or
pull out configuration information from it?

b. Does the test take any input arguments for execution? If so, what are they?

c. What are the key measurements/configuration information (as the case may be) that you want
the test to pull out from the target component?

d. How should the test collect measurements/configuration information from the target? By running
a custom Java-based program? by executing a script/batch file? by executing a SQL query?
using Perfmon counters? by polling the SNMPMIB? or by using JMX-based interfaces?

The answer to question d) above determines the type of test that you want to build. The eG
Enterprise system supports six types of tests, namely, Custom, Script/Batch File, SQL Query,
Perfmon, Snmp, and Jmx.

1. Custom - Tests of this type offer complete flexibility to users in developing and integrating new
monitoring functionality into the eG Enterprise system. In order to develop a Custom test, a user
must use eG’s Java- based programming interface (which will be described later in this
document).

2. Script / Batch File - In some cases, it may be easier to build new monitoring capabilities using
simple shell scripts or batch files or VB scripts or powershell scripts. To support this capability, the
Integration Console supports a Script/Batch File test. When choosing this type, the user provides
the script/file to be used and the Integration Console takes care of integrating the script into the
eG framework.

3. SQL Query - Many a times critical statistics or an application are stored in a database. Tomake it
possible to extract such statistics from the database without having to write elaborate programs,
the Integration Console includes an SQLQuery test type.

4. Perfmon - Perfmon tests can operate only on Windows environments. This option provides a
quick and easy way of building tests that interface with theWindows Perfmon capability to collect
variousmetrics of interest.

Chapter 2: Adding/Modifying Tests Using the Integration Console

4

5. Snmp - Tests of this type are typically executed on network devices such as routers, hubs,
switches etc., so that performance statistics pertaining to the same can be obtained using the
SNMP protocol.

6. Jmx - Java Management eXtensions (JMX) offers a standard way by which applications can
expose custom metrics for monitoring tools. The eG Integration Console can now be configured
to collect and report on applications that offer JMX-based interfaces.

As the procedure for adding and configuring tests is different for each type of test, the sections to
follow will discuss each of these test types independently using separate examples.

2.1 Adding a Custom Test

As stated earlier, aCustom test type offers you the complete flexibility in introducing new monitoring
functionality. To implement aCustom test, a test class is generated using a Test Generator API to
perform the specific functions expected of the test. A detailed description of the Test Generator API
is available in Section 2.3.

Using a Custom test type, you can build both performance and configuration tests. This section
takes the help of illustrated examples to explain the process of building a Custom performance test
and aCustom configuration test.

2.1.1 Adding a Custom Performance Test

To illustrate the procedure for adding and configuring a Custom performance test, this section will
be considering two examples. The test that will be added in the first example is theMsFileTest. This
test should report statistics pertaining to the number of files locked on a server, and the unique count
of users with open files on that server. In the first example, this test will not be configured with the
detailed diagnosis capability. In the second example, the locked file count measure of the
MsFileTest will be configured to report detailed diagnostics revealing the details of the files that are
locked.

2.1.1.1 Adding a Custom Performance Test Without Detailed Diagnosis

The first step towards building the MsFileTest in our example is to access the INTEGRATION
CONSOLE – TEST page. For this, first login to the eG admin interface as a user with Admin rights,
invoke theAdmin tile menu, and pick the Test option from the Integration Console tile (see Figure
2.1).

Chapter 2: Adding/Modifying Tests Using the Integration Console

5

Figure 2.1: Selecting the Test option from the Integration Console tile

To add a new test, click on the Test option in Figure 2.1. A set of user-defined tests that have been
previously added to the eG Enterprise system (if any) will be displayed (see Figure 2.2). Click the
Add New Test button in Figure 2.2 to add a new test to the eGEnterprise system.

Figure 2.2: List of user-defined tests that pre-exist

Figure 2.4 shows the inputs that have to be specified to add a new test. First, specify the Test name
as shown in Figure 2.4.

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

6

While adding a new test using the Integration Console, ensure that the Test name always ends with
_ex. If not, an error message (see Figure 2.3) will appear upon clicking the add button in Figure 2.2.

Figure 2.3: A message box stating that the test name should end with “_ex”

Click the OK button in the message box to close it, and proceed to provide the Test name in the
prescribed format.

Once the test name is specified, you wil have to indicate whether/not the test being added is a
duplicate of an existing test. eG Enterprise allows users to duplicate an existing IC-based test, so
that the complete configuration of the existing test (i.e., the test type, the test parameters, its
measures, and all other test specifications except the test name) is automatically copied to the new
test. This duplication is particularly useful when you want to create two/more tests with the
same/similar functionality, and assign them to different layers or components.

Figure 2.4: Specifying the inputs corresponding to a new Custom test

If the test being added is a duplicate of an existing test, then set the Duplicate flag in Figure 2.4 to
Yes. From the Test to be duplicated list that then appears (see Figure 2.5), pick the existing test

Chapter 2: Adding/Modifying Tests Using the Integration Console

7

that is to be duplicated. Upon selection of the test, the Test type of the chosen test will automatically
apply to the new test. Now, click theAdd button to add the new test.

Figure 2.5: Duplicating a test

On the other hand, if you set the Duplicate flag to No, then you would have to explicitly provide the
new test’s details. TheMsFileTest_ex in our example is not a duplicate of any other test. Therefore,
set the Duplicate flag to No and proceed to specify the mode of Execution of the test (see Figure
2.4). The Execution field governs whether the test is to be executed by an internal agent or by an
external agent. As a rule of thumb, if the test relies on application counters, log files, etc., it must be
executed by an internal agent. On the other hand, if the test uses the Simple Network Management
Protocol (SNMP), HTTP, or emulates user requests it can be executed by an external agent.

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot add
tests that need to be run by a remote agent – i.e., tests that need to be executed in an agentless
manner.

When adding a test, you also have to specify whether the test is Port based or not. In other words,
you have to indicate whether the test corresponds to a server that is listening on a specific TCP/UDP
port or not.

Apart from the above, the Test type has to be selected. For the purpose of our example, select
Custom as the Test type. Then, click the Add button to add the new test to the eG Enterprise
system.

Chapter 2: Adding/Modifying Tests Using the Integration Console

8

When the test is successfully added, control will automatically switch to the Parameter tab page of
theNEW TEST DETAILS page (as shown by Figure 2.6). Parameters refer to the arguments that a
test needs to be configured with in order to run and collect performance statistics from a target.

Figure 2.6: The Parameter tab page

By default, any test you add using the Integration Console, will take Test period and Host as its
parameters. While the Test period represents the frequency with which the test is to be run, the
Host indicates the host on which the test should run. If the test is a port-based test, then, it will
additionally take the Port number as its parameter. You will not be able to view any of these default
parameters, and hence will not be able tomodify or delete them.

Some tests however, may support more parameters than the default Test period, Host, and Port.
Such parameters can be user privileges that a test may require for connecting to targets, filter
conditions, pattern specifications etc. You can create these additional parameters for a new test
using the Parameter tab page. For this, you will have to click the Add New Parameter button in
Figure 2.6. This will invoke Figure 2.7, where you can specify the Parameter name and the Default
value of the parameter.

Figure 2.7: Adding a new test parameter

Chapter 2: Adding/Modifying Tests Using the Integration Console

9

Once a Default value is set here, then every time the test runs, it will automatically use this default
value for all servers on which it runs. Therefore, when setting a Default value, make sure that the
value you provide does not have to be changed at run- time according to the target
server/environment.

If the value of the parameter may vary with the target server/environment, then its best to leave the
Default value as unconfigured. If this is done, then, once this test is mapped to a server and that
server is managed in eG, the eG Enterprise system will explicitly prompt you to configure this
parameter with a valid value before attempting to monitor that server. This way, you will be able to
configure this parameter with the appropriate value at run-time and ensure that the test executes
smoothly.

Note:

In addition to the default parameters bundled with every new test, eG Enterprise provides three
ready- to-use parameters that can be, if required, configured for any new test added using the
Integration Console. These parameters are, namely, executionTime, useMgrTime , and
executeAtFixedTime. Typically, the executionTime parameter can be set for tests that need to
execute at a specific time every day, or at the beginning of every hour. For instance, say, you want to
add a new test that should trigger a ‘database cleanup’ process at 11 PM every day and alert
administrators if the process fails to start at the set time. Such a test can take executionTime as one
of its parameters, so that you can specify the exact time of the day at which the clean up process
needs to begin. Similarly, if you want a test to execute at the beginning of every hour and report
metrics, once again, you might want to use the executionTime parameter. While setting the
testperiod as 1 hour can ensure that the test runs once every hour, it cannot guarantee that the test
will run at the beginning of every hour. To add this parameter to a new test, specify executionTime
in the Parameter text box of Figure 2.7. You can leave the Default value as unconfigured, as this
parameter would typically expect user input.

If the executionTime parameter has been added to any new IC test, then, depending on need, you
may want to use the useMgrTime parameter along with it. By default, as soon as the eG agent
starts, it synchronizes time with the eGmanager, and proceeds to report measures at the manager’s
time. In MSP environments particularly, a single, central manager will be receiving performance data
frommanaged customer environments across the globe - i.e., from agents operating in different time
zones. By default, all these agents will run tests and report measurements at the manager’s time.
This means, if an executionTime has been specified for one/more tests executed by these agents,
and key maintenance processes are being triggered by these tests, such processes will run at the
manager’s time and not the agent’s, thereby causing confusion. Therefore, whenever there is a time
difference between the agent and manager zones, you will have to make sure that the test that
supports the executionTime parameter runs according to the agent’s time and not the manager’s.

Chapter 2: Adding/Modifying Tests Using the Integration Console

10

To ensure this, you will have to additionally configure a useMgrTime parameter for the test. To add
this parameter to an IC-based test, specify useMgrTime in the Parameter text box, and set the
Default value to No. Also, note that the executionTime parameter can be added as a stand-alone
parameter to any new IC-based test, but the useMgrTime parameter can only be used alongside
the executionTime parameter.

The executeAtFixedTime parameter can be used if a test needs to run at a fixed interval (in hours),
starting from ‘midnight’ every day. For instance, you may have written a test to check whether/not a
virus scanner runs at 12 AM and every 3 hours thereafter, every day. Tomake sure that the test runs
at this exact frequency, first integrate the test into the eG Enterprise system via IC, and when doing
so, specify executeAtFixedTime as a Parameter of the test; then, set Yes as its Default value.
Later, when configuring this test for a component, make sure that you set the Test period as 3
hours. Typically, eG Enterprise computes a test’s frequency based on when the eG agent executing
that test was started. In the case of this test however, since the executeAtFixedTime parameter is
set to Yes, the eG agent uses 12 AM (midnight) as the base for computing the test frequency,
regardless of when it (i.e., the eG agent) was started. This ensures that the test runs every 3 hours
frommidnight – i.e., at 3 AM, 6 AM, 9 AM, 12 PM, 3 PM, 6 PM, 9 PM, 12 AM, and so on! Moreover, in
this case, even if the eG agent is restarted in-between – say, at 2.30 PM – it will run the test at 3 PM
as originally scheduled, and not at 5.30 PM (which is 3 hours from the time the eG agent was
started). When using the executeAtFixedTime parameter however, make sure that the Test
period is only set in hours and is set to a number that is a factor of 24 – i.e., it can only be 1, 2, 3, 4, 6,
8, 12, or 24 hours. This is because, this parameter computes the test frequency using the ’24-hour’
time format.

In our example, the MsFileTest_ex does not require any parameters to obtain the statistics of
interest. Therefore, proceed to configure the measures to be reported by the test, by clicking on the
Measure tab page in Figure 2.6. Since measures are yet to be configured for the MsFileTest_ex,
you will find amessage to that effect in Figure 2.8 that appears.

Chapter 2: Adding/Modifying Tests Using the Integration Console

11

Figure 2.8: TheMeasure tab page indicating that measures are yet to be configured for theMsFileTest_ex

Click the Add New Measure button in Figure 2.8 to add a new measure. Figure 2.9 will then pop-
up, using which you can create a new measure.

Figure 2.9: Adding a new measure

The Measure name field indicates the name of the measurement (this will be displayed in eG’s
monitor interface), while the Unit (whether %, seconds, requests/sec, etc.) specifies the unit in which
the measurement’s value is reported. The Database column size field indicates the size of each
database record corresponding to a measurement value. For example, Number(7,4) indicates that
the output of the measurement will be a number in the range 0 to 100, with the fractional value being
limited to four decimal places. TheMeasure index determines the order in which the measures are

Chapter 2: Adding/Modifying Tests Using the Integration Console

12

to be displayed in the monitor console. For example, if 1 is the Measure index , then the
correspondingmeasure will appear first in the list of measures displayed in the monitor console. This
index is automatically generated by the eG Enterprise system, and cannot be edited by the user. In
our example, theMeasure index of themeasure File_locks_count is 1.

Sometimes, administrators may want to convert the unit of measurement of a performance metric
before displaying the same in the eG monitoring console. For instance, a duration value originally
available in ‘milliseconds’ may have to be changed to ‘Secs’ before it is displayed in the console. If
you want the unit of the measure being added to be so converted at test run time, then select a
Conversion Factor from the list. For example, if a value in ‘milliseconds’ needs to be converted to
‘seconds’, then select /1000 as the conversion factor. By default, 1 is chosen as the Conversion
Factor; this implies that, by default, unit conversion does not take place for a new measure at test
run time.

The Conversion Factor list comes with a default set of conversion factors. You can however,
override this list by adding more conversion factors. For instance, the default Conversion Factor
list does not provide the option to convert Bytes to MB at run time. To include this option in the list,
follow the steps below:

a. Edit the eg_ui.ini file in the <EG_INSTALL_DIR>\manager\config directory.

b. To include a new conversion factor, you will have to append an entry of the following format to
the [CONVERSION_FACTORS] section of the file:

c. DisplayName=Value

d. For instance, to support ‘Bytes to MB’ conversion, append the following entry to the [conversion_
factors} section:

/1048576 (Bytes toMB)=0.00000095367431640625

e. In this case, the DisplayName, /1048576 (Bytes to MB), will be displayed as an option in the
Conversion Factor drop-down list. If this option is chosen, then, at test run time, the conversion
value of 0.00000095367431640625 will be multiplied with the actual measure value that is
reported in Bytes to convert it into MB. Care should be taken while specifying the conversion
value, as incorrect valueswill result in wrongmeasures being reported by the test.

f. Once the new entry is appended to the [CONVERSION_FACTORS] section, save the file.

g. Finally, restart themanager.

Once this is done, you will find the string /1048576 (Bytes toMB) appear as an option in the
Conversion Factor list.

Chapter 2: Adding/Modifying Tests Using the Integration Console

13

When configuring a measurement for a custom test, also specify the text string that must be
displayed in the eG alarm window when the corresponding measurement violates its threshold. This
is only an optional field. For our example, however, let us specify an appropriate Alarm display
string (see Figure 2.9)

By clicking on the Add button in Figure 2.9, the first measurement of the MsFileTest_ex can be
added. To add more measures, click the Yes button in the message box (see Figure 2.10) that
appears subsequently.

Figure 2.10: A message box requesting you to confirm whether/not you want to addmoremeasures for the
MsFileTest_ex

This will once again open the NEW MEASURE DETAILS pop-up, using which you can configure

the second measure – i.e., the Unique_users_count measure - of the MsFileTest_ex (see Figure
2.11)

Figure 2.11: Adding the secondmeasure of theMsFileTest_ex

If you click on the Add button in Figure 2.11, the message box of Figure 2.10 will re-appear. Since
no more measures need be added for the MsFileTest_ex, this time, click the No button in the
message box to endmeasure configuration.

Chapter 2: Adding/Modifying Tests Using the Integration Console

14

Doing so will instantly lead you to the Generate tab page, where you will have to specify the
implementation of the test. All Custom tests that are newly added to eG have to be implemented in
Java. The later sections of this chapter will describe how the eG test generator API can be used to
implement new tests.

Figure 2.12: Specifying a test’s implementation

Figure 2.12 shows how a new test can be added to the eGEnterprise system after it has been
configured. After all themeasurements of the test have been specified, the directory in which the
test’s implementation exists should be specified in the input box corresponding to the Class file
specification. The test implementationmust exist in a Java class file with the same name as the test
name – e.g., the implementation ofMsFileTest_exmust exist in a class file namedMsFileTest_
ex.class.

If the class file is present in a remote location, then you can upload it to the eG manager, by clicking
on the Choose button adjacent to the Class file text box. This will invoke a pop-up window using
which you canBrowse for the class file and specify its location (see Figure 2.13).

Figure 2.13: Uploading the class file to the eGmanager

Finally, click on theUpload button in the pop-up window (see Figure 2.13), to upload the class file in
the remote location to the eG manager. If the class file has already available on the eG manager
system, just specify the location of the file against the Class file text box. Some class files may

Chapter 2: Adding/Modifying Tests Using the Integration Console

15

require certain library files (eg., “.jar” or “.so” (shared object files) files) for their execution. The name
of the file along with the directory in which these files exist has to be specified in the Library file
specification. Please note that the size of these files should not exceed 0.5 MB in order to prevent
excessive load while uploading. If the library file is present in a remote location, then you can upload
it to the eGmanager, by clicking on the Choose button adjacent to the Library file text box. Note that
the Load class file check box should be selected if the class file has to be loaded every time the test
is implemented. The Load library file checkbox should be selected if the library file has to be loaded
every time the test is implemented.

Since in this example, the MsFileTest_ex need not be configured with any detailed diagnosis
capability, leave the Click here to enable detailed diagnosis for this test check box in Figure 2.12
unchecked. Once the class and library files are specified, click the Generate button to generate the
test.

Clicking on Generate invokes Figure 2.14, where you can view the measures that have been
configured for theMsFileTest_ex. You can set default thresholds for a measure by clicking on that
measure in Figure 2.14.

Figure 2.14: Viewing themeasures of theMsFileTest_ex

Figure 2.15 will then appear, which will help you configure the thresholds for the chosenmeasure.

Chapter 2: Adding/Modifying Tests Using the Integration Console

16

Figure 2.15: Configuring the thresholds for ameasure of theMsFileTest_ex

2.1.1.2 Configuring Detailed Diagnosis for a Custom Performance Test

To make diagnosis more efficient and accurate, eG Enterprise embeds an optional detailed
diagnostic capability. With this capability, the eG agents can be configured to run detailed, more
elaborate tests as and when specific problems are detected. Alternatively, these tests can also be
run periodically for proactivemonitoring purposes.

If required, you can also configure a custom test to report detailed diagnostics. To lend this capability
to the MsFileTest_ex in our example, you will have to select the Click here to enable detailed
diagnosis for this test check box in the Generate tab page, when configuring the test’s
implementation (see Figure 2.16).

Figure 2.16: Configuring detailed diagnosis for theMsFileTest_ex

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

17

The option to enable the detailed diagnosis capability for an IC test will be available only if the
following conditions are fulfilled:

l The eG license should enable the detailed diagnosis capability

l Both the normal and abnormal detailed diagnosis frequencies should not be 0. For more
information on configuring these frequencies, refer to the eGUser Manual.

Finally, click the Generate button in Figure 2.16. This will introduce a new Detailed Diagnosis tab
page in the new test details page (see Figure 2.17).

Figure 2.17: The Detailed Diagnosis tab page

The Detailed Diagnosis tab page provides two sub-tabs, namely, Measure and Generate. Since
the detailed diagnosis capability has not yet been configured for anymeasure of theMsFileTest_ex,
theMeasure tab page will only display amessage to that effect. To indicate for whichmeasure of the
MsFileTest_ex detailed diagnostics should be reported and what type of information should be
collected as part of the detailed diagnostics, click theAdd New Measure button in Figure 2.17.

When Figure 2.18 appears, select the measure for which detailed diagnostics are required from the
Measures for this test drop-down list. For our example, let us configure the File_locks_count
measure of theMsFileTest_ex to provide a detailed diagnosis that will reveal the list of open files in
the network. Therefore, select File_locks_count from the list. Next, provide a comma-separated list
of Column headings under which the detailed diagnosis information will be displayed in the eG
monitor interface (see Figure 2.18). Then, provide an appropriate Description of the detailed
diagnosis that will be displayed in the detailed diagnosis page of the eG monitor interface. Finally,
click on theAdd button in Figure 2.18 to apply the selection.

Chapter 2: Adding/Modifying Tests Using the Integration Console

18

Figure 2.18: Configuring detailed diagnosis for the File_locks_count measure of theMsFileTest_ex

A summary of the specification will then be displayed (see Figure 2.19). You can either Modify the
specification orDelete it using the buttons provided therein.

Figure 2.19: A summary of the detailed diagnosis specification of theMsFileTest_ex

If you want to proceed with the displayed specifications, simply click theGenerate sub-tab in Figure
2.19 to specify the implementation of the detailed diagnosis.

Chapter 2: Adding/Modifying Tests Using the Integration Console

19

Figure 2.20: Specifying the detailed diagnosis implementation

The detailed diagnosis implementation must exist in a Java class file whose name is the test name
suffixed with “_DD” - e.g., the implementation of detailed diagnosis for the MsFileTest_ex must
exist in a class file namedMsFileTest_ex_DD.class. The path to this class file has to be mentioned
in theClass file for detailed diagnosis text box in Figure 2.20. If the file exists in a remote location,
then click on theChoose button adjacent to the text box to upload the file to the eGmanager.

As before, specify any library files using the Library file specification (see Figure 2.20).

Finally, click theGenerate button in Figure 2.20 to generate the test.

2.2 Adding a Custom Configuration Test

To take you step-by-step through the procedure for building a new configuration test, this section
takes the help of two examples. In the first example, a descriptor-based test named NetShare will be
added, which will report the names of shared folders on a target system, the full path to each of the
shared folders, and the user-defined remarks associated with each shared folder. In the second
example, a non-descriptor-based test named NetShareCount will be added, which will report the

number of shared folders on a target system. This test too will later be associated with theNetShare
component-type.

2.2.1 Adding a Descriptor-based Configuration Test

To add a descriptor-based configuration test, first, click the Add New Test button in the integration
console - test page (see Figure 2.2). In the new test details page (see) that appears next, specify the
Test name (see Figure 2.21). For the purpose of our example, set Duplicate flag toNo (as the test
being added is not a duplicate of any existing IC-based test), set Executionmode to Internal, Port
based toYes, and Test type toCustom.

Chapter 2: Adding/Modifying Tests Using the Integration Console

20

Figure 2.21: Adding a descriptor-based configuration test

Then, click theAdd button in Figure 2.21 to add the new test. Figure 2.22 will then appear.

Note:

l While adding a configuration test, make sure the Test name ends with _cf_ex. Therefore, the
name of the test in our example will beNetShare_cf_ex.

l Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

Figure 2.22: Specifying the parameters of the new test

Since the NetShare_cf_ex test does not take any input parameters, proceed to configure the
measures for the test by clicking theMeasure tab page in Figure 2.22.

Figure 2.23 will then appear. Click theAdd New Measure button in theMeasure tab page of Figure
2.23. In the new measure details window that pops up, specify Resource as the name of the first

Chapter 2: Adding/Modifying Tests Using the Integration Console

21

measure in the Measure name text box. This measure will report the full path to the shared folders
on a target.

Figure 2.23: Configuring the first measure for the configuration test

Then, click the Add button in Figure 2.23. When you are prompted to add more measures for the
test (see Figure 2.24), clickYes to continue addingmeasures.

Figure 2.24: A message box requesting your confirmation to continue addingmeasures for the NetShare_cf_
ex test

This will invoke Figure 2.25, wherein you can add the secondmeasure –Remark.

Figure 2.25: Adding the secondmeasure of the NetShare_cf_ex test

Chapter 2: Adding/Modifying Tests Using the Integration Console

22

Click the Add button in Figure 2.25 to add the second measure. Now, proceed to generate the test.
For this, once the Generate tab page appears, specify the directory in which the test’s
implementation exists in the input box corresponding to the Class file specification. The test
implementation must exist in a Java class file with the same name as the test name – e.g., the
implementation of NetShare_cf_ex test in our example must exist in a class file named NetShare_
cf_ex.class (see Figure 2.26).

Figure 2.26: Generating a test

If the class file is present in a remote location, then you can upload it to the eG manager, by clicking
on the Choose button adjacent to the Class file text box. This will invoke a pop-up window using
which you can Browse for the class file and specify its location, and click on the Upload button to
upload the class file to the eG manager. If the class file has already available on the eG manager
system, just specify the location of the file against the Class file text box. Some class files may
require certain library files (eg., “.jar” or “.so” (shared object files) files) for their execution. The name
of the file along with the directory in which these files exist has to be specified in the Library file
specification. Please note that the size of these files should not exceed 0.5 MB in order to prevent
excessive load while uploading. If the library file is present in a remote location, then you can upload
it to the eG manager, by clicking on the Choose button adjacent to the Library file text box. Note
that the Load class file checkbox should be selected if the class file has to be loaded every time the
test is implemented. The Load library file checkbox should be selected if the library file has to be
loaded every time the test is implemented.

Next, indicate theDatabase column size of both the configuredmeasures by picking an option
from the drop-down list with the same name.

Since the NetShare_cf_ex test in our example is a descriptor-based test, select the Descriptor
based test check box in Figure 2.26. Finally, click the Generate button. In the case of descriptor-
based configuration tests, the eG Enterprise system will automatically append a measure named

Chapter 2: Adding/Modifying Tests Using the Integration Console

23

Installed to the list of measures that pre-exist for the test. This is done to enable the test to keep
track of the installed status of the descriptors - this way, if a descriptor is removed, then the
configuration monitoring module will be able to automatically capture this change and update the
change tracker with it.

With that, the new descriptor-based configuration test is added.

2.2.1.1 Adding a Non-Descriptor-based Configuration Test

To add a non-descriptor-based test, first click on the Add New Test button in INTEGRATION
CONSOLE – TEST page (see Figure 2.2). When the NEW TEST DETAILS page appears (see
Figure 2.27), type NetShareCount_cf_ex against Test name, for the purpose of our example.
Then, set Duplicate flag to No as the test being added is not a duplicate of any existing IC-based
test. Next, set Internal as the Execution mode, set the Port based flag to Yes, and Test type to
Custom. Finally, click on theAdd button to add the new test.

Figure 2.27: Adding a new non-descriptor-based test

Figure 2.28 will then appear. To configuremeasures for theNetShareCount_cf_ex test, click the
Measure tab page in Figure 2.28.

Chapter 2: Adding/Modifying Tests Using the Integration Console

24

Figure 2.28: Viewing the details of the non-descriptor-based test

When Figure 2.29 appears, click the Add New Measure button therein to add a measure for the
NetShareCount_cf_ex test.

Figure 2.29: Clicking the Add New Measure button to add a new measure for the NetShareCount_cf_ex test

Figure 2.30 then appears. The NetShareCount_cf_ex test reports the count of shared folders on
the target system. Therefore, type No_of_share_folders as the Measure name in Figure 2.30 and
click theAdd button.

Figure 2.30: Configuring the No_of_share_folders measure of the NetShareCount_cf_ex test

Chapter 2: Adding/Modifying Tests Using the Integration Console

25

When you are prompted to add more measures for the test (see Figure 2.31), click No to indicate
that you have finished addingmeasures for the test.

Figure 2.31: A message box requesting your confirmation to continue addingmeasures for the
NetShareCount_cf_ex test

This will automatically take you to theGenerate tab page. To generate the test, by specifying the full
path to theClass file that holds the test’s implementation logic.

Figure 2.32: Generating the non-descriptor-based test

The test implementation must exist in a Java class filewith the same name as the test name – e.g.,
the implementation of NetShareCount_cf_ex test in our example must exist in a class file named
NetShareCount_cf_ex.class (see Figure 2.32).

If the class file is in a remote location, then you can upload it to the eG manager, by clicking on the
Choose button adjacent to the Class file text box. This will invoke a pop-up window using which
you can Browse for the class file and specify its location, and click on the Upload button to upload
the class file to the eG manager. If the class file has already available on the eG manager system,
just specify the location of the file against the Class file text box. Some class files may require
certain library files (eg., “.jar” or “.so” (shared object files) files) for their execution. The name of the
file along with the directory in which these files exist has to be specified in the Library file

Chapter 2: Adding/Modifying Tests Using the Integration Console

26

specification. Please note that the size of these files should not exceed 0.5 MB in order to prevent
excessive load while uploading. If the library file is present in a remote location, then you can upload
it to the eG manager, by clicking on the Choose button adjacent to the Library file text box. Note
that the Load class file checkbox should be selected if the class file has to be loaded every time the
test is implemented. The Load library file checkbox should be selected if the library file has to be
loaded every time the test is implemented.

Next, indicate theDatabase column size of the configuredmeasure.

Since the NetShareCount_cf_ex test in our example is a non-descriptor-based test, just click the
Generate button to generate the test.

2.3 Test Generator API

So far, we have reviewed how a new Custom test can be integrated into the eG Enterprise system.
The one aspect that was not covered in the previous sections is how a test class can be generated to
perform the specific functions expected of the Custom test. This section explains the test generator
API that is provided with the eG Enterprise system to enable users to design and implement new
testing capability.

The test generator API consists of aGenericTest abstract class. In order to extend eG’s monitoring
functionality, a user has to develop new tests that extend the GenericTest and implement new
monitoring capabilities.

Figure 2.33 shows the architecture of the eG test generator API. The API is the module that links
user-defined tests to other eGagent components.

Figure 2.33: Architecture of eG’s test generator API

Chapter 2: Adding/Modifying Tests Using the Integration Console

27

2.3.1 System Requirements

The test generator API is included as part of the eG agent package. In order to use the API, the
CLASSPATH environment setting for the user who is crafting new tests must be set so as to include
the Java archive file <EG_HOME_DIR>\lib\eg_agent.jar and <EG_HOME_DIR>\lib\eg_plus.jar,
where EG_HOME_DIR is the installation directory of the eGmanager and agents (eg. /opt/egurkha
on Unix, C:\Program Files\eGurkha on Windows). Consequently, all new test developments must
be performed on a system onwhich the eGagent has been installed. Once the test is developed and
compiled to produce the class file, this file must be made available on the eG manager system, so
that the test can be integrated into the eGEnterprise system using the Integration Console.

Component Classes

The Test generator API consists of a single abstract class called GenericTest whose functionality
has to be implemented in order to develop a test that wouldmonitor a component type of user’s
choice.

2.3.2 Summary of Methods

The followingmethods of the Test generator API must be used for developing new tests.

Method Signature Description

public void computeMeasures
(Hashtable paramList)

This methodmust be overridden to implement specific test execution
functionality. This method should alsomake necessary calls to other
methods in the API as explained above. Apart from that themethodmay
call other user-specific methods or include within itself the functionality for
executing the test and assigning values tomeasures. The result of the
execution decides the further calls in themethod.

Note: It is mandatory to override this method.

final void setMeasureCount(int
measureCount)

This methodmust be called in the constructor to enable the eG Agent
component to register the number of measures this test would report.

Note: It is mandatory to call this method from the constructor. The count of
measures should be the same as the number of measurements configured
via the eG Integration Console interface.

Description of arguments:

easureCount:This argument indicates the number of measures the test
would report.

final void addNewMeasure This method is called whenever a set of measures are to be reported. This

Chapter 2: Adding/Modifying Tests Using the Integration Console

28

Method Signature Description

(ArrayList measureList) is to be used only by a non-descriptor based Test.

Note: The ArrayList passed should always contain a group of Double
objects and the list should always follow a same order.

Description of arguments:

measureList: This argument represents anArrayList collection of all
double values encapsulated intoDouble objects.

final void addNewMeasure
(String descriptor, ArrayList
measureList)

This method is called whenever a set of measures are to be reported. This
is to be used only by a descriptor based Test.

Note: The ArrayList passed should always contain a group of Double
objects and the list should always follow a same order.

Description of arguments:

descriptor: This argument represents a String that describes the namewith
which the corresponding set of measures are associated.

measureList: This argument represents anArrayList collection of all
double values encapsulated intoDouble objects.

final void setErrorMessage
(String errorMsg)

This method can be called whenever the developer wants to log an error or
unexpected output for a test.

Note: The error can be read from the agent/logs/error_log file that is
available in the agent install directory.

Description of arguments:

errorMsg: This argument represents a string which describes the error that
has occurred.

Note:

Tests that are to be run by an external agent can determine the target server and port number that
they are monitoring using the variables - targetHost (italics) and portNo (italics) that are defined in
the base class - i.e., the GenericTest class.

2.3.2.1 Writing Tests using the Test Generator API

This section outlines how user-defined tests that extend eG’s functionality can be written using the
test generator API. A user defined test classmust extend the GenericTest abstract class and
override the only abstract method to report measures to the eGagent system.

Given below is a sample test that reports the availability of a server.

Chapter 2: Adding/Modifying Tests Using the Integration Console

29

import java.util.*;
public class AvailabilityTest extends GenericTest
{
// declare necessary variables
double availability = 0;// default value of server availability
public AvailabilityTest (String [] args)

{
/*** Calling super initializes several parameters for the test namely
targetHost-Target Host for the test
portNo -Target Port for the test value is “NULL” if its not a port-based
server
other parameters configured using the Integration Console interface
***/
super(args);

/*** Call setMeasureCount to initialize the number of measures for the test
***/
setMeasureCount(1);// One measure namely - availability

}
/*** Call computeMeasures to report measures ***/
public void computeMeasures (Hashtable paramList)

{
/*** We may call new methods to perform different tasks. Assume we use a
method called getAvailability which performs the availability check and
returns the value.***/

availability = getAvailability();
ArrayList al = new ArrayList();
al.add(new Double(availability));

/*** Measures have to be reported by populating an arraylist and passing it as
argument to the addNewMeasure() method ***/

addNewMeasure(al);
}

// User defined methods
private double getAvailability()

{
/*** This is a user-defined implementation. The user can choose one of several
approaches to determine a server’s availability:

Eg. 1 Can Establish socket connection to the targetHost and portNo and find
out the availability
Eg. 2 Can ping the targetHost and find out the availability
Eg. 3 Can establish a HTTP connection to the targetHost and portNo and find

Chapter 2: Adding/Modifying Tests Using the Integration Console

30

out the availability

Note : The values of target host and port can be accessed by using the public
variables namely “targetHost” and “portNo” respectively. These variables are
defined in the GenericTest class itself.
***/

boolean status = connectToServer (); // user defined
if (status) // connection succeeded
return (100);
else
return (0);

}
}

The above test is an example of a non-descriptor test in the sense that the results of the tests are not
specific to a descriptor.

To illustrate how a descriptor based test works, suppose we are monitoring an application that has
several instances of servers executing. In this case, it is essential for us to measure and report the
availability of each of the server instances. In this case, the test is required to discover the server
instances first and then check the availability of each of these instances. For each server instance,
the test reports the availability of the instance.

Chapter 2: Adding/Modifying Tests Using the Integration Console

31

public class AvailabilityTest extends GenericTest"
{
// declare necessary variables
double availability = 0;
boolean serverInstancesDiscovered = false;
// internal variable that is used to indicate if we have already discovered
the server instances
String[] servers = null; // used to maintain a list of
// serverInstances
public AvailabilityTest (String [] args

{

/*** Calling super initializes several parameters for the test namely
targetHost-Target Host for the test
portNo -Target Port for the test value is “NULL” if its not a port-based
server
other parameters configured using the Integration Console interface
***/

super(args);

/*** Call setMeasureCount to initialize the number of measures for the test
***/

setMeasureCount(1);// One measure namely – availability
}

/*** Call computeMeasures to report measures ***/

public void computeMeasures (Hashtable paramList)
{

if (serverInstancesDiscovered == false)
discoverServerInstances(paramList); //user defined function
if (servers == null || servers.length == 0)
return; // unable to discover any servers
for(int i=0; i<servers.length; i++)

{
/*** We may call new methods to perform different tasks. Assume we use a
method called getAvailability which performs the availability check and
returns the value.***/

availability = getAvailability(servers[i]);
ArrayList al = new ArrayList();
al.add(new Double(availability));

/*** Measures have to be reported by populating an arraylist and passing it as

Chapter 2: Adding/Modifying Tests Using the Integration Console

32

an argument to the addNewMeasure() method. In descriptor based tests and
additional parameter defining the descriptor has to be passed to the method to
enable the agent report appropriate availability values for different server
instances of the application.***/

addNewMeasure(servers[i], al);
// indicate that this is the measure for servers[i

}
}

// User defined methods private double getAvailability (String serverId)
{
/*** This is a user-defined implementation. The user can choose one of several
approaches to determine a server’s availability:

Eg. 1 Can Establish socket connection to the targetHost and portNo and find
out the availability

Eg. 2 Can ping the targetHost and find out the availability

Eg. 3 Can establish a HTTP connection to the targetHost and portNo and find
out the availability

Note : The values of target host and port can be accessed by using the public
variables namely “targetHost” and “portNo” respectively. These variables are
defined in the GenericTest class itself.
***/

boolean status = connectToServer (serverId); // user defined
if (status) // connection succeeded
return (100);
else
return (0);

}
private void discoverServerInstances (Hashtable paramList)
{
/*** Lets assume the discovery is performed by accessing a URL, which in turn
returns the details of the existing server instances. In such a case the test
would require a parameter (“URL” in this case). Such parameters can be
configured using the Integration Console interface. These parameters are
accessible from the test at runtime. The “paramList” variable which is a
java.util.Hashtable object provides access to all such variables configured by
the user.***/

String param1 = paramList.get(“URL”);

Chapter 2: Adding/Modifying Tests Using the Integration Console

33

/*** We may call new methods to perform different tasks. Assume we use a
method called discoverServers which downloads the file available at “URL” and
parses the response to find out the list of currently running server
instances.***/

servers = discoverServers(param1);
// set the global variable to indicate the list of server instances
serverInstancesDiscovered = true;
// indicate that we have discovered the instances
return;
}
public String [] discoverServers(String url)
{
/*** User defined Implementation
In this example we assume that we discover the server instances by making a
url connection to the url configured for this purpose. connection to the
targetHost and portNo and find out the availability ***/
}
}

A custom test can use various mechanisms to obtain measurements, eg., Processing log files, using
sockets, SNMP etc. The following example depicts a test that uses SNMP to monitor a target. Any
test that uses SNMPmust extend theEgSnmpGenericTest class.

Chapter 2: Adding/Modifying Tests Using the Integration Console

34

import java.util.*;
/* Extend EgSnmpGenericTest instead of GenericTest to implement common
functionality of Snmp based tests
*/
public class SnmpAvailabilityTest extends EgSnmpGenericTest
{

private String OID = “.1.3.6.1.2.1.4.8.1.1.2”;
private double availability = 0.0;
public SnmpAvailabilityTest (String [] args)

{
super(args);
setMeasureCount(1);

/* Arguments – snmpPort and snmpCommunity, are required for the test and are
processed in the super class */

}

public void computeMeasures (Hashtable params)
{

/* Call the following method to walk the specified MIB OIDs. The output of
the snmpwalk command is assigned to the String arrays lhs and rhs
lhs -> stores left hand side of the output
rhs -> stores right hand side of the output

*/
runSnmpCmdForOid(OID);
if(lhs != null && lhs.length > 0)

/* some output is stored ..
the device is available
*/
availability = 100.0;
else
{
/* No output stored .. the device is not available */

availability = 0.0;
ArrayList al = new ArrayList(); al.add(new Double(availability));
addNewMeasure(al);

}
}
}

A custom test can also be developed to collect configuration metrics from target components. Given
below is a sample custom test script that reports the names of shared folders on a target, the full path
to the folders, and the user-defined remarks for each folder.

Chapter 2: Adding/Modifying Tests Using the Integration Console

35

import java.util.ArrayList;
import java.util.Hashtable;
import java.util.StringTokenizer;
import com.egurkha.util.EgUtilities;
/**
Measures:
1. Resource
2. Remark
 */

public class NetShare_cf_ex extends GenericTest
{
public NetShare_cf_ex(String[] args)
{
super(args);
setMeasureCount(3);
setConfigInfoTestFlag(true); // true for info based
}
public void computeMeasures(Hashtable ht)
{
try
{
EgUtilities egUtil = EgUtilities.createInstance();
String netShareCmd = “net share”;
ArrayList data = (ArrayList) egUtil.getExecOutputLines(netShareCmd);
if (data == null || data.size() < 2)
{
configError = true; // info based only
return;
}
data = (ArrayList) data.get(0);
if (data == null || data.size() == 0)
{
return;
}
StringTokenizer st = null;
ArrayList measureList = null;
int size = data.size();
for (int g = 0; g < size; g++)
{
String line = (String) data.get(g);
//System.out.println(line);
if (line == null)
{
continue;

Chapter 2: Adding/Modifying Tests Using the Integration Console

36

}
line = line.trim();
if (line.length() == 0 || line.startsWith(“Share”) || line.startsWith(“------
“) || line.startsWith(“The command comp”))
{
continue;
}
st = new StringTokenizer(line);
int count = st.countTokens();
String shareName = “”;
String resource = “-“;
String remark = “-“;
if (count >= 2)
{
shareName = st.nextToken().trim();
if (shareName.equalsIgnoreCase(“IPC$”)) // Remote IPC
{
remark = st.nextToken().trim() + “ “ + st.nextToken().trim();
}
else
{
resource = st.nextToken().trim();
if (count >= 3)
{
remark = st.nextToken().trim() + “ “ + st.nextToken().trim();
}
}
}
measureList = new ArrayList();
measureList.add(resource);
measureList.add(remark);
addNewMeasure(shareName,measureList);
}
}
catch (Exception e)
{
e.printStackTrace();
}
}
public static void main(String[] args)
{
NetShare_cf_ex net = new NetShare_cf_ex(args);
net.computeMeasures(new Hashtable());
}
}

Chapter 2: Adding/Modifying Tests Using the Integration Console

37

The sample script above is for a descriptor- based configuration test. Non- descriptor- based
configuration tests can also be developed. Given below is a sample script for the same. This script
simply reports the number of shared folders on a target.

Chapter 2: Adding/Modifying Tests Using the Integration Console

38

import java.util.ArrayList;
import java.util.Hashtable;
import java.util.StringTokenizer;
import com.egurkha.util.EgUtilities;
/**
Measure:
1. No of share folders
*/
public class NetShareCount_cf_ex extends GenericTest
{
public NetShareCount_cf_ex(String[] args)
{
super(args);
setMeasureCount(1);
}

public void computeMeasures(Hashtable ht)
{
try
{
EgUtilities egUtil = EgUtilities.createInstance();
String netShareCmd = “net share”;
ArrayList data = (ArrayList) egUtil.getExecOutputLines(netShareCmd);
if (data == null || data.size() < 2)
{
return;
}

data = (ArrayList) data.get(0);
if (data == null || data.size() == 0)
{
return;
}

StringTokenizer st = null;
ArrayList measureList = new ArrayList();
int k = 0;
int size = data.size();
for (int g = 0; g < size; g++)
{
String line = (String) data.get(g);
if (line == null)
{
continue;
}

Chapter 2: Adding/Modifying Tests Using the Integration Console

39

line = line.trim();
if (line.length() == 0 || line.startsWith(“Share”) || line.startsWith(“------
“) || line.startsWith(“The command comp”))
{
continue;
}
++k;
}
measureList.add(k+””);
addNewMeasure(measureList);
}
catch (Exception e)
{
e.printStackTrace();
}
}
public static void main(String[] args)
{
NetShareCount_cf_ex net = new NetShareCount_cf_ex(args);
net.computeMeasures(new Hashtable());
}
}

2.3.2.2 Writing Detailed Diagnosis Tests

This section outlines how to write detailed diagnosis tests for the user-defined classes that extend
eG’s functionality.

The Java class that implements detailed diagnosis for a test must be named after the test and be
suffixed by an _ex_DD . Such tests extend EgTest_DD and must include a method for every
measure for which detailed diagnosis is desired. The name of the class is case-sensitive.

For theMsFileTest_ex in our example, the Java class that implements detailed diagnosis should be
called MsFileTest_ex_DD . Since detailed diagnosis has been configured for the measure File_
locks_count , a method with the name File_locks_count_dd has to be implemented. Like the
class name, themethod name is also case-sensitive.

Given below is a sample test that gives a detailed diagnosis on the files opened for MsFileTest_ex:

Chapter 2: Adding/Modifying Tests Using the Integration Console

40

/*
Detailed diagnosis for MS_FILE_SERVER_ex component type is enabled for the
measure File_locks_count
*/

import java.util.*;
/*
Tests for Detailed Diagnosis must by suffixed by _ex_DD.
*/

public class MsFileTest_ex_DD extends EgTest_DD
{
/*
Declare the necessary variables
*/

private boolean uploadStatus = false;
public MsFileTest_ex_DD(String entity)
{
super(entity);
}
/* For every measure that requires detailed diagnosis, add a method, the name
of which is of the type <measureName>_dd */

public void File_locks_count_dd(
String methodName,
String measureName,
String targetHost,
String reportingName,
String portNo,
String siteName,
String info,
String msmtHost,
String msmtTime,
String state,
EgTest test)
{
String ddData;

/* The data that is to be displayed as part of detailed diagnosis is collected
using the
* addLine() method.
*/

this.addLine(ddData);

/* Once all the data for detailed diagnosis has been added, send the results
to the manager using the uploadResults() method */

Chapter 2: Adding/Modifying Tests Using the Integration Console

41

uploadStatus = this.uploadResults(
methodName,
measureName,
reportingName,
portNo,
siteName,
info,
msmtHost,
msmtTime,
state);
}
}
}

Note:

Though any number of lines of data can be added using the addLine() method, it is recommended
that the implementation of the detailed diagnosis does not send large amounts of data to the
manager everytime.

2.3.2.3 Troubleshooting

To troubleshoot problems when a user-defined test is integrated into the eG Enterprise system,
check the entries in the agent error log, which is available in the file <EG_HOME_DIR
>\agent\logs\error_log. For entries specific to a user-defined test to be available in the error log, it is
necessary for the test to log errors explicitly.

2.4 Adding a Script/Batch File-based Test

Many system administrators would not prefer to write Custom tests, by programming in Java. To
allow administrators to easily extend eG’s capabilities, the Integration Console includes a
Script/Batch File test. This test allows an administrator to simply write a shell script / batch file / VB
script / powershell script, which they can incorporate into the Integration Console to provide custom
monitoring capability. This section will help you gain a lucid understanding of how to add and
configure a new test of theScript/Batch File type.

To illustrate how to add aScript/Batch File test, let us take an example of aDiskSpaceTest, which
tracks the disk utilization of a server. In order to create the test, first, click the Add New Test button
in the integration console - test page (see Figure 2.2). In the NEW TEST DETAILS page (see
Figure 2.34) that appears next, specify the Test name.

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

42

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add button in
Figure 2.34.

Since the new test is not a duplicate of any existing test, set the Duplicate flag to No. Then, select
Script/Batch File as the Test type . Next, mention the Execution mode. The choice of an
execution mode depends upon whether the test is to be executed by an internal agent or an external
agent. Since theDiskSpaceTest_ex is to be run only by an internal agent, select the Internal option
against theExecution field.

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot add
tests that need to be run by a remote agent – i.e., tests that need to be executed in an agentless
manner.

Next, as the DiskSpaceTest_ex is to be run at the system level, select No against Port based to
enable it to be associated with any of the component types.

Figure 2.34: Providing the details of the new test of type Script/Batch File

If the test is to be associated with a shell script file, choose Unix as the OS type. If the test is to be
associated with a batch file/VB/powershell script, choose the Windows option. Our

DiskSpaceTest_ex is associated with a script, and hence, the Unix option needs to be chosen.
Then, click theAdd button.

TheParameter tab page will automatically open (see Figure 2.35). To add a new parameter, click
theAdd New Parameter button. However, as theDiskSpaceTest_ex does not take any
parameters, click theMeasure tab page in Figure 2.35.

Chapter 2: Adding/Modifying Tests Using the Integration Console

43

Figure 2.35: The Parameter tab page of the DiskSpaceTest_ex

Click theAdd New Measure button in theMeasure tab page of Figure 2.36 to add ameasure for
theDiskSpaceTest_ex.

Figure 2.36: TheMeasure tab page of the DiskSpaceTest_ex

Figure 2.37 will then appear, using which you can configure the new measure for the
DiskSpaceTest_ ex . As the test should indicate the percentage of disk space utilized, add
PercentUtil as the onlymeasure of this test. Therefore, specifyPercentUtil as theMeasure name.
Then, specify the Database column size, the Unit, Conversion Factor, and the Alarm display
string in the samemanner as discussed in the previous section.

Chapter 2: Adding/Modifying Tests Using the Integration Console

44

Figure 2.37: Specification of ameasure (PercentUtil) of the DiskSpaceTest_ex

In addition to the above, this test type requests the specification of a Process method. By selecting
an option from the Process method list box, you can indicate the processing that must be
performed on the script / batch file’s output before passing the results to the eG agent. The options
offered by this list box are:

Option Information
UNALTERED Selecting this option will ensure that no additional information is displayed along

with the specifiedmeasure in themonitor console. In other words the Current
Value of themeasure is displayed.

PERCENT_INCREASE Selecting this option will display the percentage by which the current value of the
measure exceeds its previous value (i.e. the value of themeasure during the
previous test execution). While an increase displays a positive value, a decrease
will display a negative value. The formula used is:

[(Current Value – Previous Value) / Previous Value] * 100

PERCENT_DECREASE This option will display the percentage by which the current value of themeasure
falls below its previous value. While a decrease displays a positive value, an
increase will display a negative value.

[(Previous Value – Current Value) / Previous Value] * 100

PERCENT_CHANGE This displays the percentage change between the current value and the previous
value.

Process Methods

Chapter 2: Adding/Modifying Tests Using the Integration Console

45

Option Information

ABS[(Current Value – Previous Value) / Previous Value] * 100

RATIO This displays the ratio of the current value of themeasure over its previous value.

(Current Value / Previous Value)

RATE This displays the result of the following formula:

(Current Value - Previous Value) / Time since the last measurement

DIFFERENCE This displays the absolute value of the difference between the current value and
the previous value.

ABS(Current Value – Previous Value)

By default,UNALTERED is selected as theProcess method. In theDiskSpaceTest_ex example,
no further processing is required. Hence, the default selection is left as is. Finally, click the Add
button to add themeasure.

When you are prompted to addmoremeasures for the test (see Figure 2.38), clickNo to stop adding
any more measures; this is because, the DiskSpaceTest_ex in our example reports only one
measure.

Figure 2.38: A message box requesting your confirmation to continue addingmeasures for the NetShare_cf_
ex test

Doing so will instantly open theGenerate tab page (see Figure 2.39). Here, proceed to specify the
Path of script/batch File (see Figure 2.39) associated with the test. Multiple script / batch file paths
can also be specified, but remember to separate each entry using a comma.

Figure 2.39: Generating a test of type Script/Batch File

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

46

While associating a test with multiple script / batch files, make sure that the “main” script that needs
to be executed is specified last. Otherwise, no measures will be reported by the eG Enterprise
system.

Any script used for a Script/Batch File test should provide one or more lines of output. If a test is
descriptor-based, it can have multiple lines of output, with the first entry of each line being the
descriptor. In case of scripts other than VB/powershell scripts, the descriptor and its corresponding
measures are separated bywhitespaces (space or tab), as shown below:

Output of a (non-VB/non-powershell) script for a descriptor-based test

DESC 1Value 1Value 2 ...Value N

DESC 2Value 1Value 2 ...Value N

.

.

DESC NValue 1Value 2 .Value N

In case of VB/powershell scripts on the other hand, the descriptor and its corresponding measures
are separated by “:”, as shown below:

Output of a VB/powershell script for a descriptor-based test

DESC 1:Value 1:Value 2:…:Value N

DESC 2:Value 1:Value 2:…:Value N

.

.

DESC N:Value 1:Value 2:…:Value N

The DiskSpaceTest_ex we have configured is a descriptor-based test and hence, its output would
be of the following format (if the script associated with this test is not a VB/powershell script):

/tmp30

/boot22

/usr12

In the above output, /tmp, /boot and /usr are some of the descriptors for theDiskSpaceTest_ex
and 30, 22 and 12 are the values of thePercentUtilmeasure of each of these descriptors. For
example, for the /tmp descriptor, the disk space utilized is 30%.

Chapter 2: Adding/Modifying Tests Using the Integration Console

47

If a test is not descriptor-based, then the script should report only one line of output. The first entry of
this line should be “NONE”.

Output of a (non-VB/non-powershell) script for a non-descriptor-based test

NONEValue 1Value 2 ...Value N

Output of a VB/powershell script for a non-descriptor-based test

NONE:Value 1:Value 2:…:Value N

If theDiskSpaceTest_exwe have configured is a non-descriptor-based test, its output would be of
the following format (provided, a VB/powershell script is not associated with this test):

NONE30

A script on Linuxwould look like this:

#!/bin/sh

df -k | grep “/” | awk ‘{print $6 “ “ $5 -1}’

A sample powershell script has also been provided below:

$services = get-service

foreach($service in $services)

{

$name = $service.displayname

$status = $service.status

if($status -eq “Running”)

{

$value = 100

}

else

{

$value = 0

}

Write-Host($name,$value) -Separator “:”

Chapter 2: Adding/Modifying Tests Using the Integration Console

48

}

The above script implements a descriptor-based test. This script reports the status of each of the
services available on aWindows host.

Find below a sample non-descriptor-based powershell script:

$x = Get-Random -minimum 50 -maximum 101

$y = Get-Random -minimum 25 -maximum 50

$z = $x + $y

$w = $x - $y

Write-Host($x,$y,$z,$w) -Separator “:”

The above script reports random I/O-relatedmeasurements pertaining to a targetWindows host.

Note:

Powershell scripts can be executed on only those targets that have Powershell SDK v1/v2 installed.

All the scripts sampled above (the Linux script and the powershell scripts) did not take any
arguments. To offer more flexibility in script execution, the Integration Console allows a user to
specify multiple arguments for a script/batch file test. When the script/batch file is executed each
time, the test’s arguments are passed to the script/batch file. Note that the arguments are typically
passed to a script with a hyphen (i.e., ‘-‘) preceding them. Each argument is expected to be followed
by its value (e.g., -argument1 <argument1Val> -argument2 <argument2Val>). The script/batch file
has to parse the arguments that are passed to it at the time of invocation and perform the
appropriate functions. The following example provides an illustration of how a Linux shell script can
parse the arguments provided to it:

#!/bin/sh
This is an example of a simple script that processes its arguments.

This script takes two arguments and outputs the values of the arguments.

out1=””;
out2=””;
#out1 and out2 are output variables

while [$# -ge 1]

do

case $1 in

Chapter 2: Adding/Modifying Tests Using the Integration Console

49

-argument1) shift; out1=$1;; # if the current argument is argument1

-argument2) shift; out2=$1;; # if the current argument is argument2

esac

shift;

done

echo “NONE $out1 $out2”

If the script files are present in a remote location, then you can upload them to the eGmanager, by
clicking on theChoose button adjacent to thePath of script/batch File text box in Figure 2.39.
This will invoke a pop-up window using which you canBrowse for the files and specify their location.
Finally, click on theUpload button in the pop-up window, to upload the script/batch files in the
remote location to the eGmanager. However, if the files have already been uploaded to the eG
manager, then this procedure can be dispensed with. Instead, just specify the location of the files
against thePath of script/batch File text box.

Select the Load file (see Figure 2.39) check box if:

l The specified script/batch file has beenmodified, or

l Themeasures are being associated with the script/batch file for the very first time

If the script/batch file has changed, then selecting the Load file check box will ensure that when the
test runs, the agent downloads the revised version of the file from the manager, and executes the
same. This in turn ensures that the changes take effect. While associating the script/batch file with
the test for the first time, it is mandatory to select this check box, as doing so enables the agent to
download the file along with themeasurements during test execution.

Finally, click theGenerate button in Figure 2.39 to generate the test.

When a test’s measurements are successfully configured and the associated script/batch file has
been added to the eG Enterprise system, the eG Enterprise system prompts you to specify the
default threshold settings for each of the measurements made by the newly added test (see Figure
2.40). Click on themeasure name in Figure 2.40 to configure its thresholds.

Chapter 2: Adding/Modifying Tests Using the Integration Console

50

Figure 2.40: Specifying the threshold values of themeasures of the DiskSpaceTest_ex

2.5 Adding an SQL Query/Stored Procedure-based Test

Many applications store critical statistics in a database. To simplify the writing of tests, the Integration
Console includes an SQL Query test type that allows a user to include a new test that retrieves
measures by simply executing a sql query / stored procedure on the database, instead of writing
elaborate java code. The procedure for achieving this is explained in the following sections:

2.5.1 Using a SQLQuery

To understand this concept better, consider an example. In this example, a new test named SqlTest
of type Sql Query will be created, which will be configured to measure the number of current users
to a custom application. This application is executing on a host with IP address 192.168.10.8, and
uses an Oracle database executing on the same system (192.168.10.8) as its back end. This
example will demonstrate how application-specific metrics stored in the database can be retrieved
using a SQL query and integrated into the eGEnterprise system.

To add this test, first, click the Add New Test button in the INTEGRATION CONSOLE - TEST
page (see Figure 2.2). In the NEW TEST DETAILS page (see Figure 2.41) that appears next,
specify the following:

l Test name: SqlTest_ex
Note:

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add button in
Figure 2.41.

l Duplicate: Since the new test is not a duplicate of any existing test, set theDuplicate flag toNo.

l Execution: Internal, as the test is to be executed by an internal agent

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

51

Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

l Port based : Since the Webmall application is not listening on a specific TCP port, select No
against thePort based input selection.

l Test type: Sql Query

l DB type: If the query is to be executed on anOracle database, selectOracle from this list box. On
the other hand, if the query is to be executed on an MS SQL database, selectMsSql from the list
box. Similarly, if the query is to be retrieve data from a Sybase, MySql, DB2, or a PostgreSQL
database, then, choose Sybase, MySql, DB2, or PostGres from the list box. For our example,
selectOracle. Then, click theAdd button.

Figure 2.41: Providing the new test details

Next, using Figure 2.42, the parameters to the test need to be specified. To add the new parameter,
click theAdd New Parameter button in Figure 2.42.

Chapter 2: Adding/Modifying Tests Using the Integration Console

52

Figure 2.42: Modifying the details of the SqlTest_ex

As theSqlTest_exwill not be taking any parameters, simply proceed to configure themeasures for
this test by clicking theMeasure tab page in Figure 2.42.When Figure 2.43 appears, click theAdd
New Measure in Figure 2.43 to open the new measure details pop-up (see Figure 2.44).

Figure 2.43: TheMeasure tab page reporting that nomeasures have been configured for the SQL query-based
test

Chapter 2: Adding/Modifying Tests Using the Integration Console

53

Figure 2.44: Adding the CurrentUsers measure for the SQL query-based test

Figure 2.44 shows how a measurement of the Sql Query test type is specified using the new
measure details pop-up. To generatemeasures pertaining to the number of users, create ameasure
named CurrentUsers. Accordingly, specify the Measure name, the Database column size, the
Unit,Conversion Factor, and theProcess method (see Figure 2.44).

Note:

l To know more about theConversion factor, refer to Section 2.1.1.

l To know more about theProcess method, refer to Section 2.4.

Since we do not want to associate an alarm description with this measure, leave the Alarm display
string field blank (see Figure 2.44).

Finally, click on the Add button in Figure 2.44 to add the measure. When prompted to add more
measures for the SQLTest_ex, click No to stop configuring any more measures (see Figure Figure
2.10). ClickingNowill instantly lead you to theGenerate tab page (see Figure 2.45).

Chapter 2: Adding/Modifying Tests Using the Integration Console

54

Figure 2.45: Specifying the Sql query associated with the SqlTest_ex

In Figure 2.45, specify the SQL query that will, on execution, fetch the number of current users.
Finally, click the Generate button to integrate the test’s implementation into the eG Enterprise
system. You can even click on the Add Help button therein to create and upload Admin and
Monitor help pages for the new test. To know how, refer to Section 2.2.

An Sql Query test can be both descriptor-based and non-descriptor based. For example, the
following query returns a descriptor-based ouput. The query retrieves from a table namedmetatest

the number of records that carry the same value in a field named info.

select substr(info, 2), count(*) from metatest where info<>’+’ group by info

For a descriptor-based test, the first value of the results of the query must be a string. The other
results should be integer or double values. If the first value of a query’s result is not a string, the test is
not descriptor-based and only the first row of the result set will be used.

An Sql query can returnmultiple outputs. For example:

select read_rate, write_rate from disktest where msmt_time=(select max(msmt_
time) from disktest) and info=’+/’

When a test’smeasurements are successfully configured, the eGEnterprise system prompts the
user to specify the default threshold settings for each of themeasurementsmade by the newly
added test (see Figure 2.46).

Chapter 2: Adding/Modifying Tests Using the Integration Console

55

Figure 2.46: Specifying the threshold values of the CurrentUsers measure

2.5.2 Using Stored Procedure

Typically, large or complex processing that might require the execution of several SQL statements is
moved into stored procedures. Youmight choose a stored procedure over a SQL query, if:

l you want to executemultiple SQL queries, simultaneously

l you not only want to query metrics from the database, but also intend to perform mathematical
computations on the result set and display the net output in the eGmonitor interface.

To help you clearly understand how a stored procedure can be used to build a test’s functionality, let
us take another example. In this example, we would be attempting to create an ‘info-based’ test,
which will execute a stored procedure on an MS SQL server database; this stored procedure will
take a Host IP from the user, calculate the average CPU utilization of every processor on the given
host, and report the computations to the eGmanager.

To add the new test, first click the Test option in the Integration Console tile. Then, click on the
Add New Test button in the INTEGRATION CONSOLE - TEST Page that appears (see Figure
Figure 2.2) that opens next. In the new test details page (see Figure 2.47), specify the following:

l Test name: AvgCpuUtilTest_ex

Note:

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add button in
Figure 2.47.

l Duplicate: Since the new test is not a duplicate of any existing test, set theDuplicate flag toNo.

l Execution: Internal, as the test is to be executed by an internal agent

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

56

Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

l Port based: Select No against the Port based input selection.

l Test type: Sql Query

l DB type : For our example, select MsSQL from the list box. The other options are Oracle ,
Sybase,MySql,DB2, andPostGres.

Figure 2.47: Providing the details of the SQL stored procedure-based test

Once the test details are specified in the Test tab page of Figure 2.47, click the Add button to add
the new test. This will automatically take you to the Parameter tab page, where the parameters to
the test need to be specified. To add new test parameters, click the Add New Parameter button in
Figure 2.48. This will invoke the new test parameters pop-up (see Figure 2.48).

Chapter 2: Adding/Modifying Tests Using the Integration Console

57

Figure 2.48: Adding a new test parameter for the SQL stored procedure-based test

Since the AvgCpuUtilTest_ex takes the IP address of a monitored host as its parameter, specify
TargetHost against Parameter, and click the Add button in the new test parameters pop-up. eG
will now request you to confirm whether/not you want to add more parameters to the test. As the
AvgCpuUtilTest_ex in our example does not take any more parameters, click No in the message
box to stop adding parameters. You will now return to the Parameter tab page, where you can
quickly review your parameter settings (see Figure 2.49).

Figure 2.49: Reviewing the parameter specification of the SQL stored procedure-based test

Then, click the Measure tab page to configure the measures of the test. Figure 2.50 will then
appear.

Chapter 2: Adding/Modifying Tests Using the Integration Console

58

Figure 2.50: TheMeasure tab page indicating that nomeasures have been configured yet for the SQL stored
procedure-based test

Click the Add New Measure button to add a new measure for the test. The new measure details
(see Figure 2.51) will then pop up. To generate a measure that indicates the average CPU
utilization of a processor, create a measure with the Measure name, Avg_cpu_util. Also provide
theDatabase column size,Unit,Conversion Factor and the Process method specifications as
indicated by Figure 2.51.

l To know more about theProcess method, refer to Section 2.4.

l To know more about theConversion factor, refer to Section 2.1.1.

Figure 2.51: Adding the Avg_cpu_util measure of the SQL stored procedure-based test

Likewise, specify anAlarm display string similar to the one provided in Figure 2.51.

Chapter 2: Adding/Modifying Tests Using the Integration Console

59

After specifying all the required details, click on the Add button in Figure 2.51 to add the measure.
You will then be prompted to indicate whether/not you want to continue adding measures for the
test. Since the AvgCpuUtilTest_ex in our example does not report any more measures, click No
against the prompt to stop addingmoremeasures. This will lead you to Figure 2.52.

Figure 2.52: Specifying the stored procedure associated with the Ag_cpu_util measure

Against the SQL query field in Figure 2.52, issue the command for invoking a stored procedure
named avgCpuUtil, and click theGenerate button (see Figure 2.52).

The avgCpuUtil stored procedure has been specifically created for the purpose of our example, and
performs the following tasks:

l Retrieves the CPU utilization metrics for every processor that a specified host supports, from the
systemtest table in theMS SQL database

l Computes the average of the CPU utilizationmetrics per processor

Typically, the syntax for the command to be issued to execute a stored procedure is:
StoredProcedurename. In our example however, the stored procedure accepts a Host IP from the
user and retrieves the CPU usage statistics that correspond to the given IP address. To execute a
stored procedure that supports input parameters/arguments (such as the one in our example), you
should use the command: StoredProcedureName <<Argument>> . In the case of our example

therefore, the command would be: avgCpuUtil <<TargetHost>>, where avgCpuUtil is the name of
the stored procedure, and TargetHost is the name of the parameter that the procedure supports.

Note:

The arguments/parameters that are passed to a stored proocedure are case-sensitive, and should
always be enclosed within angular brackets (<<>>). This implies that the Argument provided in the
command should be of the same case as the parameter configured for the AvgCpuUtilTest_ex in

Chapter 2: Adding/Modifying Tests Using the Integration Console

60

Figure 2.48. Therefore, the parameter TargetHost should be expressed as <<TargetHost>> in the
command.

A stored procedure that is executed on an MS SQL database can take any number of arguments,
and returns a result set. A result set with multiple columns, where the first column contains character
values, is said to be ‘info-based’. On the other hand, if a result set consists of multiple columns, and
all columns support only numeric values, then such a result set is said to be ‘non-info-based’.

A Stored Procedure on MS SQL that returns an ‘Info-based’ result set:

An info based test will typically return multiple rows of output, with each row representing themetrics
for a particular info. A non-info based test, on the contrary, will always have a single row of output.

In case of a non-info-based test therefore:

The total number of measures for the test = The total number of columns returned by the query

In case of an info-based test:

The total number of measures for the test = (The total number of columns in the query output) - 1.

The first column of an info-based result set represents the name of the info.

Since the stored procedure in our example needs to return one set of measures for every processor
supported by a given TargetHost, it should return an info-based result set. Given below is the stored
procedure, avgCpuUtil, which has been created on theMS SQL server database for the purpose of
our example:

CREATE PROCEDURE avgCpuUtil @host varchar(30)
as
SELECT ‘Processor_’+info, avg(cpu_util) Avg_cpu_util

FROM systemtest
WHERE trgt_host=@host
GROUP BY info
ORDER BY info

Note that the stored procedure takes the argument, @host . You can see that the value for this
argument is matched with the value of the trgt_host column in the systemtest table. trgt_host is
a column in the systemtest table, which holds the IP address of the monitored hosts. While
configuring the AvgCpuUtilTest_ex using the eG administrative interface, you will be required to
pass a value to the targethost parameter of the test. When the stored procedure executes, it assigns
the TARGETHOST value to the @host argument, and then compares the @host value with the
values in the trgt_host column. Once a match is found, the procedure retrieves the processor

Chapter 2: Adding/Modifying Tests Using the Integration Console

61

names and CPU usage statistics that correspond to that trgt_host from the systemtest table,
computes the average CPU usage for every processor, and returns the resultant value to the alias,
Avg_cpu_util - this is nothing but themeasure that we had configured in Figure 2.51.

A Stored Procedure on MS SQL that returns a ‘Non-info-based’ result set:

Let us also see how a non- info-based stored procedure is to be constructed. When a stored
procedure returns a result set comprising of multiple columns, all of which contain only numeric
values, then this is a ‘non-info-based’ stored procedure. For example, assume that you need to
create a stored procedure that computes the average CPU utilization of a host across processors
(and not per processor). Such a stored procedure is ‘non-info-based’, and can be coded as follows:

CREATE PROCEDURE avgCpuUtil @host varchar(30)
as
SELECT avg(cpu_util) Avg_cpu_util

FROM systemtest

WHERE trgt_host=@host

A Stored Procedure on Oracle:

The broad steps that you should follow for creating a stored procedure onOracle are as follows:

1. First, you have to create a package of type CURSOR in the Oracle database from which the
metrics are to be extracted.

2. Next, you should write a function that returns a cursor of that type.

For instance, to write a stored procedure that should return the average CPU usage of every
processor on a specific host, you should follow the steps given below:

1. Create a package named, say, cpuUtilAvg_pack of type cpuUtilAvg_cursor in the Oracle
database fromwhich themetrics are to be extracted

CREATE OR REPLACE PACKAGE cpuUtilAvg_pack
AS
TYPE cpuUtilAvg_cursor IS REF CURSOR;
END cpuUtilAvg_pack;

2. Then, write a function that returns a cursor of type cpuUtilAvg_cursor

mailto:trgt_host=@host

Chapter 2: Adding/Modifying Tests Using the Integration Console

62

CREATE OR REPLACE PROCEDURE cpuUtilAvg_procedure (host IN systemtest.trgt_
host%TYPE, resultCursor OUT cpuUtilAvg_pack.cpuUtilAvg_cursor)
AS
BEGIN

OPEN resultCursor
FOR

SELECT decode(info,’+’,’DEFAULT’,info) as info, avg(cpu_util) from
systemtest WHERE trgt_host = host GROUP BY info ORDER BY info;
END cpuUtilAvg_procedure;

The above lines of code create a stored procedure named cpuUtilAvg_procedure, which performs
the following functions:

l Queries the average CPU utilization of a given host

l Groups the CPU usage value by processor

l Returns the results to the cursor, <packagename>.<packagetype> - i.e., cpuUtilAvg_
pack.cpuUtilAvg_cursor.

If there is no error in the generation of the stored procedure, the eG Enterprise system prompts the
user to specify the default threshold settings for the measurement made by the newly added test
(see Figure 2.53).

Figure 2.53: Specifying the threshold values of the Avg_cpu_util measure

You can even click on the Add Help button therein to create and upload Admin and Monitor help
pages for the new test. To know how, refer to Section 2.2.

2.6 Adding a Perfmon-based Test

A test of the Perfmon type can be executed only on Windows environments. Various applications
and services onWindows environments expose critical performance statistics via perfmon counters.
To allow an administrator to monitor any perfmon counter without having to write elaborate
programs, the Integration Console includes a Perfmon test type.

Chapter 2: Adding/Modifying Tests Using the Integration Console

63

This section facilitates the easy understanding and effective implementation of the Perfmon test
type, by taking the help of an illustrated example.

In this example, a ProcessorTest_ex of type Perfmon will be created and its measures will be
configured.

As before, begin adding a new test by selecting the Test option from the Integration Console tile. In
the integration console - test page that appears next, click the Add New Test button. The new test
details page (see Figure 2.54) appears, wherein the following details need to be provided for our
example:

l Test name : ProcessorTest_ex

Note:

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the add button in
Figure 2.54.

l Duplicate : Since the new test is not a duplicate of any existing test, set theDuplicate flag toNo.

l Execution : Internal, as an internal agent will be executing theProcessorTest_ex

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

l Port based : As the ProcessorTest_ex is to be run at the system level, select No against Port
Based to enable it to be associated with any of the server types.

l Test type : Perfmon

Chapter 2: Adding/Modifying Tests Using the Integration Console

64

Figure 2.54: Adding a new test of type Perfmon

Then, click the Add button to add the new test to the eG Enterprise system. The Parameter tab
page then opens (see Figure 2.55). Since the ProcessorTest_ex in our example does not take any
additional parameters, click theMeasure tab in Figure 2.55 to configuremeasures for the test.

Figure 2.55: The Parameter tab page that appears when configuring a test of type Perfmon

Figure 2.56 will then appear. Click theAdd New Measure button in Figure 2.56 to add a new
measure for the test.

Chapter 2: Adding/Modifying Tests Using the Integration Console

65

Figure 2.56: TheMeasure tab page indicating that nomeasures have been configured yet for the Perfmon Test

Figure 2.57 shows how a measurement of the Perfmon test type is specified. Here, specify
Privileged_Time as theMeasure name. Then, mention theDatabase column size, theUnit, the
Conversion Factor, and the Process method in the same manner as discussed in the previous
section. Here again, leave theAlarm display string blank.

Note:

l To know more about theProcess method, refer to Section 2.4.

l To know more about theConversion factor, refer to Section 2.1.1.

Figure 2.57: Specification of the first output (Privileged_Time) of the ProcessorTest_ex of type Perfmon

In addition to the above, a Counter name text box exists (see Figure 2.57). Against this text box,
enter the name of the perfmon counter associated with the specified measure. The name of the

Chapter 2: Adding/Modifying Tests Using the Integration Console

66

perfmon counter should be the same as that which appears in the Add Counters dialog box of the
Performance console in aMicrosoft Windows server (see Figure 2.58).

Figure 2.58: The Add Counters dialog box

After specifying all the required details, click on the Add button in Figure 2.57 to add the first
measure of the eG Enterprise system. You will then be prompted to indicate whether you want to
add more measures for the test. To add another measure, click the Yes button at the prompt. The
NEW MEASURE DETAILS window will pop up once again (see Figure 2.59). Provide the details of
theProcessor_Timemeasure in Figure 2.59.

Figure 2.59: Specifying the object and instance names associated with themeasures

Once the second measure is added, you will once again be prompted to indicate whether/not you
want to addmoremeasures for the test. This time, clickNo at the prompt. This will automatically lead
you to theGenerate tab page (see Figure 2.60).

Chapter 2: Adding/Modifying Tests Using the Integration Console

67

Figure 2.60: Configuring the implementation of the Perfmon test

As shown in Figure 2.60, proceed to specify the following details:

l Object name – Enter the name of the performance object with which the specified measures are
associated. This information can be obtained from the Add Counters dialog box of the
Performance console in aMicrosoft Windows server (see Figure 2.61).

Figure 2.61: The performance object associated with our example

TheAdd Counters dialog boxwith a Performance object selected

l Instances to be included – Mention the specific instances of the measure that need to be
monitored. Separate the multiple instances by commas (,). The list of instances associated with a
counter can be obtained from the Add Counters dialog box of the Performance console in a
Microsoft Windows server (see Figure 2.61).

l Instances to be excluded – If the Instances to be included are large in number, specify the
Instances to be excluded instead. The eGEnterprise system can thus be instructed to consider

Chapter 2: Adding/Modifying Tests Using the Integration Console

68

all instances except the ones specified against this field, during monitoring. The list of instances
associated with a counter can be obtained from the Add Counters dialog box of the
Performance console in a Microsoft Windows server. In our example, “0” has been specified
against the Instances to be excluded text box (see Figure 2.61). From Figure 2.61, we can infer
that _Total and 0 are the two instances associated with the % Privileged Time counter of the
Processor performance object. The same instances are also available for the% Processor Time
counter. Our example however, requires the measures pertaining to instance _Total only.
Therefore, in order to exclude the instance “0”, the same has been specified in the Instances to
be excluded text box.

Note:

TheObject names and names of Instances should be exactly the same as that which appear in the
Add Counters dialog box of the Windows Perfmon console. Even the case and spaces should
match. Otherwise, measureswill not be reported.

For more details on performance objects and instances, refer to the Microsoft Windows
documentation.

Finally, click the Generate button to integrate the test’s implementation into the eG Enterprise
system.

When a test’s measurements are successfully configured, the eG Enterprise system prompts the
user to specify the default threshold settings for each of the measurements made by the newly
added test (see Figure 2.62).

Figure 2.62: Specifying the threshold values for themeasures of the ProcessorTest_ex

2.7 Adding an SNMP-based Test

Most network devices and some applications support the Simple Network Management Protocol
(SNMP). To make it simple for administrators to monitor network devices and applications that are
not supported out-of-the-box by eG products, the Integration Console offers another programming-

Chapter 2: Adding/Modifying Tests Using the Integration Console

69

free test- type called the Snmp test type. Before adding an Snmp test you should decide what
objects from theManagement Information Base (MIB) are to bemonitored.

To illustrate the Snmp test, we will be considering two examples. While the first example will help
you configure a non- descriptor based Snmp test, the second one will help you configure a
descriptor-basedSnmp test.

2.7.1 Adding a Non-Descriptor-Based SNMPTest

First, let us take the example of a Nortel (Bay Networks) switch that is available in your environment.
This example involves creating a BaySwitchTest, which will use the Nortel (Bay Networks) switch’s
SNMPMIB to report the number of services running on it.

Begin adding a new test by selecting the Test option from the Integration Console tile (see Figure
2.1). In the INTEGRATION CONSOLE - TEST page that appears next, click the Add New Test
button. The NEW TEST DETAILS page (see Figure 2.63) appears, wherein the following details
need to be provided for our example:

l Test name – BaySwitchTest_ex

Note:

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add button in
Figure 2.63.

l Duplicate - Since the new test is not a duplicate of any existing test, set theDuplicate flag toNo.

l Execution – External, as an external agent will be executing the test.

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

l Port based – Indicate whether the target server is listening on a port or not. In our case, the
Nortel (BayNetworks) switch is not listening on a port.

l Test type - Snmp

Chapter 2: Adding/Modifying Tests Using the Integration Console

70

Figure 2.63: Adding a new test of type Snmp

Then, click the Add button to add the new test to the eG Enterprise system. The Parameter tab
page then opens automatically (see Figure 2.64).

Figure 2.64: Viewing a summary of the details of the BaySwitchTest_ex

Note that, unlike other test types, by default the Snmp test type takes three parameters: snmpPort,
snmpCommunity, and snmpversion (see Figure 2.64), with default values 161, public, and v1
respectively. You cannot delete these parameters, but they can be modified. Next, proceed to
configure the measures for the BaySwitchTest_ex by clicking on the Measure tab page in Figure
2.64.

Clicking the Add New Measure button in the Measure tab page will invoke the NEW MEASURE
DETAILs pop-up depicted by Figure 2.65. This figure shows how ameasurement of the Snmp type

Chapter 2: Adding/Modifying Tests Using the Integration Console

71

is specified. The first measure, No_of_services, represents the number of services running on the
Nortel (Bay Networks) switch. Now, enter No_of_services as the Measure name. Then, mention
the Database column size , the Unit , the Conversion Factor , and the Process method as
shown in Figure 2.65. Once again, leave theAlarm display string blank.

Note:

l To know more about theProcess method, refer to Section 2.4.

l To know more about theConversion factor, refer to Section 2.1.1.

Figure 2.65: Specification of the No_of_services measure for the BaySwitchTest_ex

In addition to the above, an Object OID text box exists (see Figure 2.65). In this text box, enter the
object ID of the specifiedmeasure. This object ID can be arrived at in either of the following ways:

l Bymanually “walking” theMIB tree of the application or network device of interest

l By uploading the SNMP MIB file of the application/network device to the eG manager and
browsing theMIB tree using the eGadministrative interface

In this example, we will discuss both themethodologies.

Determining the OID using SNMP Walk

For the purpose of our example, let us use the standardMIB- interface supported by the Bay switch.
The figure below depicts a part of theMIB of relevance to this example:

Chapter 2: Adding/Modifying Tests Using the Integration Console

72

Figure 2.66: A portion of theMIB tree of the Bay switch

As shown in Figure 2.66, the MIB tree comprises of various nodes and sub-nodes, also referred to
as “objects”. Note that every object is accompanied by a numeric value. These numeric values,
when put together in sequence using a dotted notation, provide the unique “object ID” of an object.

For example, the ID of the Internet object in the above tree would be: .1.3.6.1. 1, 3 and 6 are the
numbers representing the objects that precede the Internet object (i.e. ISO, ORG and DOD
respectively) in the MIB tree (see Figure 2.66). The final 1 in the object ID represents the Internet
object itself. By arranging these numbers in the order of their occurrence in the MIB tree using the
dotted notation, you will arrive at the ID of the Internet object.

You can arrive at the object ID of the No_of_services measure also in the same manner. The
sysServices object in the MIB tree (see Figure 2.66) returns the number of services currently
running on the Bay switch. Therefore, the ID of this object needs to be specified as the Object OID of
the No_of_servicesmeasure. The dashed lines (-------) in Figure 2.66 trace the path from the root
of theMIB tree to theNo_of_services object. Now, do the following:

Chapter 2: Adding/Modifying Tests Using the Integration Console

73

1. Follow the dashed lines closely and identify the objects through which the lines pass. In our
example, note that the lines pass through the following objects:

l ISO

l ORG

l DOD

l Internet

l Mgmt

l MIB-2

l System

l sysServices

2. Pick the numbers representing the objects. In our example, the numbers are:

l ISO : 1

l ORG : 3

l DOD : 6

l Internet : 1

l Mgmt : 2

l MIB-2 : 1

l System : 1

l sysServices : 7

3. Note the order in which the above-mentioned objects appear in the MIB tree, and arrange the
corresponding numbers in the same order using the dotted notation

4. You will now have the ID for theNo_of_servicesmeasure, which is: .1.3.6.1.2.1.1.7.

Now, specify this ID in theObject OId text box of Figure 2.65.

Finally, click theAdd button to add the new measure.

Determining the OID using the MIB Browser

If you do not want to use the manual procedure for deducing the OID, then, you can determine the
same quickly and easily using the MIB Browser that is built- into the eG Enterprise system for
browsing uploadedMIB files online.

To use theMIB browser, do the following:

Chapter 2: Adding/Modifying Tests Using the Integration Console

74

1. For the purpose of our example, let us use the MIB browser for specifying the Object OID of the
No_of_services measure. For that, click on the button next to the Object OID text box in
Figure 2.65. TheMIB Browser will then appear as depicted by Figure 2.67. To browse the MIB
file that we uploaded, first, select it from the MIB Files list in Figure 2.67. The MIB Files list
contains all MIB files that have been uploaded to the eGmanager. If the MIB file of the Bay switch
has not been uploaded to themanager yet, then click theUpload MIB button in Figure 2.67.

Figure 2.67: TheMIB Browser

2. A pop-up window depicted by Figure 2.68 will then appear. In the File to upload text box,
specify the full path to the MIB file to be uploaded. You can use the Browse button to locate the
MIB file of interest to you.

Figure 2.68: Specifying the full path to theMIB file to be uploaded

3. Once the MIB file path is specified, click theUpload button in Figure 2.67 upload the specified file
to the eGmanager.

4. If upload is successful, then the newly uploaded MIB file will automatically appear selected in the

Chapter 2: Adding/Modifying Tests Using the Integration Console

75

MIB Files list in theMIB Browser, as depicted by Figure 2.69. Upon selection of the MIB file, the
MIB browser automatically constructs a MIB tree using the SNMP MIB object definitions in the
file. To determine the OID of theNo_of_servicesmeasure, drill down theMIB tree by expanding
each of the nodes in the sequence, iso -> org -> dod -> internet -> mib-2-> system -> sysservices
(as depicted by Figure 2.69 and Figure 2.70).

Figure 2.69: TheMIB Files list displaying the newly uploadedMIB file

Chapter 2: Adding/Modifying Tests Using the Integration Console

76

Figure 2.70: Expanding theMIB tree to figure out the OID of the No_of_services measure

5. Upon selecting a node, the MIB browser automatically determines the OID of that node and
displays the same against the OID field in Figure 2.70. Accordingly, once you drill down to the

sysServices node, its complete OID will be automatically deduced and displayed against the oid

field. To insert this OID into theObject OID text box in the NEW MEASURE DETAILS Page of
Figure 2.65, just click theOK button in Figure 2.70.

You will then be prompted to confirmwhether/not you want to addmoremeasures. ClickNo here
to stop adding more measures. This will automatically lead you to the Generate tab page (see
Figure 2.71).

Figure 2.71: Generating the test of type SNMP

Chapter 2: Adding/Modifying Tests Using the Integration Console

77

The Generate tab page of Figure 2.71 reveals two options: Multiple elements and Single
element. To configure a descriptor-based test, select the Multiple elements option. In order to
configure a non- descriptor- based test, select the Single element option. In the case of the
BayswitchTest_ ex , the measurements do not involve access to the SNMP table objects.
Therefore, this test is a non-descriptor-based test. Hence, choose theSingle element option for our
example.

Finally, click the Generate button to integrate the test’s implementation into the eG Enterprise
system.

When a test’s measurements are successfully configured, the eG Enterprise system prompts the
user to specify the default threshold settings for each of the measurements made by the newly
added test.

Figure 2.72: Configuring thresholds for the non-descriptor-based SNMP test newly created

2.7.1.1 Adding a Descriptor-based SNMP Test

To illustrate a descriptor-based Snmp test, consider another example. Say you have a BEA Tuxedo
domain server running. This example involves the creation of a TuxDomainTest_ex, which will use
the Tuxedo server’s SNMP MIB to report the number of machines and servers running in a Tuxedo
domain.

Begin adding this test by selecting the Test option from the Integration Console tile (see Figure 2.1).
In the integration console - test page that appears next (see Figure 2.2), click the Add New Test
button. The NEW TEST DETAILS page (see Figure 2.73) appears, wherein the following details
need to be provided for our example:

l Test name –TuxDomainTest_ex

Note:

Chapter 2: Adding/Modifying Tests Using the Integration Console

78

While adding a new test using the Integration Console, ensure that the Test name always ends
with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add button in
Figure 2.73.

l Duplicate - Since the new test is not a duplicate of any existing test, set theDuplicate flag toNo.

l Execution – External, as an external agent will be executing the test

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot
add tests that need to be run by a remote agent – i.e., tests that need to be executed in an
agentlessmanner.

l Port based – Specify whether the target server listens on a port or not. In our case, the Tuxedo
domain server is not listening on a port.

l Test type - Snmp

Figure 2.73: Adding a descriptor-based test of type SNMP

Then, click the Add button in Figure 2.73 to add the new test to the eG Enterprise system. This will
automatically open the Parameter tab page (see Figure 2.74), where the default parameters of the
SNMP-based test will be displayed.

Chapter 2: Adding/Modifying Tests Using the Integration Console

79

Figure 2.74: Viewing the default parameters of the TuxedoDomainTest_ex

Since no additional parameters need be added to the new test, click theMeasure tab page in Figure
2.74 to add measures for the test. Figure 2.75 will then appear indicating that no measures have
been configured for the test yet.

Figure 2.75: TheMeasure tab page indicating that nomeasures have been configured yet for the descriptor-
based SNMP test

To add a new measure, click the Add New Measure button in Figure 2.75. The NEW MEASURE
DETAILS page of Figure 2.76 will then appear, where you can specify the details of the new
measure.

The first measure of the TuxDomainTest_ex in our example isCurr_machines. This represents the
current number of machines in the domain. Therefore, in the NEW MEASURE DETAILS page of

Chapter 2: Adding/Modifying Tests Using the Integration Console

80

Figure 2.76, specify Curr_machines as theMeasure name. Then, mention the Database column
size, the Unit, the Conversion Factor, and the Process method as shown in Figure 2.76 below.
As before, leave theAlarm display string, blank.

Note:

l To know more about theProcess method, refer to Section 2.4.

l To know more about theConversion factor, refer to Section 2.1.1.

Figure 2.76: Adding the Curr_machines measure to the eG Enterprise system

Then, in theObject OID text box, enter the object ID of the specified measure. Here again, you can
either manually specify the OID, or use theMIB browser that eG Enterprise provides. Let us begin
with themanual procedure.

Figure 2.77 depicts a part of theMIB for the Tuxedo domain server.

Chapter 2: Adding/Modifying Tests Using the Integration Console

81

Figure 2.77: A portion of theMIB for the Tuxedo domain server

The tuxTDomain object in the tree is a table of entries, where each entry includes at least four
attributes. The four objects that you can see below the tuxTDomain object in Figure 2.77 are the
attributes that are relevant to our example. Of these:

l The tuxTDomainID attribute returns the domain identification string

l The tuxTDomainCurMachines attribute returns the number of machines currently available in
the Tuxedo domain

l The tuxTDomainCurServers attribute returns the number of servers currently available in the

Chapter 2: Adding/Modifying Tests Using the Integration Console

82

Tuxedo domain

l The tuxTDomainState attribute returns the status of each of the servers in the Tuxedo domain

Since the tuxTDomainCurMachines object returns the number of machines currently available in
the Tuxedo domain, the ID of this object needs to be specified as the OBJECT OID of the Curr_

machinesmeasure. The dashed lines (-------) in Figure 2.77 trace the path from the root of the MIB
tree to the tuxTDomainCurMachines object. Now, do the following:

1. Follow the dashed lines closely and identify the objects through which the lines pass. In our
example, note that the lines pass through the following objects:

l ISO

l ORG

l DOD

l Internet

l Private

l Enterprise

l Bea

l Tuxedo

l tuxTDomain

l tuxTDomainCurMachines

2. Pick the numbers representing the objects. In our example, the numbers are:

l ISO - 1

l ORG - 3

l DOD - 6

l Internet - 1

l Private – 4

l Enterprise – 1

l Bea – 140

l Tuxedo – 300

Chapter 2: Adding/Modifying Tests Using the Integration Console

83

l tuxTDomain – 3

l tuxTDomainCurMachines - 41

3. Note the order in which the above-mentioned objects appear in the MIB tree and arrange the
corresponding numbers in the same order using the dotted notation.

4. You will now have the ID for theCurr_machinesmeasure, which is: .1.3.6.1.4.1.140.300.3.41.

Now, specify this ID in theObject OID text box of Figure 2.76. Finally, click theAdd button to add
the new measure.

On the other hand, if you want to use the MIB browser to determine the Object OID, then click on
the button next to theObject OID text box in Figure 2.76. TheMIB Browser then appears. In the
MIB browser, open the SNMP MIB file of the Tuxedo Domain server, view the MIB tree, and drill
down the MIB tree to determine the OID of the object. The detailed procedure for navigating the MIB
browser is available in theDetermining theOID using theMIB Browser section of the Section 2.7.1.

Note:

In order to use the MIB browser for specifying the OID of the Curr_machinesmeasure, you need to
ensure that the SNMPMIB of the Tuxedo Domain Server is uploaded to the eGmanager.

Once the first measure is added, click the Add button in Figure 2.76 to add the measure. When
prompted to addmoremeasures for the test, click theYes button. Figure 2.78 will then appear, using
which onemoremeasure can be added to the TuxDomainTest_ex.

Figure 2.78 depicts the procedure for adding the Curr_serversmeasure, which reports the number
of servers currently available in the Tuxedo domain.

Chapter 2: Adding/Modifying Tests Using the Integration Console

84

Figure 2.78: Adding the Curr_servers measure to the eG Enterprise system

Since the Curr_servers measure corresponds to the tuxTDomainCurServers attribute, the ID of
this attribute has to be specified as the Object OID of the Curr_servers measure. The dotted lines
(…..) in Figure 2.77 trace the path from the root of the MIB tree to the tuxTDomainCurServers
object. Follow this path to arrive at the Object oid of theCurr_serversmeasure. Accordingly, you will
have the ID: .1.3.6.4.1.140.300.3.45. Specify the same against the Object OID text box, click the
Add button, and add the second measure also to the eG Enterprise system. When prompted again
to add more measures, click the No button. This will automatically lead you to the Generate tab
page (see Figure 2.79).

As before, theGenerate tab page will reveal two options:Multiple elements and Single element.
In our example, since the measurements of the TuxDomainTest_ex involve access to SNMP table
objects, the test is a descriptor-based test. Hence, choose theMultiple elements option.

Chapter 2: Adding/Modifying Tests Using the Integration Console

85

Figure 2.79: Configuring a descriptor-based TuxedoDomainTest_ex

In the resulting page (see Figure 2.79), provide the following details:

l Element ID(OID): Here, specify the ID of the object that supplies the descriptors for a test. For
our example, the descriptor is the identification string of the Tuxedo domain. To manually specify
the OID that reports the identification string, once again refer to the MIB tree in Figure 2.77. The
object that returns this string value is the tuxTDomainID object of the MIB tree. Using the MIB
tree, you can manually arrive at the ID of this object, and the same will be:
.1.3.6.1.4.1.140.300.3.5.

To use the MIB browser instead, click on the button next to the Element ID (OID) text box in
Figure 2.79. In the MIB browser that then appears, open the SNMP MIB file of the Tuxedo
Domain server, view the MIB tree, and drill down the MIB tree to determine the OID of the object
that returns the descriptors of the TuxDomainTest_ex. For the detailed procedure, Determining
theOID using theMIB Browser section of Section 2.7.1.

l Element status(OID): In this text box, specify the ID of the object that returns the status of the
descriptor. This specification combined with that of the Element Valid Status (Value) field form
a filter condition that will enable you to view the measures pertaining to only those elements that
are in a particular state. Such a condition is optional. Therefore, if filtering is not required, you can
specify none in both these text boxes. In our example, we need to view themeasures pertaining to

only the “active” servers in the Tuxedo domain. Therefore, a filter condition is a must. Hence,
specify the ID of the tuxTDomainState object that returns the status (whether active or inactive)
of the servers in the Tuxedo domain. Its ID, as inferred from the MIB tree (see Figure 2.77) is
.1.3.6.1.4.1.140.300.3.4. To browse the MIB tree using the MIB browser, click on the button
next to the Element status (OID) text box in Figure 2.79. For the detailed procedure to use the
browser, refer to theDetermining theOID using theMIB Browser section of the Section 2.7.1.

Chapter 2: Adding/Modifying Tests Using the Integration Console

86

Note:

In order to use the MIB browser for specifying the Element ID (OID) and the Element status
(OID), you need to ensure that the SNMP MIB of the Tuxedo Domain Server is uploaded to the
eGmanager.

l Element valid status (Value): Specify the value that indicates the state of the descriptor. As
mentioned already, if filtering is not required, you can specify none here. In our example, the value
1 indicates that the server is active and value 0 indicates that it is inactive. As we require only the
measures pertaining to active servers, specify 1 here.

l Rediscovery period (In mins): Specify the frequencywith which rediscovery needs to occur. By
default, this is 60minutes. For our example, the default frequency is to be retained.

Now, click theGenerate button to integrate the test’s implementation into the eGEnterprise system.
When a test’s measurements are successfully configured, the eG Enterprise system prompts the
user to specify the default threshold settings for each of the measurements made by the newly
added test.

Figure 2.80: Configuring thresholds for themeasures of the descriptor-based SNMP test

2.8 Adding a JMX-based Test

Most enterprises have custom developed application components running directly on the JVM
directly or hosted on standard, off- the-shelf middleware application servers (such as WebLogic,
WebSphere, JBoss, etc.). While monitoring the JVMor the web application servers provides visibility
into the core engines that support the Java applications, it does not provide any information on the
custom application components. Java Management eXtensions (JMX) offers a standard way by
which applications can expose custom metrics for monitoring tools. Many custom applications use
JMX to publish information about their functioning to third partymonitoring applications.

Chapter 2: Adding/Modifying Tests Using the Integration Console

87

The eG Integration Console has now been enhanced to collect and report on applications that offer
JMX-based interfaces. Administrators now have a new Jmx option, using which they can specify the
specific JMX attributes that the eG agents must collect to monitor their custom applications.
Administrators can specify the JMX attribute name and the specific MBeans to be monitored, and
the eG agent takes care of periodically polling these attributes and reporting the metrics back to the
eG Enterprise console. This capability offers administrators a quick and easy way to integrate
monitoring of their custom Java applications into the enterprisemanagement console.

This section takes the help of an example to help you understand how a test of type Jmx can be built.
The Jmx test to be added for this purpose will be connecting to a custom Java application and
reporting the following to indicate how the JVMof that application uses its heapmemory.

The sections that follow will discuss how this can be achieved.

2.8.1 Enabling JMXSupport for the JRE of the Target Application

Prior to adding a new Jmx test, you need to enable the JMX support for the JRE of the target
application. The steps for the same differ according to the authentication/security status of JMX. By
default, JMX requires no authentication or security (SSL). In this case therefore, to use JMX for
pulling out metrics from a target application, the following will have to be done:

1. Login to the application host.

2. The <JAVA_HOME>\jre\lib\management folder used by the target application will typically
contain the following files:

l management.properties

l jmxremote.access

l jmxremote.password.template

l snmp.acl

3. Edit themanagerment.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false
com.sun.management.jmxremote.authenticate=false

Chapter 2: Adding/Modifying Tests Using the Integration Console

88

For instance, if the JMX listens on port 9005, then the first line of the above specification would
be:

com.sun.management.jmxremote.port=9005

4. Then, save the file.

5. Next, edit the start-up script of the target application, and add the following line to it:

Dcom.sun.management.config.file=<management.properties_file_path>

6. For instance, on aWindows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management.

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>

specification will be as follows: /usr/jdk1.5.0_05/jre/lib/management.

8. Save this script file too.

9. Next, during test configuration, do the following:

l Set JMX as themode;

l Set the port that you defined in step 3 above (in the management.properties file) as the jmx
remote port;

l Set the user and password parameters to none.

l Update the test configuration.

On the other hand, if JMX requiresonly authentication (and no security), then the following
stepswill apply:

1. Login to the application host. If the application is executing on a Windows host, then, login to the
host as a local/domain administrator.

2. As stated earlier, the <JAVA_HOME>\jre\lib\management folder used by the target application
will typically contain the following files:

l management.properties

l jmxremote.access

l jmxremote.password.template

l snmp.acl.template

Chapter 2: Adding/Modifying Tests Using the Integration Console

89

3. First, copy the jmxremote.password.template file to any other location on the host, rename it as

as jmxremote.password , and then, copy it back to the <JAVA_HOME>\jre\lib\management
folder.

4. Next, edit the jmxremote.password file and the jmxremote.access file to create a user with read-
write access to the JMX. To know how to create such a user, refer to Section 2.8.1.1.

5. Then, proceed tomake the jmxremote.password file secure by granting a single user “full access”
to that file. For monitoring applications executing onWindows in particular, only the Owner of the
jmxremote.password file should have full control of that file. To know how to grant this privilege to
the Owner of the file, refer to Section 2.8.1.2.

6. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be
granted full access to the jmxremote.password file, by following the steps below:

l Login to the host as the user who is to be granted full control of the jmxremote.password file.

l Issue the following command:

chmod 600 jmxremote.password

l This will automatically grant the login user full access to the jmxremote.password file.

7. Next, edit themanagement.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false
com.sun.management.jmxremote.authenticate=true
com.sun.management.jmxremote.access.file=<Path of jmxremote.access>
com.sun.management.jmxremote.password.file=<Path of jmxremote.password>

For instance, assume that the JMX remote port is 9005, and the
jmxremote.access and jmxremote.password files exist in the following
directory on a Windows host: D:\bea\jrockit_150_11\jre\lib\management. The
specification above will then read as follows:

com.sun.management.jmxremote.port=9005

com.sun.management.jmxremote.access.file=D:\\bea\\jrockit_ 150_
11\\jre\\lib\\management\\jmxremote.access

com.sun.management.jmxremote.password.file=D:\\bea\\jrockit_ 150_
11\\jre\\lib\\management\\jmxremote.password

Chapter 2: Adding/Modifying Tests Using the Integration Console

90

8. If the application in question is executing on a Unix/Solaris/Linux host, and the jmxremote.access

and jmxremote.password files reside in the /usr/jdk1.5.0_05/jre/lib/management folder of the
host, then the last 2 lines of the specification will be:

com.sun.management.jmxremote.access.file=/usr/jdk1.5.0_
05/jre/lib/management/jmxremote.access
com.sun.management.jmxremote.password.file=/usr/jdk1.5.0_
05/jre/lib/management/jmxremote.password

9. Finally, save the file.

10. Then, edit the start-up script of the target application, include the following line in it, and save the
file:

Dcom.sun.management.config.file=<management.properties_file_path>

11. For instance, on aWindows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management.

12. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path>

specification will be as follows: /usr/jdk1.5.0_05/jre/lib/management.

Note:

eG Enterprise cannot use JMX that requires both authentication and security (SSL), for
monitoring the target Java application.

2.8.1.1 Securing the ‘jmxremote.password’ file

To enable the eG agent to use JMX (that requires authentication only) for monitoring a Windows-
based Java application, you need to ensure that the jmxremote.password file in the <JAVA_
HOME>\jre\lib\management folder used by the target application is accessible only by the Owner of
that file. To achieve this, do the following:

1. Login to theWindows host as a local/domain administrator.

2. Browse to the location of the jmxremote.password file usingWindowsExplorer.

3. Next, right-click on the jmxremote.password file and select the Properties option (see Figure
2.81).

Chapter 2: Adding/Modifying Tests Using the Integration Console

91

Figure 2.81: Selecting the Properties option

4. FromFigure 2.82 that appears next, select theSecurity tab.

Figure 2.82: The Properties dialog box

However, if you are onWindows XP and the computer is not part of a domain, then the Security
tabmay bemissing. To reveal theSecurity tab, do the following:

Chapter 2: Adding/Modifying Tests Using the Integration Console

92

l OpenWindowsExplorer, and choose Folder Options from the Toolsmenu.

l Select the View tab, scroll to the bottom of the Advanced Settings section, and clear the
check box next toUse Simple File Sharing.

Figure 2.83: Deselecting the ‘Use simple file sharing’ option

l ClickOK to apply the change

l When you restart WindowsExplorer, theSecurity tab would be visible.

l Next, select theAdvanced button in theSecurity tab of Figure 2.84.

Chapter 2: Adding/Modifying Tests Using the Integration Console

93

Figure 2.84: Clicking the Advanced button

5. Select theOwner tab to see who the owner of the file is.

Figure 2.85: Verfying whether the Owner of the file is the same as the application Owner

6. Then, proceed to select the Permissions tab from Figure 2.86 to set the permissions. If the

Chapter 2: Adding/Modifying Tests Using the Integration Console

94

jmxremote.password file has inherited its permissions from a parent directory that allows users or
groups other than the Owner to access the file, then clear the Inherit from parent the
permission entries that apply to child objects check box in Figure 2.86.

Figure 2.86: Disinheriting permissions borrowed from a parent directory

7. At this point, you will be prompted to confirm whether the inherited permissions should be copied
from the parent or removed. Press theCopy button in Figure 2.87.

Chapter 2: Adding/Modifying Tests Using the Integration Console

95

Figure 2.87: Copying the inherited permissions

8. Next, remove all permission entries that allow the jmxremote.password file to be accessed by
users or groups other than the file Owner. For this, click the user or group and press theRemove
button in Figure 2.87. At the end of this exercise, only a single permission entry granting Full
Control to the owner should remain in Figure 2.88.

Chapter 2: Adding/Modifying Tests Using the Integration Console

96

Figure 2.88: Granting full control to the file owner

9. Finally, click theApply andOK buttons to register the changes. The password file is now secure,
and can only be accessed by the file owner.

2.8.1.2 Configuring the eG Agent to Support JMX Authentication

If the eG agent needs to use JMX for monitoring a Java application, and this JMX requires
authentication only (and not security) , then any new JMX test created using the Integration

Console component should be configured with the credentials of a valid user to JMX, with read-write
rights. The steps for creating such a user are detailed below:

1. Login to the application host. If the application being monitored is on a Windows host, then login
as a local/domain administrator to the host.

2. Go to the <JAVA_HOME>\jre\lib\management folder used by the target application to view the
following files:

l management.properties

l jmxremote.access

Chapter 2: Adding/Modifying Tests Using the Integration Console

97

l jmxremote.password.template

l snmp.acl.template

3. Copy the jmxremote.password.template file to a different location, rename it as

jmxremote.password, and copy it back to the <JAVA_HOME>\jre\lib\management folder.

4. Open the jmxremote.password file and scroll down to the end of the file. By default, you will find
the commented entries indicated by Figure 2.89 below:

Figure 2.89: Scrolling down the jmxremote.password file to view 2 commented entries

5. The two entries indicated by Figure 2.89 are sample username password pairs with access to

JMX. For instance, in the first sample entry of Figure 2.89, monitorRole is the username and

QED is the password corresponding tomonitorRole. Likewise, in the second line, the controlRole

user takes the passwordR&D.

6. If you want to use one of these pre-defined username password pairs during test configuration,
then simply uncomment the corresponding entry by removing the # symbol preceding that entry.
However, prior to that, you need to determine what privileges have been granted to both these
users. For that, open the jmxremote.access file in the editor.

Chapter 2: Adding/Modifying Tests Using the Integration Console

98

Figure 2.90: The jmxremote.access file

7. Scrolling down the file (as indicated by Figure 2.90) will reveal 2 lines, each corresponding to the
sample username available in the jmxremote.password file. Each line denotes the access rights

of the corresponding user. As is evident from Figure 2.90, the user monitorRole has only read-

only rights, while user controlRole has readwrite rights. Since the eG agent requires readwrite
rights to be able to pull out key JVM-related statistics using JMX, we will have to configure the test
with the credentials of the user controlRole.

8. For that, first, edit the jmxremote.password file and uncomment the controlRole <password> line
as depicted by Figure 2.91.

Figure 2.91: Uncommending the ‘controlRole’ line

Chapter 2: Adding/Modifying Tests Using the Integration Console

99

9. Then, save the file. You can now proceed to configure the tests with the user name controlRole

and passwordR&D.

10. Alternatively, instead of going with these default credentials, you can create a new username

password pair in the jmxremote.password file, assign readwrite rights to this user in the

jmxremote.access file, and then configure the eG tests with the credentials of this new user. For

instance, let us create a user johnwith password john and assign readwrite rights to john.

11. For this purpose, first, edit the jmxremote.password file, and append the following line (see
Figure 2.92) to it:

john john

Figure 2.92: Appending a new username password pair

12. Save the jmxremote.password file.

13. Then, edit the jmxremote.access file, and append the following line (see Figure 2.93) to it:

john readwrite

Chapter 2: Adding/Modifying Tests Using the Integration Console

100

Figure 2.93: Assigning rights to the new user in the jmxremote.access file

14. Then, save the jmxremote.access file.

15. Finally, proceed to configure the tests with the user name and password, john and john,
respectively.

2.8.2 Adding a New Jmx Test

To add a new JMX test, first select the Test option from the Integration Console tile. Click theAdd
New Test button in the INTEGRATION CONSOLE – TEST page that appears next.

Figure 2.94 will then appear.

Chapter 2: Adding/Modifying Tests Using the Integration Console

101

Figure 2.94: Adding a new JMX test

In Figure 2.94, provide the Test name, set Duplicate to No as the new test is not a duplicate of any
existing IC test, indicate the Execution mode, and also mention whether the test is a Port based
test or not. Finally, select Jmx from the Test type list and click theAdd button to add the test.

Note:

Using the Integration Console plugin, you can add an internal or an external test, but you cannot add
tests that need to be run by a remote agent – i.e., tests that need to be executed in an agentless
manner.

This will automatically lead you to theParameter tab page (see Figure 2.95).

Chapter 2: Adding/Modifying Tests Using the Integration Console

102

Figure 2.95: Viewing the default parameters of the Jmx test

By default, any new test of type Jmxwill take the following parameters:

l Jmx_Remote_Port : By default, this parameter is set to unconfigured. This implies that while
configuring the JavaHeapMemory_ex test for the javaapp application in our example, you should

manually configure this parameter with the port number at which JMX listens for requests from
remote hosts. During test configuration, ensure that you specify the same port that you configured
in the management.properties file; by default, this file will be in the <JAVA_
HOME>\jre\lib\management folder used by the target application (see Section 2.8.1).

l Jndi_Name: The JNDINAME is a lookup name for connecting to the JMX connector. By default,

this is set to jmxrmi. If you have registered the JMX connector in the RMI registery using a different

lookup name, then, while managing the javaapp application and configuring its tests, change this
default value to reflect the change in the lookup name.

l user and password : By default, both these parameters are set to none. However, if JMX
requires authentication only (but no security), then, at the time of configuring this test for the
Javaapp application (in our example), ensure that the user and password parameters are
configured with the credentials of a user with read-write access to JMX. To know how to create
this user, refer to Section 2.8.1.2.

Since no additional parameters need to be added for the JavaHeapMemory_ex test in our
example, simply click on the Measure tab page in Figure 2.95 to add a new measure. Figure 2.96
will then appear.

Chapter 2: Adding/Modifying Tests Using the Integration Console

103

Figure 2.96: Adding a new measure for the new Jmx test

Figure 2.96 allows you the flexibility to choose frommultiple methods for configuring themeasures of
the new Jmx test; thesemethods are as follows:

l MBean Auto Discovery

l Load MBeans from File

l Manual Entry

To help you understand when and how each of these methods should be used, we will be taking the
example of theHeap_memory_usedmeasure of this test and will illustrate how this measure can be
added using each of themethodologies listed above.

2.8.2.1 Adding a Measure Using MBean Auto Discovery

The MBean Auto Discovery option enables the eG manager to automatically discover the
domains and MBeans supported by a target Java application, so that you can configure any of the
Mbean attributes as a measure with minimal manual effort. Select this option if you do not know the
exact Mbean attribute name to be configured as a measure for a new JMX test. When this option is
chosen, you will have to additionally specify the following in the NEW TEST DETAILS page as
depicted by Figure 2.97 below:

Chapter 2: Adding/Modifying Tests Using the Integration Console

104

Figure 2.97: Configuring the auto-discovery of MBeans

l Host Name / IP: Specify the host name / IP address of the system hosting the javaapp in our
example;

l Jmx Remote Port: Indicate the port at which the JMX of the javaapp in our example listens;

l JNDI name: Specify the lookup name for connecting to the JMX connector. By default, this is set
to jmxrmi.

l User name and Password: By default, both these parameters are set to none. However, if JMX
requires authentication only (but no security), then, ensure that these fields are configured
with the credentials of a user with read-write access to JMX. To know how to create this user,
refer to Section 2.8.1.2.

Finally, click theStart discovery button.

Doing so will automatically populate the Domain Name drop-down list with the complete list of
domains supported by the Java application in our example. From this list, pick the domain that
contains the MBeans of interest to us – for our example, pick java.lang as the domain (see Figure
2.98).

Chapter 2: Adding/Modifying Tests Using the Integration Console

105

Figure 2.98: Selecting a domain for MBean discovery

To proceed with the configuration, click on theConfigure button in Figure 2.98.

Doing so will invoke Figure 2.99 using which a new measure can be added. Let us begin by adding
theHeap_memory_usedmeasure. In order to achieve this, follow the steps given below:

1. SpecifyHeap_memory_used as theMeasure name.

2. SelectNumber(20.4) as theDatabase column size.

3. Pickmb as theUnit of themeasurement.

4. Pick unaltered as theProcess method.

Note:

To know more about theProcess method, refer to Section 2.4.

5. Since java.lang has been chosen as the Domain name, the eG manager will automatically
discover all the MBeans that are available within java.lang, and will make them available for
selection in theMbean name list. From this list, choose the MBean that reports memory-related
statistics for the javaapp application in our example. This would beMemory for our example.

Chapter 2: Adding/Modifying Tests Using the Integration Console

106

Note:

Once aDomain is chosen for a test, all themeasures of that test should be based on theMBeans
and attributeswithin that domain only.

6. Upon selection of an Mbean name, all the attributes of the chosen Mbean will be automatically
discovered and displayed as the options of the Attribute name list. Now, from the Attribute name
list, select the Mbean attribute that reports how much heap memory has been utilized by the
javaapp application in our example – for our example, the attribute to be chosen is
HeapMemoryUsage>used. Note that, by default, eG Enterprise monitors the chosen ‘Attribute’
across all thoseMBeans to which it applies.

7. The chosen attribute reports heap memory usage in Bytes. However, the Unit of measurement
that we have set for the Heap_memory_used measure ismb. This implies that the eG manager
should first convert the number of bytes into MB and then display the final output in the eG
monitoring console. To enable bytes to MB conversion, you need to pick a Conversion Factor.
The options available by default in the Conversion Factor drop-down list, do not allow ‘Bytes to
MB’ conversion. You can however include this capability into the eG Enterprise system by
following the steps discussed below:

l Edit the eg_ui.ini file in the <EG_INSTALL_DIR>\manager\config directory.

l To include a new conversion factor, you will have to append an entry of the following format to
the [CONVERSION_FACTORS] section of the file:

DisplayName=Value

l For instance, to support ‘Bytes to MB’ conversion, append the following entry to the
[conversion_factors] section:

/1048576 (Bytes toMB)=0.00000095367431640625

l In this case, the DisplayName, /1048576 (Bytes to MB), will be displayed as an option in the
Conversion Factor drop- down list. If this option is chosen, then, at test run time, the
conversion value of 0.00000095367431640625 will be multiplied with the actual measure
value that is reported in Bytes to convert it into MB. Care should be taken while specifying
the conversion value, as incorrect values will result in wrong measures being
reported by the test.

l Once the new entry is appended to the [CONVERSION_FACTORS] section, save the file.

Chapter 2: Adding/Modifying Tests Using the Integration Console

107

l Once this is done, you will find the string /1048576 (Bytes to MB) appear as an option in the
Conversion Factor list. For the purpose of our example, pick this as the conversion factor.

l Provide a brief description of the alarm in theAlarm display string text box.

l Finally, click theAdd button to add the new measure.

Figure 2.99: Adding the Heap_memory_usedmeasure of the Jmx test using theMBean auto-discovery
method

2.8.2.2 Adding a New Measure by Loading MBeans from a File

For Mbean Autodiscovery to work, the eG manager should be able to access the target
application. However, in environments where connectivity issues exist between the eG manager
and the target Java application say, owing to strict firewall rules, autodiscovery of MBeans may not
be possible. In such situations, you can enable the eG agent to load the MBeans of an application
onto a file, and then make that file available on the eG manager host, so that the eG manager can
download the MBeans from the file. The first step towards this end is to generate the file to which
MBeans are to be loaded.

The eG agent is bundled with an AgentMbeanDiscovery.bat file, which is available in the <EG_
INSTALL_DIR>\lib directory of the eG agent host. If this batch file is executed, it requests for
information that enables access to the target Java application; upon accessing the application, the
batch file automatically discovers theMBeans of that application and loads them on to a file.

Chapter 2: Adding/Modifying Tests Using the Integration Console

108

Like the eG agent, the eG manager is also bundled with a batch file named
MgrMbeanDiscovery.bat. This file is available in the <EG_INSTALL_DIR>\lib directory of the eG
manager host. The MgrMbeanDiscovery.bat file can be used instead of the
AgentMbeanDiscovery.bat, only if all the following conditions prevail:

l The target application should be available on the eG manager host, but the eG manager should
not be able to autodiscover theMBeans using the procedure discussed in Section 2.8.2.1

l No agent should be available on the eGmanager host;

l No other agent should be able to access the target application.

For instance, you could have a redundant manager setup, where the target Java application
executes on a secondarymanager host; this host may not have any agent executing on it. Moreover,
for security reasons, the firewall could have been configured in such a way that both the primary
manager and the eGagents are denied access to the target application.

In such a case, you may first consider auto-discovering the MBeans using the procedure discussed
in Section 2.8.2.1 . Since this requires access to the eG administrative interface, it cannot be
performed from the secondary manager; also, since firewall rules disallow the primary manager-
Java application communication, autodiscovery cannot be performed via the primary manager
either. Moreover, as no agent has been deployed on the secondary manager host and because the
target application is inaccessible to all other agents, the AgentMbeanDiscovery.bat file too cannot
be used. In such a case, you can use theMgrMbeanDiscovery.bat file on the secondary manager
host to load theMbeans of the application to a file.

Follow the steps below to load the MBeans of the application to a file using the
AgentMbeanDiscovery.bat file:

1. Go to the command prompt of the agent host.

2. Switch to the <EG_INSTALL_DIR>\lib directory.

3. To load the MBeans of the javaapp application on to a file, issue the following command at the
prompt:AgentMbeanDiscovery.bat

4. Upon execution, the batch file will request you to specify the following:

Enter the Target Host IP:

Enter the Jmx port:

Enter the JNDIPath:

Chapter 2: Adding/Modifying Tests Using the Integration Console

109

Enter the Username:

Enter the Password:

Specify the IP address of the target application, the JMX port at which the application listens, the
JNDI lookup name of the JMX connector, and the username and password of the JMX.

5. Based on the information provided, the batch file auto-discovers the MBeans of the application,
generates a file of the format MBeans_ IpofApplication_JMXPort.txt in the <EG_AGENT_
INSTALL_DIR>\lib directory, and copies the discoveredMBeans to the file.

6. Finally, make sure that the file so created is available in the <eg_manager_install_dir>\tmp folder
on the eGmanager host. To achieve this, you can opt for either of the following:

a. You can quickly upload the file to the <EG_MANAGER_INSTALL_DIR>\tmp on the eG
manager host from the eGadministrative interface;

b. You can manually copy the file so created to the <EG_MANAGER_INSTALL_DIR>\tmp
directory on the eGmanager host

Note:

The MgrMbeanDiscovery.bat file is to be executed the same way as the
AgentMbeanDiscovery.bat . However, the difference in the case of the
MgrMbeanDiscovery.bat file is, you need to login to the eG manager host to run the batch file,
and the command to be executed is: MgrMbeanDiscovery.bat. Also, since the MBean file will
be created in the <EG_MANAGER_INSTALL_DIR>\lib directory, you do not have to once again
copy/upload the file to the eGmanager host.

If you choose option (a) – i.e., if you choose to upload the file via the eGadministrative interface –
then follow the procedure discussed in Section 2.8.2.2.1 to upload the file and to use it for
configuring ameasure. On the other hand, if you havemanually copied the file to the eGmanager
host (as suggested by option (b)), then, such a file will pre-exist on the eGmanager host at the time
of measure configuration. To know how to use an existingMBean file for configuring ameasure,
refer to Section 2.8.2.2.2.

2.8.2.2.1 Uploading an MBean File to the eG Manager Host and Using that File
to Add a New Measure

For our example, we will be configuring the Heap_memory_used measure using the Mbean
attributes loaded from a file. Now, proceed as discussed below:

Chapter 2: Adding/Modifying Tests Using the Integration Console

110

1. Select theUpload MBean File option in Figure 2.100 to upload the file to the eGmanager host.

Figure 2.100: Selecting the option to loadMBeans from a file

2. Next, specify the full path to theMBeans file that was generated previously in thePath of the file
text box. To browse for the file path and upload it, click theUpload button in Figure 2.100. Figure
2.101 will then appear.

Figure 2.101: Browsing for the file and uploading it

3. Click on the Browse button in Figure 2.101 to browse for the file path, and then click the Upload
button therein to upload the file.

4. If the file is successfully uploaded to the eG manager, then the path to which the file has been
uploaded will be displayed in thePath of the file text box as depicted by Figure 2.102.

Chapter 2: Adding/Modifying Tests Using the Integration Console

111

Figure 2.102: The path to which theMBean file is uploaded being displayed against Path of the file

5. If a valid MBean file has been uploaded, then the eG Enterprise system will automatically
discover the domains from the uploaded file and display the same in the Domain Name list of
Figure 2.102. To proceed with the measure configuration, pick a domain from the list. For our
example, pick java.lang as theDomain Name.

Note:

If a test reports multiple measures, then the MBeans and/or attribute names mapped to all such
measures should belong to the sameDomain.

6. Then, click the Configure button in Figure 2.102, so that the NEW MEASURE DETAILS
window appears (see Figure 2.103).

Chapter 2: Adding/Modifying Tests Using the Integration Console

112

Figure 2.103: Configuring the Heap_memory_usedmeasure by loadingMBeans from a file uploaded to the
eGmanager

7. Configure theHeap_memory_usedmeasure in the sameway as discussed in Section 2.8.2.2.1.

8. Finally, click theAdd button.

2.8.2.2.2 Adding a Measure Using an Existing MBean File

An MBean file may pre-exist in the <EG_MANAGER_INSTALL_DIR>\tmp directory in the eG
manager host in the following situations:

l TheMBean file may have beenmanually copied to the eGmanager host;

l The MBean file may have already been uploaded to the eGmanager using steps 1 to 5 of Section
2.8.2.2.1.

l The MBean file may have been created using the MgrMbeanDiscovery.bat file (and not the
AgentMbeanDiscovery.bat)

To use an existingMBean file to configure a new measure for a jmx test, do the following:

1. Select theUse Existing MBean File option (see Figure 2.104). Once this option is chosen, then
all the MBean files that pre-exist in the <EG_MANAGER_INSTALL_DIR>\tmp directory in the
eGmanager host will populate the Path of the file drop-down. From this drop-down, select the

Chapter 2: Adding/Modifying Tests Using the Integration Console

113

file that you want to use for measure configuration.

Figure 2.104: Using an existingMBean file

2. Then, click the Get Domains button to get the domains. The eG Enterprise system will then
automatically discover the domains from the chosen file and display the same in the Domain
Name list of Figure 2.105. Pick a domain and click the Configure button to proceed with the
measure configuration.

Figure 2.105: Selecting a domain from the domains discovered from an existingMBean file

3. When Figure 2.106 appears, add theHeap_meory_usedmeasure using the steps 1-9 in Section
2.8.2.1.

Chapter 2: Adding/Modifying Tests Using the Integration Console

114

Figure 2.106: Adding the Heap_memory_usedmeasure by discovering domains from an existingMBean
file

4. Finally, click theAdd button in Figure 2.106 to add themeasure.

2.8.2.3 Adding a Measure Using the Manual Entry Method

Use the Manual Entry method if you know the exact domain, Mbean, and attribute that can report
the measure you want, and do not wish to needlessly auto-discover MBeans or load them from a file
for this purpose.

For the purpose of our example, let us add theHeap_memory_usedmeasure, but this time using the
manual entry method. To achieve this, first pick the Manual Entry option from Figure 2.97. Then,
proceed to configure themeasure as depicted by Figure 2.107.

Chapter 2: Adding/Modifying Tests Using the Integration Console

115

Figure 2.107: Configuring the Heap_memory_usedmeasuremanually

In Figure 2.107, specify the following:

l SpecifyHeap_memory_used as theMeasure name.

l PickNumber(20,4) as theDatabase column size.

l Choosemb as theUnit of measurement.

l Select unaltered as theProcess Method.

Note:

To know more about the Processmethod, refer to Section 2.4.

l Specify HeapMemoryUsage>committed as the Attribute name that reports the initial heap
memory. Note that, by default, eG Enterprise monitors the chosen ‘Attribute’ across all
those MBeans to which it applies.

Note:

If a test reports multiple measures, then the MBean and/or attribute name that is included in each
measure specification should belong to the same domain that was chosen for the first measure.

To identify the name of the attribute, do the following:

l Go to the command prompt on the target Java application host;

l Switch to the <JAVA_INSTALL_DIR>\bin directory.

l Issue the jconsole command.

Chapter 2: Adding/Modifying Tests Using the Integration Console

116

l Figure 2.108 will then appear.

Figure 2.108: Jconsole

l In the Tree structure in the left panel of Figure 2.108 locate the java.lang domain to which the
Mbean of interest to our example belongs.

l Expand the java.lang domain; since the Heap_memory_used measure in our example is a
memory relatedmeasure, click on theMemoryMbeanwithin the java.lang domain.

l The right panel of Figure 2.108 will change to display the Attributes of the Memory Mbean.
The top attribute is the HeapMemoryUsage attribute, which reports committed heap memory
as its sub-attribute.

l Therefore, to drill down to the heap memory committed attribute, click on the
HeapMemoryUsage attribute in the right panel.

l Figure 2.109 will then appear.

Chapter 2: Adding/Modifying Tests Using the Integration Console

117

Figure 2.109: Drilling down to the ‘used’ attribute

l Figure 2.109 displays the sub-attributes of the HeapMemoryUsage attribute. One of these
sub-attributes is the used attribute.

l Therefore, against the Attribute name field in Figure 2.107, type both the main attribute –
HeapMemoryUsage- and its sub-attribute – used- separated by the ‘>’ symbol.

l Since the specified attribute reports the used heap memory in bytes, you need to select a
Conversion Factor to convert the bytes into MB (which is the Unit of measurement of this
measure). Therefore, select /1048576 (Bytes toMB) as theConversion Factor.

l If required, provide an alarm description in theAlarm display string text box.

l Finally, click theAdd button in Figure 2.107.

When prompted to configure additional measures for the test, click No to indicate that no more
measures need be added. Doing so will automatically lead you to the Generate tab page (see
Figure 2.110).

If the measures were added using auto-discovered MBeans or the ones loaded from a file, then the
Domain that you chose at the time of adding the measures, will be displayed against Domain
Name in Figure 2.110. In the case of our example therefore, java.lang will be displayed as the
defaultDomain Name, if auto-discovered/loadedMBeanswere used for configuring themeasures.

Chapter 2: Adding/Modifying Tests Using the Integration Console

118

On the contrary, if themeasures were added using themanual entrymethod, then no Domain Name
will be displayed here. In this case, you will have to manually enter the Domain Name. This means
that if the Heap_memory_usedmeasure in our example had been configured by manually entering
the attribute name, then, you will have tomanually specify java.lang as theDomain Name here.

Figure 2.110: Generating the Jmx test

Sometimes, the Attribute that reports the value of a measure could be associated with more than
one MBean. In such a case, by default, eG Enterprise monitors theAttribute across all the MBeans
with which it is mapped. If you want to override this default setting – i.e., if you want the new test to
monitor the given Attribute for specific MBeans only and not all of them – then, you can use the
MBeans to be included andMBeans to be excluded text boxes for this purpose. To instruct the
new test to include a few specific MBeans alone in itsmonitoring scope, provide a comma-separated
list of MBeans in the MBeans to be included text box. Similarly, if you want the test to exclude
specific MBeans from monitoring, provide a comma-separated list of these MBeans in theMBeans
to be excluded text box. Note that these specifications too are not measure-specific and
apply to all the measures configured for a test.

Click on the Generate button in Figure 2.110 to generate the measures of the test. Figure 2.111
then appears allowing you to define the thresholds for themeasure that we had configured earlier for
the JavaHeapMemory_ex test in our example.

Figure 2.111: Defining the thresholds for themeasures configured for the JavaHeapMemory_ex test

Chapter 2: Adding/Modifying Tests Using the Integration Console

119

2.8.3Modifying/Deleting Tests Added Using the Integration Console

To delete a test or to modify the configuration andmeasures of a test that is added using the
Integration Console, follow the steps below:

1. Select the Test option from the Integration Console tile in Figure 2.1.

2. Figure 2.112 will then appear, listing all the tests that have been added using the Integration
Console.

Figure 2.112: List of tests that pre-exist

3. To delete a test, click the button corresponding to that test in Figure 2.112. You will then be
prompted to confirm deletion (see Figure 2.113).

Figure 2.113: A message box that appears requesting your confirmation to delete a test

4. ClickYes in Figure 2.113 to proceed with the deletion. ClickNo to cancel the deletion.

5. Tomodify a test, click the button corresponding to that test in Figure 2.112.

6. Figure 2.114 will then appear displaying the test’s specifications.

Chapter 2: Adding/Modifying Tests Using the Integration Console

120

Figure 2.114: Modifying a test’s specification

7. For any test chosen for modification, you cannot change the Test name or the Test type .
However, all other test details displayed in the Test tab page of Figure 2.114 can be altered. This
includes the Execution mode, the Port configuration, theOS type (in case of a Script/batch
file test), and theDB Type (in case of aSQL query-based test).

8. Once the changes aremade, click theModify button tomake sure that the changes take effect.

9. Then, click the Parameter tab page in Figure 2.115, if you want to add new parameters or
modify/delete existing ones.

Figure 2.115: Adding/modifying test parameters

10. If any parameter pre-exists for a test, the same will be displayed in the Parameter tab page.
While some of these parameters could have been user-defined, some others could be default
parameters that the test type supports. For instance, tests of type Jmx and Snmp come bundled
with a default set of parameters. You can modify/delete a user-defined parameter, but can only
modify (and not delete) a default parameter. For example, the TargetHost parameter in Figure
2.115 above is a user-defined parameter; this is why, it is accompanied by aModify and aDelete
button. To delete this parameter, simply click the Delete button corresponding to it in Figure
2.115. To modify this parameter, click the Modify button corresponding to it. Figure 2.116 will

Chapter 2: Adding/Modifying Tests Using the Integration Console

121

then appear.

Figure 2.116: Modifying a user-defined parameter

11. Using Figure 2.116, you can change the Parameter name and/or the Default value of a user-
defined parameter. Once the changes aremade, click theModify button to save the changes.

12. Now, take a look at Figure 2.117 below, which depicts the Parameter tab page of a test of type
Snmp. As you can see, only the default parameters of the Snmp test are displayed in Figure
2.116. This is why, these parameters are accompanied only by aModify button and not aDelete
button. To modify a default parameter, click the Modify button corresponding to it in Figure
2.117.

Figure 2.117: Viewing the default parameters of an Snmp test

13. Figure 2.118 will then appear, using which you can change the Default value of the parameter.
Note that you cannot change the name of a default parameter.

Chapter 2: Adding/Modifying Tests Using the Integration Console

122

Figure 2.118: Modifying the default value of a default parameter

14. Finally, click theModify button in Figure 2.118 tomake the changes.

15. If required, you can also add new parameters to a test in theModify mode. For this, just click the
Add New Parameter button in Figure 2.117.

16. Next, click theMeasure tab page in Figure 2.117 to make changes to themeasure configurations
of the test.

17. Figure 2.119 will then appear. If measures have already been configured for the test, then the
samewill be displayed in theMeasure tab page, as depicted by Figure 2.119.

Figure 2.119: Viewing themeasures configured for a test

18. The details displayed for a measure will change according to the type of test to which that
measure pertains. For instance, Figure 2.119 above displays the details of a measure reported
by a Custom test. A test of type Script/Batch File will additionally display a Process Method
for each of its measures. Likewise, a test of type Snmp will additionally display anObject OID, a

Chapter 2: Adding/Modifying Tests Using the Integration Console

123

test of type Perfmon will include a Counter name as part of its measure specifications, and
measures reported by a Jmx test will additionally support an Attribute name. You can delete a
measure displayed in Figure 2.119 by clicking the Delete button corresponding to it. You can
even add new measures by clicking theAdd New Measure button in Figure 2.119. To modify an
existingmeasure, click theModify button corresponding to it in Figure 2.119.

Note:

If you want to addmoremeasures to a Jmx test in theModifymode, note that the new measures
should belong to same Domain and should follow the same MBean discovery methodology
chosen for the old measures. In other words, if the Domain chosen for the old measures was
java.lang, then the new measures should also belong to the java.lang domain. Likewise, if the
MBeans for the old measures were loaded to a file and read from it, the new measures can also
be added using only theMBeans so read.

19. This will invoke Figure 2.120. Using Figure 2.120, you can modify all the details of a measure.
Then, click theModify button in Figure 2.120 to save the changes.

Figure 2.120: Modifying ameasure

20. Finally, click the Generate tab page in Figure 2.119 to regenerate the test. Figure 2.121 will then
appear.

Chapter 2: Adding/Modifying Tests Using the Integration Console

124

Figure 2.121: Modifying the test implementation

21. The contents of the Generate tab page too will change according to the test type. However,
regardless of the test type, you can change all details displayed in the Generate tab page, if
required. For instance, for a Custom test, you can change the following:

l TheClass file specification

l The Library file specification

l Enable/disable detailed diagnosis for the test

l Alter the detailed diagnosis specification, if it is enabled;

For a Script/Batch File test, you can change the Path of the file displayed in theGenerate tab
page.

For aSQL query test, you canmodify the query to be executed or the stored procedure call.

For a Perfmon test, you can change the name of the performanceObject, and Instances to be
included or excluded frommonitoring.

For an Snmp test, you can indicate whether the measures pertain to a Single element or
Multiple elements. If Multiple elements is chosen, you can also change the Element ID, the
Element status, theElement valid status, and theRediscovery period.

For a Jmx test, you can modify the MBeans to be included and/or excluded. The Domain
Name however, cannot be changed.

22. Finally, click theGenerate button to generate the test.

23. If a test specification is modified and the test is regenerated, the performance data previously
collected by the test will no longer be available. A warning message to this effect will be displayed
when the Generate button is clicked (see Figure 2.122). Click the OK button in Figure 2.122 to

Chapter 2: Adding/Modifying Tests Using the Integration Console

125

go ahead with themodifications.

Figure 2.122: A warningmessage that appears when a test is modified and regenerated

2.9 Adding Help Pages for the New Test

eG Enterprise embeds a context-sensitive online help system, which enables users to instantly
invoke help pages for assistance while configuring the tests run by the eG agent or understanding
the measures reported by the tests. By default, the eGmanager comes bundled with help pages for
the tests it supports out-of-the-box. Each test is associated with an Admin and a Monitor help
page. While the Admin help page describes how the test parameters are to be configured, the
Monitor help page lists the measures reported by the test and explains the significance of each
measure.

For new tests added via the Integration Console plugin however, no such help pages pre-exist. To
enable users to include help pages for these new tests into the eG Enterprise system, you can do
either of the following:

l Use the Integration Console itself to create new Admin andMonitor help pages for the new test,
OR. Refer to the Section 2.9.1 to know how to do this;

l Create Admin and Monitor help pages using a third-party HTML editor (eg., Editplus, Adobe
Dreamweaver, Microsoft Frontpage, etc.), and use the Integration Console to upload these help
pages to the eGmanager. The steps to achieve this are discussed in the Section 2.9.2.

2.9.1 Creating NewHelp Pages Using the Integration Console

Let us now define an Admin and a Monitor help page for the MsFileTest_ex that we created in
Section 2.1.1. To begin help page creation, do either of the following:

Chapter 2: Adding/Modifying Tests Using the Integration Console

126

l Typically, until a new test is properly generated and thresholds are set for its measures in the eG
Enterprise system, you cannot define help pages for that test. This is why, the Help tab page in
the NEW TEST DETAILS page will remain disabled till the Finish button is clicked in Figure
2.111. Clicking the Finish button will invoke the message box depicted by Figure 2.123. Click the
Yes button in themessage box to begin help page creation. This will lead you to the Help tab page
of Figure 2.124.

Figure 2.123: A message box requesting your confirmation to define a help page for the new test

l On the other hand, if you click the No button in the message box of Figure 2.123, you will exit the
new test details page and return to the INTEGRATION CONSOLE – TEST page, where all the
new IC tests will be displayed. To create a help page for a test that has already been generated,
you need toModify the specifications of that test. To do this, click the button corresponding to

that test in the INTEGRATION CONSOLE – TEST page. This will take you to the new test
details page, where you can click the Help tab page (see Figure 2.124) to begin creating help
pages for that test.

Figure 2.124: The Help tab page

Chapter 2: Adding/Modifying Tests Using the Integration Console

127

TheHelp tab page, as you can see, comeswith two sub-tabs:Add andModify. By default, theAdd
tab page will be selected. To create a new help page, you should use theAdd tab page only.

TheAdd tab page provides help page templates in HTML format, which can be easily customized to
create the help pages you want. To create an Admin help page for the MsFileTest_ex, do the
following:

1. Select theUse Template option from theAdd tab page.

2. Then, from theAvailable templates list, pick theAdmin option.

3. This will bring up theAdmin help page template as shown in Figure 2.125.

4. The Admin help page template of Figure 2.125 embeds directions on how to edit the template.
You just need to scan the template for these instructions and follow them. For instance, search
the template for the string Enter the Test Name. Once it is found, remove the string and in its
place type the test name, MsFileTest_ex, as directed. Likewise, look for the following strings in
the template, remove them one after another from the template, and in the place of each, provide
the inputs indicated by the corresponding string.

String Help page information

Enter the test purpose Describe the purpose of theMsFileTest_ex
Enter the name of
parameter1

Specify the first parameter that is to be configured for the
MsFileTest_ex. If you can recall, while creating the
MsFileTest_ex, we had not configured any special
parameters for the test. However, by default, any non-port-
based test added using IC will take TEST PERIOD and
HOST as its parameters. Therefore, type test period as
the first parameter.

Describe the
parameter

This string will appear after parameter1 and parameter2.
Provide a description of the corresponding parameter here.

Enter the name of
parameter2

Enter host as parameter 2

The strings in the table above have been highlighted in the template in Figure 2.125.

Chapter 2: Adding/Modifying Tests Using the Integration Console

128

Figure 2.125: The strings containing instructions on how to edit the Admin template

5. Once the HTML block highlighted in Figure 2.125 is edited based on the instructions provided in
step 4, the same blockwill look as depicted by Figure 2.126.

Figure 2.126: The edited HTML block in the Admin template

6. By default, the template allows you to provide details for a maximum of two parameters. If your
test supports say, one more parameter, and you want to include the details of this additional
parameter in the help page, then, insert a line of the following format just above the tag in
the help page template:

Chapter 2: Adding/Modifying Tests Using the Integration Console

129

<p align=”justify”>Enter the name of parameter 3: Description of parameter
3

<p></p>

For instance, if you are adding an additional parameter named filename into the help page, then,
the new line you insert should be as follows:

<p align=”justify”>FILENAME: The name of the file to bemonitored

<p></p>

Multiple lines of the above format can be inserted for every additional parameter the test takes.

7. Likewise, if your test supports only one parameter, then you will have to explicitly remove the
entire row of information available for the second parameter from the template. For instance, if
you want to remove the host parameter from the MsFileTest_ex in our example, then, simply
delete the following line of code:

<p align=”justify”>HOST: The host for which the test is being configured

<p></p>

8. No additional parameters exist for theMsFileTest_ex in our example. Similarly, no lines of code
need be removed from the template for the purpose of our example. Therefore, simply proceed to
click the Create help button to generate the Admin help page for MsFileTest_ex. If the help
page is generated successfully, then amessage to that effect will appear.

9. The eG Enterprise system will automatically assign a name of the format, <TestName>_Admin,
for any Admin help page you create for an IC-based test using IC. This help page will be
automatically saved to the <EG_MANAGER_ INSTALL_DIR>\tomcat\webapps\final\eghelp
directory.

Let us now proceed to create aMonitor hlep page for theMsFileTest_ex. For this, do the following:

1. First, select theUse Template option from Figure 2.124.

2. Then, from theAvailable templates list, pick theMonitor option.

3. This will bring up theMonitor help page template.

4. Like the Admin help page template, the Monitor help page template also includes instructions
for editing the template. You just need to scan the template for these instructions and follow them.

Chapter 2: Adding/Modifying Tests Using the Integration Console

130

For instance, search the template for the string Enter the name of the test. Once it is found,
remove the string and in its place type the test name,MsFileTest_ex, as directed. Likewise, look
for the following strings in the template, remove them one after another from the template, and in
the place of each, provide the inputs indicated by the corresponding string.

String Help page information

Enter the test purpose Describe the purpose of theMsFileTest_ex

Enter the name of
measure1

Specify the first measure that is reported by the
MsFileTest_ex. For our example, type File_locks_
count here.

Enter the name of
measure2

Specify the secondmeasure that is reported by the

MsFileTest_ex. For our example, typeUnique_users_

count here.

Describe the measure This will appear aftermeasure1 andmeasure2. Provide a
description for the correspondingmeasure here.

Specify the unit of
measurement

This will appear aftermeasure1 andmeasure2. Provide
the unit of measurement that you have configured for the
correspondingmeasure here. For the File_locks_count
and theUnique_users_countmeasures in our example,
the unit will be Number.

Provide interpretation
(if any)

This will be available for bothmeasure1 andmeasure2.
Here, you can explain how the high or low values of the
correspondingmeasure will impact the performance of the
target server. This is an optional specification. In other
words, if you feel that no interpretation is necessary, then,
you can just remove the string and leave the placeholder
blank.

The strings in the table above have been highlighted in the template in Figure 2.127.

Chapter 2: Adding/Modifying Tests Using the Integration Console

131

Figure 2.127: The strings containing instructions on how to edit theMonitor template

5. Once the HTML block highlighted in Figure 2.127 is edited based on the instructions provided at
step 4, the same blockwill look as depicted by Figure 2.128.

Figure 2.128: The edited HTML block in theMonitor template

6. By default, the template allows you to provide details for a maximum of twomeasures. If your test
supports say, onemoremeasure, and you want to include the details of this additional measure in
the help page, then, insert a block of HTML code of the following format, just above the </table>
tag in the help page template:

Chapter 2: Adding/Modifying Tests Using the Integration Console

132

<tr>

<th width=”17%” align=”left” valign=”top”>Enter the measure name</th>

<td width=”28%” valign=”top” align=”justify” id=”just”>Briefly describe the measure</td>

<td width=”17%” valign=”top” align=”center”>Specify the unit of measurement for the
measure</td>

<td width=”38%” valign=”top” align=”justify” id=”just”>Provide interpretation (if any)</td>

</tr>

For instance, say that you are adding an additional measure named Open_files; this measure
reports the total number of files that have been opened on the server by users over the network.
The HTML code block that you insert into the Monitor template for this purpose should be as
follows:

<tr>

<th width=”17%” align=”left” valign=”top”>Open_files</th>

<td width=”28%” valign=”top” align=”justify” id=”just”>The total number of files that have
been opened on the server by users over the network</td>

<td width=”17%” valign=”top” align=”center”>Number</td>

<td width=”38%” valign=”top” align=”justify” id=”just”>This measurement is an indicator of
the workload on the file server.</td>

</tr>

Multiple blocks of the above format can be inserted for every additional measure that you
configure for the test.

7. Likewise, if your test reports only one measure, then you will have to explicitly remove the entire
block of code that is provided for the secondmeasure from the template. For instance, if you want
to remove the Unique_users_count measure from the help page of the MsFileTest_ex in our
example, then, simply delete the following line of code:

<tr>

<th width=”17%” align=”left” valign=”top”>Unique_users_count</th>

Chapter 2: Adding/Modifying Tests Using the Integration Console

133

<td width=”28%” valign=”top” align=”justify” id=”just”>The number of distinct users with
open files</td>

<td width=”17%” valign=”top” align=”center”>Number</td>

<td width=”38%” valign=”top” align=”justify” id=”just”>Provide interpretation (if any)</td>

</tr>

8. No additional measures are reported by theMsFileTest_ex in our example. Similarly, no lines of
code need be removed from the template for the purpose of our example. Therefore, simply
proceed to click theCreate help button to generate theMonitor help page forMsFileTest_ex. If
the help page is generated successfully, then amessage to that effect will appear.

9. The eGEnterprise systemwill automatically assign a name of the format, <TestName>_Monitor,
for anyMonitor help page that you create using IC. This help page will be automatically saved to
the <EG_MANAGER_INSTALL_DIR>\tomcat\webapps\final\eghelp directory.

With that, both theAdmin andMonitor help pages have been created for theMsFileTest_ex. You
canmodify the help pages so created by clicking theModify tab page in Figure 2.124. This will open
Figure 2.129.

Figure 2.129: Modifying a help page created using the Integration Console

For modifying an Admin or aMonitor help page, follow the same procedure that has been outlined
for creating a help page.

Chapter 2: Adding/Modifying Tests Using the Integration Console

134

2.9.2 Uploading Help Pages that Pre-exist to the eG Manager

To achieve this, do the following:

1. First, select the Upload option from Figure 2.130.

Figure 2.130: Uploading the help pages

2. In the File to upload (Admin) text box, specify the full path to the Admin help page to be
uploaded. You can use theBrowse button to locate the help page you need.

3. Likewise, in the File to upload (Monitor) text box, specify the full path to theMonitor help page
to be uploaded. Here again, you can use the Browse button alongside to locate the monitor help
page.

4. Once the help page locations are specified, click the Upload button to upload them to the eG
manager.

5. Once uploaded, theAdmin help page will be automatically renamed as TestName>_Admin, and
theMonitor help page will be automatically renamed as <TestName>_Monitor. Moreover, both
help pages will be uploaded to the <EG_ MANAGER_ INSTALL_
DIR>\tomcat\webapps\final\eghelp directory.

Note:

l It is not mandatory to upload both theAdmin andMonitor help pages of a test simultaneously.

l At any given point in time, you can upload only one Admin help page and/or one Monitor help
page to the eGmanager.

Chapter 3: Adding/Modifying Layers Using the Integration Console

135

Chapter 3: Adding/Modifying Layers Using the Integration
Console

Once a new test is added using IC, you need to associate that test to a layer for the test functionality
to be implemented in real-time. A test can be associated with a layer that pre-exists or a brand new
layer.

This chapter takes the help of an example to explain how a new layer can be created using IC, how it
can bemodified (if required), and how a test can be associated with a new/existing layer.

3.1 Adding a New Layer and Associating Tests with the User-
Defined Layer

In this section, we will be creating a new layer named TUXEDO_SERVICES and will be associating
a new test named TuxDomainTest_ex with it. This test has been engineered to report the number
of machines and servers running in a Tuxedo domain.

To create a new layer, do the following:

1. Select the Layer option from the Integration Console tile of the Admin tile menu (see Figure
2.1).

2. Figure 3.1 will then appear with two panels: one listing pre-defined layers and another listing
user- defined layers. The eG Enterprise system represents every application/device that it
monitors out-of-the-box using a hierarchical set of layers. The Pre-defined layers panel lists all
those layers that are by default built into the eG Enterprise system for representing components
that aremonitored out-of-the-box. TheUser-defined layers panel lists only those layers that are
custom-defined by users to extend themonitoring capabilities of the eGEnterprise solution.

Chapter 3: Adding/Modifying Layers Using the Integration Console

136

Figure 3.1: Viewing the list of pre-defined and user-defined layers.

3. To create a new layer, click theAdd New Layer button in Figure 3.1. This will open Figure 3.2. In
the Layer name text box in Figure 3.2, enter the name of the new layer. For the purpose of our
example, type tuxedo_services_ex against Layer name.

Note:

The layer name should be suffixed by _ex.

Figure 3.2: Adding a new layer

If more than one pre-defined layer pre-exists, then Figure 3.2 will additionally include aDuplicate
flag. By default, theDuplicate flag is set toNo. Set this flag to Yes only if you want the new layer
to inherit the attributes of another user-defined layer. In this case, a Layer to be duplicated
drop-down will appear, as depicted by Figure 3.3. From this drop-down, select the layer, the
properties of which need to be acquired by the new layer being added.

Chapter 3: Adding/Modifying Layers Using the Integration Console

137

Figure 3.3: Duplicating a layer

4. Then, click theAdd button to add the new layer.

5. The newly added layer will now appear in the panel listing user-defined layers, as depicted by
Figure 3.4.

Figure 3.4: The new layer listed in the User defined layers panel

6. If you want, you can delete any user-defined layer by clicking the button corresponding to it in
Figure 3.4.

7. To associate a test with a user-defined layer, click the button corresponding to the layer name

Chapter 3: Adding/Modifying Layers Using the Integration Console

138

in the User- defined layers panel of Figure 3.4 . This will invoke Figure 3.5 . From the
Disassociated tests list of Figure 3.5, select the test(s) you want to associate with the new
layer. For the purpose of our example, select the TuxDomainTest_ ex test from the
Disassociated tests list.

Figure 3.5: Selecting the test to be associated with the user-defined layer

8. Click the < button in Figure 3.5 tomove the selected test to theAssociated tests list.

9. This will invoke amessage box depicted by Figure 3.6 below. By default, once a test is associated
with a layer, that layer will get automatically associated with all components that support that
layer. Sometimes, you may want a test to be associated with only a few components that support
that layer and not all of them. In this case, click the No button in the message box of Figure 3.6. If
this is done, then the test will not be associated with that layer. On the other hand, if you want the
test to be associated with all components that support the layer, click the Yes button. This will
transfer the selection to theAssociated tests list.

Chapter 3: Adding/Modifying Layers Using the Integration Console

139

Figure 3.6: A message box requesting your confirmation to associate the test with all components that
support the chosen layer

10. If for any reason, you want to disassociate a test from a layer, simply select the test from the
Associated tests list and click the > button in Figure 3.5.

11. Finally, click theUpdate button to save the changes.

3.2 Associating Tests with a Pre-defined Layer

Let us try to associate the TuxDomainTest_exwith the Tuxedo Servers layer that pre-exists in the
eGEnterprise system. For this, do the following:

1. Focus on the Pre-defined layers list in Figure 3.1. As can be inferred from Figure 3.1, you can
neither modify nor delete a pre-defined layer. However, you can associate/disassociate tests with
a pre-defined layer.

2. To associate tests with the Tuxedo Servers layer in our example, click the button corresponding
to that layer in thePre-defined layers list of Figure 3.1.

3. This will open Figure 3.7.

Chapter 3: Adding/Modifying Layers Using the Integration Console

140

Figure 3.7: Selecting the test to be associated with a pre-defined layer

4. TheAssociated tests list in Figure 3.7 will display all those tests that are already associated with
the Tuxedo Servers layer. To associate the TuxDomainTest_ex with this layer, first select that
test from theDisassociated tests list of Figure 3.7. Then, click the < button.

5. This will invoke amessage box depicted by Figure 3.8 below. By default, once a test is associated
with a layer, that layer will get automatically associated with all components that support that
layer. Sometimes, you may want a test to be associated with only a few components that support
that layer and not all of them. In this case, click the No button in the message box of Figure 3.8. If
this is done, then the test will not be associated with that layer. On the other hand, if you want the
test to be associated with all components that support the layer, click the Yes button. This will
transfer the selection to theAssociated tests list.

Figure 3.8: A message box requesting your confirmation to associate the test with all components that
support the chosen layer

Chapter 3: Adding/Modifying Layers Using the Integration Console

141

6. If for any reason, you want to disassociate a test from a layer, simply select the test from the
Associated tests list and click the > button in Figure 3.7.

7. Finally, click theUpdate button to save the changes.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

142

Chapter 4: Adding/Modifying NewComponent Types Using
the Integration Console

eG Enterprise provides out-of- the-box monitoring support to over 150 applications/devices, 10+
operating systems, and 9+ virtualization platforms. Specialized monitoring models are available in
eG for each of these applications/devices/systems/hypervisors. If eG does not offer a monitoring
model out-of-the-box for any application/device that is operational in your environment, then you can
use the Integration Console to build a monitoring model for that type of component. This can be
achieved by:

l Creating a new component-type for the custom application/device using the Integration Console;

l Building a layer stack for the new component-type;

l Associating/Disassociating performance and configuration tests for that component-type;

This chapter discusses each of these steps in detail, using an illustrated example. In this example,
we will be creating a monitoring model for the Tuxedo_Domain_Server component. As part of this
exercise, we will be:

l Creating a new Tuxedo_Domain_Server component-type;

l Building a layer model for this component-type by grouping together some user-defined and pre-
defined layers;

l Disassociating some tests that are by default mapped to the layers supported by this component-
type;

l Associating configuration tests with this component-type

4.1 Creating a New Component- type Using the Integration
Console

To achieve this, follow the steps below:

1. Select theComponent option from the Integration Console tile of Figure 2.1.

2. Figure 4.1 will then appear.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

143

Figure 4.1: Viewing the user-defined and pre-defined component types

3. Figure 4.1 displays two panels: one is the Pre-defined components panel, which lists all
component-types that are supported out-of-the-box by the eGEnterprise system, and the other is
the User-defined components panel, which lists all custom defined component-types (if any),
added using the Integration Console.

4. To add a new component type, click the Add New Component Type button in Figure 4.2.
Figure 4.2 will then appear.

Figure 4.2: Adding a new component type using Integration Console

5. Provide the details of the new component-type in Figure 4.2. This includes:

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

144

l Component type: The name of the new component-type, suffixed by _ex. In the case of our
example, this will be Tuxedo_Domain_Server_ex.

l Image name : Specify the Image name that will be displayed below the component type
image in the eGuser interface.

l Choose display image : Select the image that you want to use to represent the new
component-type in the eGuser interface.

l Port : If the component- type is port- based, then specify the port number at which the
component listens by default. In the case of our example, leave the port as NULL.

l Site support: Indicate whether/not the component-type supports web sites. If so, set this flag
toYes. If not, set this flag toNo. In the case of our example, set this flag asNo.

l Duplicate: This flag will appear only if one/more user-defined components pre-exist.
You can set this flag to Yes if you want the new component-type to inherit the properties of an
existing user-defined component-type. In this case, you will be additionally required to pick the
Component Type to be duplicated (see Figure 4.3).

Figure 4.3: Duplicating a component type

Once a component type to be duplicated is chosen, the Display image, Port, and Site support
settings of that component-type will automatically apply to the component-type being added.

On the other hand, if the new component- type is not a duplicate of an existing user-defined
component-type, set this flag toNo. In this case, you will have to explicitly define a display image,
port, and site support settings for the new component-type.

6. Finally, click theAdd button in Figure 4.3 to add the new component-type.

7. The newly added component-type will then appear as a User-defined component (see Figure
4.4).

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

145

Figure 4.4: The User-defined components panel displaying the newly added component-type

8. You can modify the details of the new component-type, if you so need, by clicking the button
corresponding to it in Figure 4.4. Figure 4.5 will then appear. In the Modify mode, you can
change the Image name and choose a different display image for the component. However, you
cannot change the name of the Component type ; nor can you change the Port and Site
support settings. After making the required changes, click the Update button in Figure 4.5 to
save the changes.

Figure 4.5: Modifying the details of a user-defined component-type

9. You can even delete a user-defined component-type by clicking the button corresponding to
that component-type in theUser defined components list of Figure 4.4.

Note:

Pre-defined components can neither bemodified nor deleted.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

146

4.2 Building a Layer Model for a New Component Type

Let us now build a layer model for the new component-type we added in Section 4.1 – i.e., the
Tuxedo_Domain_Server_ex . Say, the layer model of this component comprises of two pre-
defined layers of the eG Enterprise system - Operating System and Network – and one user-
defined layer named TUXEDO_SERVICES_ex.

To build such amodel, follow the steps below:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component in the User-
defined components list of Figure 4.4.

2. Figure 4.6 will then appear. From the Disassociated layers list of Figure 4.6, select the TUXEDO-

SERVICES_EX layer that you want to associate with the Tuxedo_Domain_Server_ex
component-type.

Figure 4.6: Selecting the layer to be associated with the new component-type

3. Then, click the < button in Figure 4.6 to move the selection to the Associated layers list (see
Figure 4.7).

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

147

Figure 4.7: Associating a layer with a new component-type

4. Similarly, associate theNetwork andOperating System layers too with the Tuxedo_Domain_
Server_ex (see Figure 4.8).

Figure 4.8: Associatingmultiple layers with the new component-type

5. If you need, you can even disassociate a layer from a component-type by selecting that layer from
the Associated layers list and clicking the > button. For our example however, you need not
disassociate any of the layers in theAssociated layers list.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

148

6. Now that the layer model of the Tuxedo_Domain_Server_ex is complete, click the Update
button in Figure 4.8 to save the changes.

7. Typically, layers are to be associated in the same order in which they should appear in the layer
model representation in the eG monitoring console. Moreover, since state of the layers below
impact the state of the layers above, exercise caution when positioning layers in your layer model.
By default however, the eG Enterprise system reserves the bottom-most position to the pre-
defined Operating System layer. This is why, when a new layer model is built using the
Integration Console, and the Operating System layer is included in that model, eG Enterprise
expects this layer to be lowest layer in the layer hierarchy. If not, the eGEnterprise system throws
an exception to this effect.

In the case of our example too (see Figure 4.8), you can see that theOperating System layer is
not the last layer. This is why, as soon as the Update button in Figure 4.8 is clicked, the following
error message appears:

Figure 4.9: An error message prompting you to change the position of the Operating System layer

8. Click theOK button in Figure 4.9 to close the message, and then proceed to change the position
of theOperating System layer. Typically, to change the position of any layer in the layer model,
you will have to use the direction buttons provided to the right of the Associated layers list in
Figure 4.9. The table below lists these buttons and their purpose:

Direction Button Purpose

Click to push a layer to the bottom of the layer
model.

Click to push a layer to the top of the layer model.

Click to push a layer a step up.

Click to push a layer a step down.

9. To change the position of theOperating System layer in our example, select that layer from the
Associated layers list of Figure 4.9 and click the button. When this is done, the Operating

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

149

System layer instantly swaps positions with the Network layer, thus becoming the last layer of
the model. If you now click the Update button to save the changes, you will notice that the error
message of Figure 4.9 above does not re-appear.

Note:

You can modify the layer model definition of a Pre-defined component by clicking the button
corresponding to that component in the Pre-defined components panel. The rest of the procedure
is the same as outlined in steps 2-9 in this section.

4.3 Associating/Disassociating Tests from a New Component
Type

Typically, once a layer model is defined for a new component-type, all tests that are mapped to each
of those layers will automatically get associated with that component-type. Sometimes, you may
want to exclude one or a few of these tests for a specific component- type. For instance, let us
assume that 3 Alcatel switch-related tests are associated with the Network layer. Since this layer is
now mapped to the Tuxedo_Domain_Server_ex component-type in our example, these 3 Alcatel
tests will now run for the Tuxedo_Domain_Server_ex component as well. These Alcatel tests
however will not provide any information that is of significance to a Tuxedo_Domain_Server_ex
component. Hence, it is best that these tests are disassociated from the Tuxedo_Domain_Server_
ex component alone. Let us see, how this can be achieved:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component-type in the
User-defined components panel of Figure 4.4.

2. This will invoke Figure 4.10. From the Associated tests list of Figure 4.10, select the Alcatel
tests that you want to exclude for this component.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

150

Figure 4.10: Selecting the tests to be disassociated from the new component-type

3. Click the > button to disassociate the chosen tests. This will transfer the selection to the
Disassociated tests list of Figure 4.11.

Figure 4.11: Disassociating tests for a component-type

4. If you want, you can even associate some of the disassociated tests by selecting the tests from
the Disassociated tests list and clicking the < button in Figure 4.11. However, this need not be

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

151

done for our example.

Note:

You cannot associate a port-based test with a non-port-based component or vice-versa.

5. Finally, click theUpdate button in Figure 4.11 to save the changes.

Note:

You can associate/disassociate performance tests for a Pre-defined component by clicking the
button corresponding to that component in the Pre-defined components panel. The rest of the
procedure is the same as outlined in steps 2-5 above.

Unlike performance tests, configuration tests are not mapped to any layer. This means that if you
want one/more configuration tests to run on a new component-type, you will have to explicitly map
these tests with that component- type. Let us see how the Drives and Drives Capacity
configuration tests can be associated with the Tuxedo_Domain_Server_ex component in our
example. To achieve this, do the following:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component in the User-
defined components panel of Figure 4.4.

2. Figure 4.12 will then appear. From the Disassociated tests list of Figure 4.12 , select the
configuration tests that you want to associate with the Tuxedo_ Domain_ Server_ ex
component. Then, click the < button to associate the selected tests.

Chapter 4: Adding/Modifying New Component TypesUsing the Integration Console

152

Figure 4.12: Selecting the configuration tests to be associated with a new component-type

Note:

You cannot associate a port-based test with a non-port-based component or vice-versa.

3. Finally, click theUpdate button to save the changes.

Note:

You can associate/disassociate configuration tests for a Pre-defined component by clicking the
button corresponding to that component in the Pre-defined components panel. The rest of the
procedure is the same as outlined in steps 2-3 above.

Chapter 5: Backing Up and Restoring the Configuration of eGEnterprise

153

Chapter 5: Backing Up and Restoring the Configuration of
eG Enterprise

Using the eG Integration Console, you can take a backup of the configurations performed using the
Integration Console module of the eG Enterprise system – for example, new tests / layers /
components that were added using Integration Console. Similarly, you can also restore the backed
up configuration any time you need.

To achieve this, select theBackup option from the Integration Console tile of theAdmin tile menu
(see Figure 2.1).

This will invoke Figure 5.1.

Figure 5.1: Backing up/Restoring the configurations performed using IC

To backup the IC-based configuration changes, click the Backup button in Figure 5.1. To restore
the backed up configurations, click theRevert button in Figure 5.1.

154

Conclusion

The eGEnterprise Suite has been specially designed keeping inmind the unique requirements of IT
infrastructure operators. For more information on the eG family of products, please visit our web site
at www.eginnovations.com.

For more details regarding eGEnterprise suite of products and the details of themetrics collected by
the eGagents, please refer to the following documents:

l Administering the eGEnterprise Suite

l Monitoring eGEnterprise

l The eG Installation Guide

l The eGMeasurementsManuals

We recognize that the success of any product depends on its ability to address real customer needs,
and are eager to hear from you regarding requests for enhancements to the products, suggestions
for modifications to the product, and feedback regarding what works and what does not. Please
provide all your inputs aswell as any bug reports via email to sales@eginnovations.com.

http://www.eginnovations.com/
mailto:sales@eginnovations.com

	Chapter 1: Introduction
	1.1 System Requirements
	1.2 Licensing

	Chapter 2: Adding/Modifying Tests Using the Integration Console
	2.1 Adding a Custom Test
	2.1.1 Adding a Custom Performance Test

	2.2 Adding a Custom Configuration Test
	2.2.1 Adding a Descriptor-based Configuration Test

	2.3 Test Generator API
	2.3.1 System Requirements
	2.3.2 Summary of Methods

	2.4 Adding a Script/Batch File-based Test
	2.5 Adding an SQL Query/Stored Procedure-based Test
	2.5.1 Using a SQL Query
	2.5.2 Using Stored Procedure

	2.6 Adding a Perfmon-based Test
	2.7 Adding an SNMP-based Test
	2.7.1 Adding a Non-Descriptor-Based SNMP Test

	2.8 Adding a JMX-based Test
	2.8.1 Enabling JMX Support for the JRE of the Target Application
	2.8.2 Adding a New Jmx Test
	2.8.3 Modifying/Deleting Tests Added Using the Integration Console

	2.9 Adding Help Pages for the New Test
	2.9.1 Creating New Help Pages Using the Integration Console
	2.9.2 Uploading Help Pages that Pre-exist to the eG Manager

	Chapter 3: Adding/Modifying Layers Using the Integration Console
	3.1 Adding a New Layer and Associating Tests with the User-Defined Layer
	3.2 Associating Tests with a Pre-defined Layer

	Chapter 4: Adding/Modifying New Component Types Using the Integration Console
	4.1 Creating a New Component-type Using the Integration Console
	4.2 Building a Layer Model for a New Component Type
	4.3 Associating/Disassociating Tests from a New Component Type

	Chapter 5: Backing Up and Restoring the Configuration of eG Enterprise

