o

Total Performance Visibility

Automatically Configuring the Target
Environment Using REST API

Table of Contents

CHAPTER 1: INTRODU CTION i 1
1.1 What does the REST APl enable? .. 1
CHAPTER 1: HOW DOES EG REST API WORK®? L 1
1.2 Pre-Requisites for Configuring the Target Environment usingthe RESTAPI 2
1.3 Actions Supported by the eG REST APl .. 2
CHAPTER 2: THE REST API COMMANDS FOR ORCHESTRATION OF EG ADMINISTRATIVE
INTERFACE il 3
2.1 Adding COmMPONENES 3
2.1.1 Adding Components using CUR L . 6
2.2 Adding External AQents 7
2.2.1 Adding External Agents using CURL . el 9
2.3 AdAING GrOUDS il 10
2.3.1 Adding a Group using CURL e 12
2.4 Adding Maintenance PoliCIes L 13
2.4 .1 Adding Maintenance Policies using CURL 15
2.5 Adding Remote AQeNntS 16
2.5.1 Adding Remote Agents using CURL .. . e 18
2.6 AdAING @ USer ... 19
2.6.1 Adding a User using CUR L . 21
2.7 AddINg @ Z0Ne il 22
2.7.1 Adding a Zone using CURL ... 24
2.8 ASSIgNING AN AGENt . . L 25
2.8.1 Assigning an Agentusing CURL ... 27
2.9 Assigning a Maintenance PoliCY 28
2.9.1 Assigning a Maintenance Policy using CURL 30
2.10 Associating Components to User 31
2.10.1 Associating Components to User using cURL 33
2.11 Deleting a CompoNnent . il 34
2.11.1 Deleting a Componentusing CURL e 36
2.12 Deleting an External Agent 37
2.12.1 Deleting an External Agentusing CURL 39
213 Deleting @ GroUD ..o 40
2.13.1 Deleting @ Group using CUR L . . 41
2.14 Deletinga Maintenance POliCY ... i 42
2.14.1 Deleting a Maintenance Policy using CURL ... L 44
2.15 Deleting a Remote Agent . L 45

2.15.1 Deleting a Remote Agentusing CURL 46

216 Deleting a User . 47
2.16.1 Deleting a User using CURL e e 49
2. 17 Deleting @ Zone 50
2171 Deleting a Zone using CURL 51
2. 18 Disabling TS S 52
2.18.1 Disabling Tests using CURL el 54
2 A0 ENabling TS S 55
2.19.1 Enabling Tests Using CUR L .. . e e e e e e 57
2.20 Exclude Components for Test ... 58
2.20.1 Excluding Components for Testusing CURL .. L 60
2.21 Exclude Tests for CompPoOneNnt ... L 61
2.21.1 Excluding Tests for Componentusing cURL 63
2.22 Include Components for TeSt ... 64
2.22.1 Include Components for Testusing CURL 66
2.23 Include Tests for CompPonent 67
2.23.1 Including Tests for Component using CURL ... L 69
2.24 Managing ComPONENtS L 70
2.24 1 Managing Components using CURL . .. 72
2.25 Modifying @ CompoNnent .. il 73
2.25.1 Modifying a Componentusing CURL e 75
2.26 Modifying @ GrOUD 76
2.26.1 Modifying a Group using CURL 78
2.27 Modifying a Maintenance PoliCY ... 79
2.27.1 Modifying a Maintenance Policy using CURL 81
2.28 Modifying aUser 82
2.28.1 Modifying a User using CURL .. e e e 84
2,29 Modifying @ ZONe il 85
2.29.1 Modifying @ Zone using CURL o i e 87
2.30 ReNaming @ GrOUD ... oo 88
2.30.1 Renaming a Group using CURL .. . i 90
2. 31 RENAaMING @ Z0NE L 90
2.31.1 Renaming a Zone using CURL . . 92
2.32 Displaying CoOmpPONENtS L 93
2.32.1 Displaying Components using CURL .. L 95
2.33 Displaying External Agents 96

2.33.1 Displaying External Agents using CURL i 97

2.34 Displaying Remote AQents 98

2.34.1 Displaying Remote Agents using CURL ... e 99
2.35 Displaying Maintenance Policies 100
2.35.1 Displaying Maintenance Policies using CURL 102
2.36 Displaying Details of Maintenance PoliCIies, 102
2.36.1 Displaying Details of Maintenance Policies using cURL_........... 104
2.37 Displaying the Hosts Managed in the Target Environment 105
2.37.1 Displaying the Hosts Managed in the Target EnvironmentusingcURL 107
2.38 Displaying the Details of the Tests 108
2.38.1 Displaying the Details of the Tests using cCURL 111
2.39 Displaying Test Names fora Component Type 111
2.39.1 Displaying Test Names for a Component Type using cURL i ... 114
2.40 Disassociating Agents from Managers ina Redundant Setup 114
2.40.1 Disassociating Agents from Managers in a Redundant Setup usingcURL .._..._.. _...... 116
2.41 Unmanaging a CoOMPONENL 117
2.41.1 Unmanaging a Componentusing CURL ... L 119
CHAPTER 3: PERFORMING OPERATIONS IN BULKUSINGEGRESTAPI 121
3.1 Adding Components in BUIK L 121
3.1.1 Adding Components in Bulk using CURL 125
3.2 Managing Components in Bulk ... il 126
3.2.1 Managing Components in Bulk using CURL 128
3.2.2 Managing Components in Bulk using cURL 129
3.3 Modifying Components in Bulk 130
3.3.1 Modifying Components in Bulk using CURL ... L 133
3.4 Deleting Components in BUlK ... 134
3.4.1 Deleting Components in Bulk using CURL .. e 137
3.5 Unmanaging Components in Bulk 137
3.5.1 Unmanaging Components in Bulk using CURL 140
3.6 Adding Remote Agents in BUIK .. . 141
3.6.1 Adding Remote Agentsin Bulk using CURL 143
3.7 Adding External Agents in BUIK ... 144
3.7.1 Adding External Agents in Bulk using CURL 147
3.8 Deleting Remote Agents in BUIK 148
3.8.1 Deleting Remote Agents in Bulk using CURL 150
3.9 Deleting External Agents in Bulk . .. 151

3.9.1 Deleting External Agents in Bulk using CURL ... e 153

CHAPTER 4: RETRIEVING ANALYTICAL DATA FROM EG MANAGER USING EGRESTAPI 154

4.1 Retrieving Count of Alarms Raised in the Target Environment 154
4.1.1 Retrieving Count of Alarms Raised in the Target Environmentusing cURL 156
4.2 Retrieving Live Measures of a Component ... llll.. 156
4.2.1 Retrieving Live Measures of a Componentusing cURL 159
4.3 Retrieving Historical Data of a Measure e, 160
4.3.1 Retrieving Historical Data of a Measure using cURL 163
4.4 Retrieving Detailed Diagnosis of aMeasure 164
4.4 1 Reftrieving Detailed diagnosis of a Measure using cURL _.......... 168
4.5Retrieving Top-N Analysis Data 168
4.5.1 Retrieving Top-N Analysis Data using CURL e, 171
4.6 Retrieving Test Data . 171
4.6.1 Retrieving Test Data using CURL .. e . 174
4.7 Retrieving Trend Data L 175
4.7.1 Retrieving Trend Data using CURL 178
4.8 Retrieving Threshold Data 179
4.8.1 Retrieving Threshold Data using CURL e 182
4.9 Retrieving Infrastructure Health .. L 183
4.9.1 Refrieving Infrastructure Health using CURL . . e, 186
4.10 Retrieving Problem Distribution of Components 187
4.10.1 Retrieving Problem Distribution of Components using cURL 189
4.11 Retrieving Problem Distribution of the Target Environment 190
4.11.1 Retrieving Problem Distribution for all Component Types 190
4.11.2 Retrieving Problem Distribution for all Component Types usingcURL 192
4.11.3 Retrieving Problem Distribution for all Components 193
4.11.4 Retrieving Problem Distribution for all Components using cURL 195
4.11.5 Retrieving Problem Distribution of the Layers of a ComponentType 196
4.11.6 Retrieving Problem Distribution of the Layers of a Component Type using cURL _.._.._.......... 198
4.11.7 Retrieving Problem Distribution of the Tests of a ComponentType 199
4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using cURL _.._.._............ 201
4.12 Retrieving the Count of Events from Alarm History 202
4.12.1 Retrieving the Count of Events from Alarm History for all Component Types .._..._..._............ 202
4.12.2 Retrieving the Count of Events from Alarm History for all Component Types using cURL 204
4.12.3 Retrieving the Count of Events for all Components 205
4.12.4 Retrieving the Count of Events for all Components using cURL 207
4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type 208

4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type using 211

4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type_.. 211
4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type using
CUR L 214
4.13 Retrieving Problem Duration 214
4.13.1 Retrieving Problem Duration for Component Types i e 215
4.13.2 Retrieving Problem Duration for all Component Types usingcURL 217
4.13.3 Retrieving Problem Duration for all Components 217
4.13.4 Retrieving Problem Duration for all Components using cURL 219
4.13.5 Retrieving Problem Duration for all Layers of a Component Type o 220
4.13.6 Retrieving Problem Duration for all Layers of a Component Type using cURL ... _.......... 222
4.13.7 Retrieving Problem Duration for all Tests of a ComponentType 223
4.13.8 Retrieving Problem Duration for all Tests of a Component Type using cURL __..__.._..._..._..._. 225
4.14 Retrieving Percentage of Proactive Alarms in the Target Environment 226
4.14 1 Retrieving Percentage of Proactive Alarms across ComponentTypes 226
4.14.2 Retrieving Percentage of Proactive Alarms across Component Types using cURL __._.._......._. 229
4.14.3 Retrieving Percentage of Proactive Alarms across all Components 229
4.14 4 Retrieving Percentage of Proactive Alarms across Components usingcURL ._..._......_..._..._. 232
4.14 .5 Retrieving Percentage of Proactive Alarms specific to Layers ofa Component Type ._............. 232

4.14 .6 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type using cURL 235
CHAPTER 5: EXTRACTING MISCELLANEOUS DATA FROM EG MANAGER USING

EG REST APl 236
5.1 Retrieving Details of Components Managed in the target environment ... 236
5.1.1 Retrieving Details of Components Managed in the target environmentusing cURL _.._...._.._.... 238
5.2 Retrieving Zone Details from eG Manager o i 239
5.2.1 Retrieving Zone Details from eG Managerusing cURL 241
5.3 Retrieving the Tests Supported by eh Enterprise UsingeGRESTAPI 242
5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL 244
5.4 Retrieving the Measurements Reported by eG Enterprise 245
5.4.1 Retrieving the Measurements Reported by eG Enterprise using cURL 247
5.5 Retrieving Applications Monitored by eG Enterprise UsingeGRESTAPI 248
5.5.1 Retrieving the Applications Monitored by eG Enterprise using cURL 250

ABOUT EG INNOV ATION S 252

Table of Figures

Figure 1.1: How the @G REST APl WOTKS . .. e e e e e e 2
Figure 2.1: Example to add components using Postman REST Client 6
Figure 2.2: Adding components using CURL 7
Figure 2.3: Example to add an external agent using Postman REST Client _.._ 9
Figure 2.4: Adding an external agentusing CURL 10
Figure 2.5: Example to add a group using Postman REST Client 12
Figure 2.6: Adding a group using CURL .. 13
Figure 2.7: Example to add a maintenance policy using Postman REST Client ____ 15
Figure 2.8: Adding a maintenance policy using CURL . . 16
Figure 2.9: Example to add a remote agent using Postman REST Client 18
Figure 2.10: Adding a remote agentusing CURL i 18
Figure 2.11: Example to add a new user using Postman REST Client i, 21
Figure 2.12: Adding a user using CUR L .. . 22
Figure 2.13: Example to add a zone using Postman REST Client 24
Figure 2.14: Adding a zone using CURL 25
Figure 2.15: Assigning an agent to the eG manager in a redundant setup using Postman REST Client .._......._. 27
Figure 2.16: Assigning an agent to the eG manager in a redundant setup using cURL 28
Figure 2.17: Assigning a Maintenance Policy using Postman REST Client 30
Figure 2.18: Assigning a maintenance policy using cCURL 31
Figure 2.19: Example to associate components to a user using Postman REST Client .__..._.. 33
Figure 2.20: Associating components to a userusing cURL _ 34
Figure 2.21: Deleting a Component using Postman REST Client 36
Figure 2.22: Deleting a componentusing CURL 37
Figure 2.23: Deleting an external agent using Postman REST Client e .. 39
Figure 2.24: Deleting an external agent using CURL .. . 39
Figure 2.25: Deleting a Group using Postman REST Client 41
Figure 2.26: Deleting a group using CURL ... 42
Figure 2.27: Example to delete a maintenance policy using Postman REST Client 44
Figure 2.28: Deleting a maintenance policy using CURL . e 44
Figure 2.29: Deleting a remote agent using Postman REST Client 46
Figure 2.30: Deleting a remote agentusing CURL 47
Figure 2.31: Deleting a User using Postman REST Client e 49
Figure 2.32: Deleting a user using CUR L . e e . 49
Figure 2.33: Deleting a zone using Postman REST Client i, 51
Figure 2.34: Deleting a zone using CURL 52
Figure 2.35: Disabling one/more tests of a chosen component type using Postman REST Client .._............... 54
Figure 2.36: Disabling one/more tests of a chosen componenttype using cURL 55

Figure 2.37: Enabling one/more tests for a chosen component type using Postman REST Client_.......... 57

Figure 2.38: Enabling one/more tests for a chosen componenttype using cURL 58
Figure 2.39: Example for excluding Components for Test using Postman REST Client 60
Figure 2.40: Excluding one/more components for a testusing cURL 61
Figure 2.41: Excluding one/more tests for a Component using Postman REST Client 63
Figure 2.42: Excluding one/more tests fora Componentusing CURL 64
Figure 2.43: Example to include one/more components for a test using Postman REST Client 66
Figure 2.44: Including one/more components for a testusing cCURL 67
Figure 2.45: Example to include one/more tests for a component using Postman REST Client .._..... 69
Figure 2.46: Including one/more tests for a componentusing cURL 70
Figure 2.47: Example to manage components using Postman REST Client 72
Figure 2.48: Managing a componentusing CURL 73
Figure 2.49: Example to modify the details of a component using Postman REST Client 75
Figure 2.50: Modifying a component using CURL . . e 76
Figure 2.51: Example to modify the details of a group using Postman REST Client 78
Figure 2.52: Modifying the details of an existing group using cCURL 79
Figure 2.53: Example to modify the details of an existing maintenance policy using Postman REST Client _.._.._. 81
Figure 2.54: Modifying the details of an existing maintenance policy using cURL 82
Figure 2.55: Example to modify a user using Postman REST Client 84
Figure 2.56: Modifying a user using CURL 85
Figure 2.57: Example to modify a zone using Postman REST Client _ 87
Figure 2.58: Modifying a zone using CUR L .. el 88
Figure 2.59: Example to rename a group using Postman REST Client iiiiiiiiiiiiioo... 89
Figure 2.60: Renaming a group using CURL 90
Figure 2.61: Example to rename an existing Zone using Postman REST Client 92
Figure 2.62: Renaming a zone using CUR L . 92
Figure 2.63: Displaying the components in the target environment using Postman REST Client 95
Figure 2.64: Displaying the components in the target environmentusing cURL 96
Figure 2.65: Displaying the External agents in the target environment using Postman REST Client _.._..._..._.._. 97
Figure 2.66: Displaying all the external agents in the target environmentusing cURL _ 98

Figure 2.67: Displaying the Remote agents configured in the target environment using Postman REST Client99

Figure 2.68: Displaying all the remote agents in the target environmentusing cURL 100
Figure 2.69: Displaying the Maintenance Policies configured in the target environment using Postman

REST Client . 101
Figure 2.70: Displaying the maintenance policies in the target environmentusingcURL 102
Figure 2.71: Displaying the details of the Maintenance Policies in the target environment using Postman

= 1 7=) 104
Figure 2.72: Displaying the details of the Maintenance Policies in the target environmentusing cURL ._..._..__. 105

Figure 2.73: Displaying the hosts managed in the target environment using Postman REST Client .._..._......_. 107

Figure 2.74: Displaying the hosts managed in the target environmentusing cURL 108

Figure 2.75: Displaying the details of a test using Postman REST Client 110
Figure 2.76: Displaying the details of a test using CURL _ 111
Figure 2.77: Displaying the tests for a chosen Component Type using Postman REST Client ..._.._.............. 113
Figure 2.78: Displaying the tests for a chosen Component Type using cURL 114
Figure 2.79: Unassign agents from the eG managers in a redundant setup using Postman REST Client ..._..__. 116
Figure 2.80: Unassigning agents from the eG managers in a redundant setup usingcURL .._..._.. ... _..._..._. 117
Figure 2.81: Unmanaging a component using Postman REST Client 119
Figure 2.82: Unmanaging a component using CURL 120
Figure 3.1: Example to add components in bulk using Postman REST Client 125
Figure 3.2: Adding components in bulk using CURL i 126
Figure 3.3: Managing components in bulk using CURL 129
Figure 3.4: Managing Components in bulk using CURL 129
Figure 3.5: Modifying Components in bulk using Postman REST Client __ 133
Figure 3.6: Modifying Components in bulk using cURL 133
Figure 3.7: Deleting Components in bulk using Postman REST Client 136
Figure 3.8: Deleting components in bulk using CURL 137
Figure 3.9: Unmanaging Components in bulk using Postman REST Client 140
Figure 3.10: Unmanaging components in bulk using cURL 140
Figure 3.11: Example to add remote agents in bulk 143
Figure 3.12: Adding remote agents in bulk using cURL 144
Figure 3.13: Example to add external agents in bulk using Postman REST Client 147
Figure 3.14: Adding external agents in bulk using CURL 147
Figure 3.15: Deleting remote agents in bulk using Postman REST Client 150
Figure 3.16: Deleting remote agentsin bulk using cURL 150
Figure 3.17: Example to delete external agents in bulk using Postman REST Client 153
Figure 3.18: Deleting external agents in bulk using CURL 153
Figure 4.1: Example to retrieve current alarm count using Postman REST Client 155
Figure 4.2: Retrieving current alarm count in the target environmentusing cURL 156
Figure 4.3: Example to retrieve current measures of a component using Postman REST Client ___._.._........... 159
Figure 4.4: Retrieving current measures of a componentusing cURL 160
Figure 4.5: Retrieving historical data of a measure using Postman REST Client 163
Figure 4.6: Retrieving historical data of a measure using cCURL _ 164
Figure 4.7: Retrieving detailed diagnosis of a measure using Postman REST Client 167
Figure 4.8: Retrieving Detailed diagnosis of a measure using cURL 168
Figure 4.9: Retrieving Top-N Analysis Data using Postman REST Client 170
Figure 4.10: Retrieving Top-N Analysis Data using CURL e 171

Figure 4.11: Retrieving measurement data of a test using Postman REST Client 174

Figure 4.12: An example cURL command to retrieve the measurementdata ofthetest 174
Figure 4.13: Sample output with the measurement data of a test across all monitored componenttypes .._...... 175
Figure 4.14: Retrieving trend data of a chosen measure using Postman REST Client __..__.._ 178
Figure 4.15: An example cURL command to retrieve the trend data for the measures 178
Figure 4.16: Sample output with the trend data for the chosen measures ofachosentest 179
Figure 4.17: Retrieving Threshold data configured for the measures using Postman REST Client ._...._.._...... 182
Figure 4.18: An example cURL command to retrieve the threshold configured for the measures ._..._............ 182
Figure 4.19: Sample output with the threshold data configured for the measures of a chosentest 183
Figure 4.20: Retrieving the health of the components in a zone using Postman REST Client .._.................. 186
Figure 4.21: Retrieving the health of the componentsin a zone using cURL 187
Figure 4.22: Retrieving the priority based problem distribution of a chosen component using Postman

REST ClleNt .. e 189
Figure 4.23: Retrieving the priority based problem distribution of a chosen componentusingcURL .._........... 190

Figure 4.24: Retrieving the alarm count based on severity for all component types using Postman REST Client .192

Figure 4.25: Retrieving the alarm count based on severity for all componenttypes usingcURL 193
Figure 4.26: Retrieving the alarm count based on severity for all components using Postman REST Client _..__. 195
Figure 4.27: Retrieving the alarm count based on severity for all components using cURL 196
Figure 4.28: Retrieving the alarm count based on severity for all layers of a Component Type using Postman

RE ST CliENt e e e e 198
Figure 4.29: Retrieving the alarm count based on severity for all layers of a Component Type using cURL ..__.. 199
Figure 4.30: Retrieving the alarm count based on severity for all tests of a Component Type using Postman

RE ST ClieNt e e e e e 201
Figure 4.31: Retrieving the alarm count based on severity for all tests of a Component Type using cURL __.._... 202

Figure 4.32: Retrieving count of events from Alarm History for all Component Types using Postman REST Client204

Figure 4.33: Retrieving count of events from Alarm History for all Component Types using cURL _..._......_..._. 205
Figure 4.34: Retrieving count of events from Alarm History for all Components using Postman REST Client _.... 207
Figure 4.35: Retrieving count of events from Alarm History for all Components usingcURL_...... 208
Figure 4.36: Retrieving count of events from Alarm History for the layers of a component type using Postman

= IO 1 7= 210
Figure 4.37: Retrieving count of events from Alarm History for the layers of a component type using cURL _.._... 211
Figure 4.38: Retrieving count of events from Alarm History for the tests of a component type using Postman

REST Client . 213
Figure 4.39: Retrieving count of events from Alarm History for the tests of a component type using cURL _....... 214
Figure 4.40: Retrieving the duration for which an alarm was open for all Component Types using Postman

= 1 7=) 216
Figure 4.41: Retrieving the duration for which an alarm was open for all Component Types usingcURL_. 217
Figure 4.42: Retrieving the duration for which an alarm was open for all Components using Postman

=S 1 7= S 219
Figure 4.43: Retrieving the duration for which an alarm was open for all Components using cURL .._.._..._..._. 220

Figure 4.44: Retrieving the duration for which an alarm was open for all layers of a Component types using Post-
man REST Client

Figure 4.45: Retrieving the duration for which an alarm was open for all layers of a Component types using
CUR L L 223

Figure 4.46: Retrieving the duration for which an alarm was open for all Tests of a Component Type using Post-
Man REST Client ..t 225

Figure 4.47: Retrieving the duration for which an alarm was open for all Tests of a Component Type using cURL226

Figure 4.48: Retrieving the percentage of proactive alarms for all Component Types using Postman

REST ClleNt . 228
Figure 4.49: Retrieving the percentage of proactive alarms for all Component Types usingcURL 229
Figure 4.50: Retrieving the percentage of proactive alarms for all Components using Postman REST Client _.._. 231
Figure 4.51: Retrieving the percentage of proactive alarms for all Components using cURL_.............. 232
Figure 4.52: Retrieving the percentage of proactive alarms for the layers of a component type using Postman

REST Cllent 234
Figure 4.53: Retrieving the percentage of proactive alarms for the layers of a component type using cURL _..._. 235
Figure 5.1: Retrieving the components corresponding to all Component Types using Postman REST Client 238
Figure 5.2: Retrieving the components corresponding to all Component Types usingcURL 239
Figure 5.3: efrieving the details of the zones created in the target environment using Postman REST Client .._.. 241
Figure 5.4: Retrieving the details of the zones created in the target environmentusing cURL_. 242
Figure 5.5: Retrieving the tests supported by eG Enterprise using Postman REST Client ._....... 244
Figure 5.6: An example cURL command to retrieve the tests supported by eG Enterprise 244
Figure 5.7: Sample output with the list of tests supported by eG Enterprise 245
Figure 5.8: Retrieving the list of measurements using Postman REST Client 247
Figure 5.9: An example cURL command to retrieve the measurements 247
Figure 5.10: Sample output with the list of measurements supported by eG Enterprise 248
Figure 5.11: Retrieving the list of applications monitored using Postman REST Client 250
Figure 5.12: An example cURL command to retrieve the applications monitored by eG Enterprise _..._..._...... 250

Figure 5.13: Sample output with the list of applications monitored by eG Enterprise 251

Chapter 1: Introduction

Chapter 1: Introduction

eG Enterprise is a 100%, web-based management console that allows users to view performance
metrics collected from a target infrastructure. Users with administrative rights can configure the
infrastructure that needs to be monitored. Configuration typically involves a sequence of tasks that
prepares the environment for monitoring - this includes identifying and adding the components to be
monitored, configuring the tests pertaining to these components, setting thresholds, configuring
additional external and remote agents for the environment, etc. Typically, a user must login to the
web-based eG administrative interface as an admin user in order to perform the above-mentioned
tasks.

To perform critical configuration tasks on the eG manager without logging into the eG manager, eG
Enterprise previously offered only an eG CLI capability. However, to keep pace with the growth
observed in the technology world, eG REST API capability is also available for a similar purpose.

A RESTful APl is an application program interface (API) that uses HTTP requests to GET, PUT,
POST and DELETE data. It is based on representational state transfer (REST) technology, an
architectural style and approach to communications often used in web services development.

From any REST client, administrators can hit the URL of the eG manager using the HTTP POST
method to connect to the manager and perform administrative tasks on it. Moreover, using the eG
REST API, administrators can also retrieve analytical data (for e.g., alarms raised in the target
environment, the detailed diagnosis data of a chosen measure, health of the components in the
target environment) from the eG manager. This information can be integrated with other
management portals. Commands can also be executed in bulk using this eG REST API.

1.1 What does the REST API enable?

« Ability to automate admin activities (e.g., auto provision monitoring when a VM is spun up)

Extract and analyze performance metrics automatically

Integration with other management portals to provide a seamless user interface

« Integration and consolidation with asset / configuration tracking systems

Chapter 1: How Does eG REST APl Work?

From any REST Client, administrators can perform critical configuration tasks on the eG manager.

Chapter 1: How Does eG REST APl Work?

HTTP POST URL of eG Manager

S’

~

oo y

HOE
¢ " d
oJole

Configuration Tasks

Figure 1.1: How the eG REST API works

1.2 Pre-Requisites for Configuring the Target Environment using
the REST API

The eG REST API capability can perform critical configuration tasks on the eG manager only when
the following pre-requisites are fulfilled:

« API consumer should have connectivity with eG manager
« APl consumer requires a valid eG user account to access the API

« Provide valid password to be authenticated by the eG manager

1.3 Actions Supported by the eG REST API
The eGREST API can be used to perform the following actions:

« Orchestration
« Analytics and

« Miscellaneous Services

Each of these actions is explained in detail in the forthcoming chapters.

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Chapter 2: The REST APl Commands for Orchestration of
eG Administrative Interface

To perform the administrative activities on the eG manager, users need to provide the following
default Headers parameters. These parameters can also be set as a global variable in the
REST Client.

« managerurl: The URL of the eG manager. Example: http://192.168.8.206:7077 (Note that
this URL of the eG manager will be used in this document, wherever applicable)

« user: The user authorized to access the eG manager. Example: john

« pwd: The password for the user. Ensure that you provide an encrypted value of the password
in this field. Note that the password should be encrypted in Base64 format.

Note:

The managerurl, user and pwd parameters (referred as Key values in REST Client) should be
specified in the Headers tab of the REST Client.

The REST API supports commands for performing a bunch of administrative activities on the eG
manager that are explained in detail in the following sections.

2.1 Adding Components

This API aids in adding new components to the eG Enterprise.
Note:

A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addcomponent
Method: POST

Content-Type: application/json

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Inputs to be Specified

Parameters [GACIES Example

Headers managerurl: Base URL of the Example containing both Default and
eG Manager i.e., http://<IP address Optional key values:
of the eG console:Port> i

"hostip":"192.168.10.175",
"componenttype":"Oracle Database",

user: eG username or
domain/eG username

pwd: Base64 encoded password "'componentname":"ora8",
Body Default: port™:"15217,

i "sid":"egoracle",

"hostip":"IP address of the ISpassiver- oy,

component", "externalagents":agent1"

"componenttype":"ComponentType", }

'componentname":"nick name of Example containing both Default and
the component", Optional key values:

"port":"port at which the component {

listens"
"hostip":"192.168.10.175",
} "componenttype":"Oracle Database",
Gptional: "'componentname":"ora8",
"port":"1521",
{
"sid":"egoracle",
"sid":"comma-separated list of) .
S|Ds" "ispassive":"no",

n n, "
"externalagents":"comma- externalagents":agentl

separated list of external agents }
assigned to the server",

"agentless":"yes/no",

"0s":"Operating System of the
server",

"mode":"Mode using which metrics
are collected",

"encrypttype":"Password/Keybased",

"keyfilename":"Key file name",

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters [GACIES Example

"remoteagent":"The remote agent
that monitors the target”,

"remoteport":"the port at which
Rexec/SSH listens",

"remoteuser":"Valid user name on
the target",
"remotepwd":"A valid password",

"internalagentassignment":"yes/no",

"internalagent":"IP address/nick
name of the internal agent”,
"mtsenabled":"yes/no",

"virtualenv":"yes/no",

"virtualserver":"Virtual server
name",

"ispassive":"yes/no"

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Component has been added successfully."

}

Failure Response

Type Content

JSON {

"Error": "Component already exist under this type."

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "Cannot add agent based component for this component type."

POST http://192.168.11.196:7077/api/eg/orchestration/addcemponent Params Send v Save
thorization Headers (3) Body @ Pre-request Script Tests @ Code
form-data xwww-form-urlencoded ® raw binary Text

)

2 "componenttype™: "Real user monitor”,

3 “hostip": "192.163.8.191",

4 "componentname”: "RUM_191",

5 "agentless™: "yes",

["remoteagent": "mobilecollector”,

7 “mode": “"Perfmon”

8 }

Body Cookies Headers (11) Test Results @ Status: 2000K Time: 10706 ms

Pretry Raw Preview JSON 5 Save Response
e

2 "Succesd": "Component has been added successfully."

301

Figure 2.1: Example to add components using Postman REST Client
2.1.1 Adding Components using cURL

To add components through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addcomponent" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'componenttype': 'ComponentType', 'hostip': 'IP
address of the component', 'componentname': 'nick name of the component', 'port': 'port
at which the component listens', 'agentless': 'yes/no', 'remoteagent': 'The remote agent
that monitors the target', 'mode': 'Mode using which metrics are collected', 'sid':
'comma-separated list of SIDs', 'externalagents': 'comma-separated list of external
agents assigned to the server', 'os': 'Operating System of the server', 'encrypttype':
'Password/Keybased', 'remoteuser': 'Valid user name on the target', 'remoteport': 'the
port at which Rexec/SSH listens', 'remotepwd': 'A valid password',
'internalagentassignment': 'yes/no', 'internalagent': 'IP address/nick name of the
internal agent', 'mtsenabled': 'yes/no', 'virtualenv': 'yes/no', 'virtualserver':
'Virtual server name', 'ispassive':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.2 shows an example of adding components using cURL.

nourl ——location —regquest POST "http:r 192 168.11.196:78777apisegrorchestrat
ionsaddcomponent” —header "managerurl: http: /~192_168_11.1926:-7877" —header ''us
er: admin' ——header "puwd: YWRtalldxMjH="" —header ""Content-Type: application~Json
" —data-—raw "{’componenttype’: ‘Real user monitor’., ‘hostip’: *192.168.8.191°.
'componentname’ z "RUM_191', 'agentless’': "yes’, ’'remoteagent’: 'mobilecollector’
. 'mode’: ‘Perfmon’:"

"Sgcceed":"Cumpunent haz been added zucceszfully. '

N

Figure 2.2: Adding components using cURL
2.2 Adding External Agents
Use this REST API to add external agents to the target eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/addexternalagent
Method: POST

Content-Type: application/json

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl: Base URL of | Example with Default key values:
the eG Manageri.e., i
http://<IP address of the
eG console:Port> "hostip":"192.168.8.191",
user: eG username or "agentname":"egdp119"
domain/eG username }
pwd: Base64 encoded Example containing both Default and Optional key
password values:
Body Default: i
{ "hostip":"192.168.8.191",
hostip":"IP address of the "agentname":"egdp119",
component”,

"clientemulation":"yes"
"agentname":"Agent

name" 1

}
Optional:

{

"clientemulation":"yes/no"

}

Success Response

Type Content

JSON 200 {

"Succeed": "External agent has been added
successfully."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content
JSON {

"Error": "Space is not allowed in component name/agent name."

POST http://192.168.11.196:7077 /api/eg/orchestration/addexternalagent Params Send i Save
(3) Body ® L] Code
form-data wwwew-form-urlencoded & raw binary Text
1 [
2 “hestip”: "192.168.8.191",
3 "sgentname": "Agent_192"
4 1
Body (11) . Status: 2000K Time: 1369 ms
Pretty JSON 5 Save Response
i~k
2 "Succeed": "External agent has been added successfully.™

Figure 2.3: Example to add an external agent using Postman REST Client

2.2.1 Adding External Agents using cURL

To add external agents through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addexternalagent”™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{ 'hostip': 'IP address of the component',

'agentname': 'Agent name', 'clientemulation': 'yes/no'}"

Note that the command specified above contains both Default and Optional key values.

Figure 2.4 shows an example of adding external agents using cURL.

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

iwJourl —location ——reguest POST “http: -192.168 .11 .196:7877apisegsorchestrat
Honsaddexternalagent' ——header "managerurl: http:- - 192 _168_.11_196:7877" —header

»2 admin" ——header "pud: YUWRtaWldxMjH="" ——header '"Content—-Type: application~
jeon' —data—raw "{ ‘hostip’: "192.168_.8.191',. 'agentname’: 'Agent_191°'>"
"Sgcceed":"External agent has been added successfully.'

S

Figure 2.4: Adding an external agent using cURL
2.3 Adding Groups
Use this API to add a group comprising of one/more components to the eG Enterprise.
URL: http://192.168.8.206:7077/api/eg/orchestration/addgroup
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base Example with Default key values:
URL of the

eG Manager i.e.,
http://<IP address of "groupname":"group_X",

the eG console:Port> "elements":"Citrix Logon

user: eG username or Simulator:TestLogon,Microsoft SQL:MSSQL:1433"
domain/eG username)

pwd: Baseb4 encoded
password

Body Default:
{

"groupname":"Group

10

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

name",

"elements":"comma-
separated list of
elements"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Group has been added successfully."

}

Failure Response

Type ‘ Content

JSON {
"Error": "Required group details"

}
{

"Error": "One or more elements do not exist or not available to associate.
Invalid elements"

}

11

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST htep://192.168.11.196:7077 fapifeg/orchestration/addgroup Params Save

(3) EBody @ [] Code

form-data *-www-form-urlencoded ® raw b

=1
I+
T

=

{
"groupname" : "Component - no-port",
"elements":"Microsoft Windows:windowsl)Metwork Node:network_l1@"

H

Bl R

Body (11) [] Status: 2000K Time: 848 ms
Pretty JSON = Save Response
1~
2 "Succeed": "Group has been added successfully.™
3%

Figure 2.5: Example to add a group using Postman REST Client
2.3.1 Adding a Group using cURL

To add a group through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addgroup” -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'groupname': 'Group name', 'elements': 'comma-

separated list of elements'}"

Figure 2.6 shows an example of adding a group using cURL.

12

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

:nvourl —location ——lequ3°t POST “"http:r -192.168.11.1%6: ?B??/apl/eg/ulch3°tlat
-un/addgluup ——header "managerurl: http:-r -7192_168.11.196:7877" —header "us
pdmin'' ——header "pud: YWRtalldxMjHM="" —header "Cnntent Type application~js=

ata—raw "{'groupname’ :’Component—no-port’', ‘elements’:’Microsoft Windows:windo
vs1 .Metwork Mode:network 18°'3"

"Succeed":"Group hasz been added successfully.">

HaS-

Figure 2.6: Adding a group using cURL
2.4 Adding Maintenance Policies
This API helps administrators add maintenance policies to the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/addmaintenancepolicy
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the {
eG Manager i.e., http://<IP address of
the eG console:Port>

"policyname":"QMPPolicy",

"timefrequency":" Thursday=10:15-
user: eG username or

domain/eG username 115"

pwd: Base64 encoded password }
Body Default:

{

"policyname":"Policy name",

"timefrequency":"[Daily]/[First day of
month]/[Last day of month]/

13

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

[Sunday/Monday/Tuesday/Wednesday/
Thursday/Friday/
Saturday]/

Start Date-End Date]=Start Time-End
Time"

}

Note:
The format for Start Date and End Date is MM/DD/YYYY

The format for Start Time and End Time is Hours:Minutes

Success Response

JSON 200 {

"Succeed": "Maintenance policy added successfully."

}

Failure Response

Type ‘ Content

JSON {

"Error": "Invalid Time frequency."

}

14

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST hrep://192.168.11.196:7077 /api/egforchestration/addmaintenancepolicy Params Save

(3) Body @ [] Code

form-data x-www-form-urlencoded ® raw b

3
1
L

{
"policyname”: "esxl_maintenance”,
"timefrequency”:"Friday=18:15-11:15"
H

Fa L P

Body (11) [] Status: 2000K Time: 1358 ms

Prety JSON = .

"Succeed": "Maintensnce policy added successfully.”

[

Figure 2.7: Example to add a maintenance policy using Postman REST Client

2.4.1 Adding Maintenance Policies using cURL

To add a maintenance policy through the REST API using cURL, the command should be specified
in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addmaintenancepolicy” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'policyname': 'Policy name',
'timefrequency': '[Daily]/[First day of month]/[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday] /Start Date-End Date]=Start
Time-End Time'}"

Figure 2.8 shows an example of adding a maintenance policy using cURL.

15

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

wyourl —location —request POST "http:r 192168 .11 .196:-78Y7 apisegsorchestrat
Honsaddmaintenancepolicy” —header "managerurl: http:-- -192_168.11.196:7877" ——he
hder "user: admin' —header “puwd: YURtalMxMjH="" —header '"Content—-Type: applicat
Honsjzon" —data—raw '"{ 'policyname’:’'MHanual restart’. ‘timefrequency’:’ Thursdal
p=1@:15-11:15">"

"Succeed":"Maintenance policy added successfully.'>

NI

Figure 2.8: Adding a maintenance policy using cURL

2.5 Adding Remote Agents

Use this API to add remote agents for monitoring to the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/addremoteagent

Method:

POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Header

Body

managerurl: Base URL Example with Default key values:
of the eG Manager

i.e., http://<IP address
of the "hostip":"192.168.8.192",

eG console:Port>

"agentname":"remote191"
user: eG username or
domain/eG username

pwd: Base64 encoded
password

Default:

{
"hostip":"Host IP",

16

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

"agentname":"Remote
Agent name"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Remote agent has been added successfully."

}

Failure Response

Type Content

JSON {

"Error": "The agent name you are trying to add already exists. Please use
another agent name."

}

17

hetp://192.168.11.196:7077 /api/eg/orchestration/addremoteagent Params Send hd

binary

"hostip": "192.
"agentname": "

"Succeed": "Remote agent has been added successfully."

Figure 2.9: Example to add a remote agent using Postman REST Client
2.5.1 Adding Remote Agents using cURL

To add a remote agent through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/adaddremoteagent™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'hostip': 'Host IP', 'agentname': 'Remote

Agent name'}"

Figure 2.10 shows an example of adding a remote agent using cURL.

nourl ——location ——regquest POST "httpir s192.168.11.196:7877 apisegsorchestrat
honsaddremoteagent'” ——header "manageru http:r 7192168 .11 .196:7877" ——header "'
in" —header "pud: YWRtalldxMj ——header "Content-Type: application/js
s "{ "hostip’: *192.168.8.191’. ’'agentname’: 'AG_191°3}"
Remote agent has heen added successfully."?

Figure 2.10: Adding a remote agent using cURL

18

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.6 Adding a User

Use this API to add a user to the eG manager.

Note:

A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/adduser
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters ‘ Key values ’ Example
Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e,, i
http://<IP address of the
eG console:Port> "userid":"john",
user: eG username or "userrole":"monitor",

domain/eG username .
/ "password"; A A xEET

pwd: Base64 encoded "expirydate":"05/20/2021"
password
}
Example with both Default and Optional key
values:
{

"userid":"john",

"userrole":"monitor",
"password"; A HxEET

"expirydate":"05/20/2021",

"alarmsbymail":"critical",

"to":"saranyal@eginnovations.com",

"cc":"saranl@eginnovations.com,

19

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

BOdy Defau]t: 9840391695)

{

"userrole":"User role",

"bcc":"shara@eginnovations.com"

}

"userid":"User ID",
"password":"Password",
"expirydate":"MM/DD/YYYY"
}

Optional:

{

"alarmsbymail":"Critical/Major
/Minor/All",

"to":"comma-separated list
of Mail IDs/Mobile numbers",

"cc":"comma-separated list of
Mail IDs/Mobile numbers",

"bee":"comma-separated list of
Mail IDs/Mobile numbers"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "User has been created successfully."

}

20

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content

JSON {

"Error": "Please provide a user role."

}
{

"Error": "Please enter a valid date."

}

POST http://192.168.11.196:7077 /api/eg/orchestration/adduser Params Save

(31 Body ® L] Code

form-dara wwww-form-urlencoded ¥ raw binary Text

it
"userid": "Haasan",
“userrole”: “monitor”,
“password™: “"xyz2@2e“,
"expirydate™: "5/28/2821"

T ST

Eody (11) [] Status: 200 0K Time: 1757 ms
Pretty JSON 5 Save Response

2 "Succeed": "User has been crested successfully.”

Figure 2.11: Example to add a new user using Postman REST Client
2.6.1 Adding a User using cURL

To add a user through the REST API using cURL, specify the command in the following format:

curl --location --request POST "http://<eG Manager IP:Port>/api/eg/orchestration/adduser"
-H "managerurl:http://<eG Manager IP:Port>"-H "user:<eG username or domain/eG username>"
-H "pwd:Base64 encoded password" -H "Content-Type: application/json" --data-raw "
{'userrole': 'User role', 'userid': 'User ID', 'password': 'Password',6 'expirydate':
'MM/DD/YYYY', 'alarmsbymail":"Critical/Major/Minor/All', 'to': 'comma-separated list

of Mail IDs/Mobile numbers', 'cc': 'comma-separated list of Mail IDs/Mobile numbers',

'bce': 'comma-separated list of Mail IDs/Mobile numbers'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.12 shows an example of adding a user using cURL.

21

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

sJeurl ——location —request POST “http: - -192_168.11_1%96:-7/877-/apiseg-/orchestrat]
Honsadduser'" —header "managerurl: http: -192_168.11.126:=7877" ——header "user:
in'" ——header "pud: YURtall4xMjM=" —header "Content-Type: application-json" ——
bta—raw "{'userid’: ‘Hasan’, 'uservrole’: "monitor’, ‘passuword’: ’‘wy=20280'.,
~ydate’ : "L/20-2021° "
"Succeed":"User has been created successfully "3
N

'expi

Figure 2.12: Adding a user using cURL
2.7 Adding a Zone

Use this API to add a zone to the eG manager.

Note:

A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addzone
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base URL | Example with both Default and Optional key values:
of the eG Manager i.e.,

http://<IP address of the
eG console:Port> "zonename":"eastzone",

user: eG username or "elements":"lIS Web:web_ 2:80,group:dbgroup"”,

domain/eG username "displayimage":"Web",

pwd: Base64 encoded
password

"autoassociate":"yes"

}

22

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

Body Default: Example with Default key values:
{ {

"zonename":"Zone {
name", "zonename":"westzone",

"elements":"comma- "elements":"lIS Web:web_2:80",
separated list of)
elements"

}
Optional:

{

"displayimage":"Display
image",

"autoassociate":"yes/no"

}

Success Response

Type Code Content

JSON 200 {
"Succeed": "Zone has been added successfully."

}

Failure Response

Type ‘ Content

JSON {

"Error": "One or more elements do not exist or not available to associate.
Invalid elements"

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST http:/#192.168.11.196: 7077 /apifeg/orchestration/addzone Params Save

2 Body ® [] Code
form-data s-wna-form-urlencoded ¥ raw binary Text

{
“zonsname" :"Eurdsial”,
"elemen Trend Micro Server:ooc:23”,
4 "displayimage":"kWeb",

5 "sutoassociste”:"yes"
i r

Body (11)] Status: 2000K Time: 1297 ms
Prerry JSON =) Save Response

2 "Succeed": "Zone has been added successfully.”

h

Figure 2.13: Example to add a zone using Postman REST Client
2.7.1 Adding a Zone using cURL

To add components through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager IP:Port>/api/eg/orchestration/addzone"
-H "managerurl:http://<eG Manager IP:Port>"-H "user:<eG username or domain/eG username>"
-H "pwd:Base64 encoded password" -H "Content-Type: application/json" --data-raw "
{'zonename':'Zone name', 'elements':'comma-separated list of elements',

'displayimage':'Display image', 'autoassociate':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.14 shows an example of adding a zone using cURL.

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

sourl —location —request POST "http:/-71922.168.11.176:7877/apisegs/orchestrat
ion-saddzone'" ——header "managerurl: http:-/-192_168_.11 . 196:7877" ——header "user: a
min'" ——header "pud: ¥YWRtaWd4xMjM="" —header "Content-Type: application/json" ——d
ta—raw "{’zonename’ :’Europe’, ‘elements’:’'Trend Micro Server:ixxx:23’',. ‘display
image’ ='Weh’, ‘autoassociate’ :’'yes’ "

"Sgcceed":"ﬂone has heen added successfully.™:

NI

Figure 2.14: Adding a zone using cURL
2.8 Assigning an Agent
Use this command to assign agents to a manager in a redundant setup.
URL: http://192.168.8.206:7077/api/eg/orchestration/assignagents
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of "agentname":"egdp119,egdp201"
the eG console:Port>)

"managerip":"192.168.8.191",

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body {

"managerip":"IP of

25

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

the eG manager to
which agents are to
be assigned"”,

"agents":"comma-
separated list of
agents"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "one or more agents assigned successfully."

}

Failure Response

Type Content

JSON {
"Error": "One or more agents in not valid. Please give valid agent name."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST heep://192.168.11.196:7077 /api/eg/orchestration/assignagents Params Send hd Save
() Body @ Code
form-data x-wwnw-form-urlencoded '® raw binary SON (af
"managerip”: “192.168.8.219",
3 "agents": "Serverlf_18"
4 1
Body (11) Status: 2000K Time: 1233 ms
Pretty JSON 5 Save Response
"Succeed™: "Agents have been assigned successfully.™
i

Figure 2.15: Assigning an agent to the eG manager in a redundant setup using Postman REST Client
2.8.1 Assigning an Agent using cURL

To assign an eG agent to an eG manager in a redundant setup through the REST API using cURL,
the command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/unassignagents" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'managerip':'IP of the eG manager from

which agents are to be delinked', 'agents':'Comma-separated list of agents'}"

Figure 2.16 shows an example of assigning the eG agent to an eG manager in a redundant setup
using cURL.

27

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nrourl —reguest POST “"http:r/-192.168.11.196:7877/apisegs/orchestrationsassign
gents" —header "managerurl: http:/-192.168.11.1926:7877" —header "user: admin"
—~header "puwd: YWRtaWldxMjM="" —header "Content—-Type: application/json" ——data—r
y "{'managerip’: *192.168.8.21%9',. ‘agents’: ’'Serverlb6_18.Serverib_17.5erverib_16
J}ll

"Succeed":"Agents have been assigned successfully.">

N

Figure 2.16: Assigning an agent to the eG manager in a redundant setup using cURL

2.9 Assigning a Maintenance Policy

Use this API to associate/dissociate a maintenance Policy to a Component/Host/Test/Test For
Host/Test For Component/Test For component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/assignmaintenancepolicy

Method: POST

Content-Type: application/json

Inputs to be Specified

Headers

Body

managerurl: Base URL of the {
eG Manager i.e., http://<IP address of "oolicyname""QMP1",
the eG console:Port>

"associatefor":"Component",
user: eG username or

domain/eG username "componentsby": "Component Type",
pwd: Base64 encoded password "componenttype":"microsoft windows",
Default: "associateelements":"windowsos191
i ,windows195"

}

"policyname":"Policy name"

28

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters GAEIES Example

"associatefor":"Host/Component/Test/
Test For Host/Test For component/
Test For component type"

"componentsby":"Zone/Segment
/Service/Component Type"

"zone":"Zone name"
"segment":"Segment name"
"service":"Service name"
""'componenttype":"Component type"
"test":"Test name"

"associateelements":"comma-
separated list of elements"

"disassociateelements":"comma-
separated list of elements"

}

Success Response

Type ‘ ‘ Content

JSON 200 {

"Succeed": "Maintenance policy has been
associated/dissociated successfully."

}

Failure Response

Type ‘ Content

JSON {

"Error": "Element(s) you are trying to add does/do not exist."

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Content

POST hetp://192.168.11.196:7077/apifeg/orchestration/assignmaintenancepolicy Params Save

(3 Body ® . Code

form-data x-voww-form-urlencoded ® raw binary Text

i
"policyname™: "Manual_restart"”,
"associatefor":"Component”,
"compenentsby™ : "Component Type",
"componenttype” : "VMware vspheres esx”,
"associateelements”: "Esx_14"

BN VI ST

Body (11) L] Status: 200 0K Time: 637 ms

Pretty JSON =

Save Response
1- K
2 "Succeed": "Maintenance policy has been associated/dissociated successfully.”

Figure 2.17: Assigning a Maintenance Policy using Postman REST Client

2.9.1 Assigning a Maintenance Policy using cURL

To assign a maintenance policy through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/assignmaintenancepolicy” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'policyname':'Policy name',
'associatefor':'Host/Component/Test/Test For Host/Test For component/Test For component
type', 'componentsby':'Zone/Segment/Service/Component Type', 'zone':'Zone name',
'segment':'Segment name', 'service':'Service name', 'componenttype':'Component type',
'test':'Test name', 'associateelements':'comma-separated list of elements',
'disassociateelements':'comma-

separated list of elements'}"

Figure 2.18 shows an example of assigning a maintenance policy using cURL.

30

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nourl —location ——reguest POST “httpir r192.168.11.126 7877 apisegsorchestrat
Honsassignmaintenancepolicy” —header "managerurl: http:-~192.168.11_126:7877" —
header "user: admin" ——header "pud: YWRtalldxMjM=" ——header "Content—Type: appli
ations/Jjson" —data—raw "{’policyname’ :’Manual_restart’, ’associatefor’:’Comnpone
t’. ‘componentshy’ : 'Component Type’, ‘componenttype’ = ‘UMware vsphere esx’ .
aszsociateelements’ ="' Ezx_14°3"

"Succeed":"Maintenance policy has bheen associated/dissociated successfully.'>
N

Figure 2.18: Assigning a maintenance policy using cURL
2.10 Associating Components to User

Using this API, administrators can associate components to a user.

Note:

A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/associatecomponentstouser
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the | Example with Default Key Values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "userid":"john",
user: eG username or "componenttype":"microsoft windows",

domain/eG username "'components":"dev153,win155,win156"

pwd: Base64 encoded }

password
Example with both Default and Optional Key

Values:

31

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

{

"userid":"john",

Body Default:
{

"userid":"User ID",

"componenttype":"microsoft windows",

o - "'components":"dev153,win155,win156"
componenttype":"Component

type", "autossociatetype":"yes"
'components":"comma- }

separated list of Nick names",

}

Optional:

{

"autoassociatetype":"yes/no"

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "One or more components have been
associated successfully."

}

Failure Response

Type Content

JSON {

"Error": "One or more component names do not exist."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST hrep://192.168.11.196:7077 /apifeg/orchestration/associatecomponentstouser Params Send o Save

(3) Body @ [] Code

form-data x-www-form-urlencoded ® raw binary axt

{
"userid”:"Haasan",
"componenttype”:"0Oracle Database",

4 "components":"oraclell:1521: egurkha™

B
Body (11) . Status: 2000K Time: 1528 ms
Pretty JSON = Save Response

2 "Succeed”: "One or more components have been associsted successfully.”

Figure 2.19: Example to associate components to a user using Postman REST Client
2.10.1 Associating Components to User using cURL

To associate components to a user through the REST API using cURL, the command should be
specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/associatecomponentstouser" -H "managerurl:http://<eG
Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded
password" -H "Content-Type: application/json" --data-raw "{'userid':'User ID',
'componenttype': 'Component type', 'components':'comma-separated list of Nick names',

'autoassociatetype':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.20 shows an example of associating components to a user using cURL.

33

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

:sourl ——location ——request POST "http: /7192.168.11.196:7877 apisegs/orchestrat
ionsassociatecomponentstouser’” ——header "managerurl: http:- -172.168.11_.1%6:787"

——header "uwser: admin' ——header "puwd: YWRtalldxMjM=" ——header "Content-Type: ap
lication~J " —data-raw "{ 'uszerid’:’'Hasan’. ‘componenttype’:’oracle databasze’
‘components’ ='oraclell:1521 equrkha’ "
"Succeed":"One or more components have heen associated successfully. ">
NI

Figure 2.20: Associating components to a user using cURL
2.11 Deleting a Component
Use this API to delete a component from the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/deletecomponent
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the ' Example with Default key values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "componenttype":"Microsoft SQL",
user: eG username or "componentname":"MSSQL",
domain/eG username "port":"1433"
pwd: Base64 encoded }
password
Example with both Default and Optional Key
Values:
{

"componenttype":"Oracle Database",

34

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
Body Default: componentname":"oradb4",
{ "port":"1521"
"Componenttype":"C0mponent S|d . egora

type”, }

"'componentname":"The nick
name of the component",

"port":"Port",
}

Optional:

{

"sid":"SID"

}

Note:

If an Oracle Database server is added with multiple SIDs, then the eG Enterprise system will monitor
each SID as a different Oracle Database server. Therefore, while removing an Oracle Database
server that supports multiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

Success Response

Type Content

JSON 200 {

"Succeed": "Component has been removed successfully."

}

Failure Response

Type ‘ Content

JSON {

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "The selected component does not exist."

POST hrrp://182.168.11.196:7077 /apifeg/orchestration/del etecompanent Params Send b Save
(3} Body @ [] Code
form-dara s-wnww-form-urlencoded ® raw binary Text
10K
2 “compenenttype”: “Real user monitor”,
3 “"componentname™: “RUM_191“,
4 “"port": "NULL"
5 %
Body (11} . Status: 2000K Time: 1228 ms
Pretty JSON 5 Save Response
1-f
2 "Succeed": “Component has besen removed successfully.”
30}

Figure 2.21: Deleting a Component using Postman REST Client
2.11.1 Deleting a Component using cURL

To delete a component through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deletecomponent” -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'ComponentType',
'componentname': 'nick name of the component', 'port': 'port at which the component
listens', 'sid': 'SID'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.22 shows an example of deleting a component using cURL.

36

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

:xnourl —location —request POST "http:ir 192 168.11.196:7877apiseg- orchestrat]
ion-deletecomponent' —header "managerurl: http: 7192 _168.11.196:7877" ——header
‘uzser: admin' ——header "pud: YWRtaWd4xMjH="" —header "Content-Type: application~j

" ——data-raw "{ ‘componenttype’: *Real user monitor’'. ‘componentname’: *RUM_1|
1’ . ‘port’: "HULL’>"
"Succeed":"Component has bheen removed successfully.">
N

Figure 2.22: Deleting a component using cURL
2.12 Deleting an External Agent
Using this API, administrators can delete an external agent from the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/deleteexternalagent
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of }
the eG console:Port>

"agentname":"ext191"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

37

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters L GACI S Example

"agentname":"Agent
name"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "External agent has been deleted
successfully."

}

Failure Response

Type ‘

JSON {
"Error": "The external agent you are trying to delete does not exist."

}

http://192.168.11.196:7077/api/eg/orchestration/deleteexternalagent Params Send o

Body @ .

"agentname": "Agent_191"

1

Figure 2.23: Deleting an external agent using Postman REST Client
2.12.1 Deleting an External Agent using cURL

To delete an external agent through the REST API using cURL, the command should be specified in
the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deleteexternalagent" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'agentname':'Agent name'}"

2.12 shows an example of deleting an external agent using cURL.

nourl —location —request POST "http:-r rs192.168.11.196:7877/apisegsorchestrat
ionsdeleteexternalagent” ——header "managerurl: http: 7192 _168.11.1926:7877" —hea
er "uzer: admin' —header "'pud: YWRtaWdxMjH=" ——header "Content-Type: applicati
on-json" ——data—raw "{ ‘agentname’: ’Agent_191°':"

"Sgcceed":"External agent has heen deleted successfully.'>

NI

Figure 2.24: Deleting an external agent using cURL

39

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.13 Deleting a Group

Administrators can use this API to delete a group from the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/deletegroup
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters ‘ Key values ‘ Example

Headers managerurl: Base URL {
of the eG Manager
i.e., http://<IP address
of the }
eG console:Port>

"groupname":"mynewgroup,egdbgroup"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"groupname":"comma-
separated list of
groups"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Group has been deleted successfully."

}

40

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content

JSON 401 {

UNAUTHORIZED |, "o . . .
Error": "One or more given groups do not exist or is not

associated to any zone/segment/services. Invalid groups
: <comma-separated list of group names>"

POST http://192.168.11.196:7077/apifeg/orchestration/deletegroup Params Save
(3) Body ® [] Code
form-data x-www-form-urlencoded ® raw binary Text
10K
2 "groupname": "network"
31
EBaody (11) Y Status; 2000K Time: 1645 ms
Pretty JSON 5 Save Response
i-r [
2 "Succeed": "Group has been deleted successfully.™
3 1

Figure 2.25: Deleting a Group using Postman REST Client
2.13.1 Deleting a Group using cURL

To delete a group through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deletegroup” -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'groupname':'comma-separated list of groups'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.26 shows an example of deleting a group using cURL.

a1

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

soeurl —location ——reguest POST "hitp:- /7192 .168.11.196:-7877/apisegsorchestrat
ion~deletegroup'” ——header "managerurl: http:- /71922 _168.11.196:7877" —header "uze
»2 admin' ——header "'pud: YWRtaW4xMjH="" —header "Content—-Type: application~jzon"
—data—raw "{'groupname’: ‘microsoft’}"

"Succeed":"Group hasz bheen deleted successfully. "2

N

Figure 2.26: Deleting a group using cURL
2.14 Deleting a Maintenance Policy
Use this API to delete a maintenance policy configured in the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/deletemaintenancepolicy
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL |{
of the eG Manager
i.e., http://<IP address
of the }
eG console:Port>

"policyname™:"QMP1,QMP2"

user: eG username or
domain/eG username

pwd: Baseb4 encoded
password

Body Default:
{

42

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

"policyname":"comma-
separated list of
maintenance policies"

}

Success Response

Type Code Content

JSON 200 {
"Succeed": "Maintenance policy deleted successfully."

}

Failure Response

Type ‘

JSON {
"Error": "Maintenance policy does not exist."

}

http://192.168.11.196:7077/api/eg/orchestration/deletemaintenancepolicy Params

"policyname™: "esx_maintenance"

o0y) L 200 0K
Pretty

“Succeed": "Maintsnance policy delsted successfully.’

Figure 2.27: Example to delete a maintenance policy using Postman REST Client
2.14.1 Deleting a Maintenance Policy using cURL

To delete a maintenance policy through the REST API using cURL, the command should be
specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deletemaintenancepolicy” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'policyname':'comma-separated list of

maintenance policies'}"

Figure 2.28 shows an example of deleting a maintenance policy using cURL.

:sourl —location —request POST "http:r/7192.168.11.196:-7877/apisegs/orchestrat
ionsdeletemaintenancepolicy" —header "manageru http= 7192 168.11 196 :7877" —
header "user: admin" ——header "pud: YWRtalldxMj ——header "Content-Type: appli
ations/json'" —data-—raw "{ ‘policyname’: 'Manual_p art’>"
"Succeed":"Maintenance policy deleted successfully.'?

N

Figure 2.28: Deleting a maintenance policy using cURL

44

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.15 Deleting a Remote Agent

Use this API to delete a remote agent from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteremoteagent
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl: Base {
URL of the

. "agentname":"AG_191"
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"agentname":"Agent
name"

}

Success Response

Type Content

JSON 200 {

"Succeed": "Remote agent has been deleted
successfully."

}

45

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content

JSON {

"Error": "The remote agent you are trying to delete does not exist."

POST hetp://192.168.11.196:7077/apifeg/orchestration/deleteremoteagent Params Save
Authorization Headers (3) Body @ Pre-request Script estis @ Code
form-data x-www-form-urlencoded ® raw binary Text
1 f
2 "agentnams": "AG_191"
3 7
Body Cookies Headers (11) Test Results @ SENE eSS CI =
Pretty T Tz J50N = Save Response
1x K
2 "Succeed": "Remote agent has been deleted successfully."
3 7

Figure 2.29: Deleting a remote agent using Postman REST Client
2.15.1 Deleting a Remote Agent using cURL

To delete a remote agent through the REST API using cURL, the command should be specified in
the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deleteremoteagent” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'agentname':'Agent name'}"

Figure 2.30 shows an example of deleting a remote agent using cURL.

46

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

»Jourl ——location ——regquest POST "http:- 192 168.11 . 196:7877 apisegsorchestrat
ion-deleteremoteagent”™ —header "managerurl: http:--172.168.11.196:78Y7" ——heads
» "uzer: admin' —header "pud: YWRtalMxMjH="" —header "Content-Type: applicatio
J=zon'" ——data-raw "{ 'agentname’: ‘AG_191°>"

"Succeed":"Remote agent has been deleted successfully_ "3

Figure 2.30: Deleting a remote agent using cURL
2.16 Deleting a User
Use this API to delete a user from the eG Enterprise.
URL: http://192.168.8.206:7077/api/eg/orchestration/deleteuser
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of '}
the eG console:Port>

"userid":"john,kim,sarah"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

47

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

"userid":"comma-
separated list of User
IDs"

}

Success Response

Type Code Content

JSON 200 {
"Succeed": "User(s) has/have been deleted successfully."

}

Failure Response

Type ‘

JSON {
"Error": "One or more users do not exist."

}

htep://192.168.11.196:7077 /api/eg/orchestration/deleteuser Params

Eody @ L
form-data *-www-form-urlencoded = binary
"userid": "Haasan"
¥
ady (11} ® 200 0K 3841 ms
Pretty
"Sycceed”: "User(s) has/have been deleted successfully."”
b

Figure 2.31: Deleting a User using Postman REST Client

2.16.1 Deleting a User using cURL

To delete a user through the REST API using cURL, the command should be specified in the
following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deleteuser" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'userid':'comma-separated list of User IDs'}"

Figure 2.32 shows an example of deleting a user using cURL.

i»ourl —location —request POST "http:ir s192_168_11.196:7877apisegsorchestrat
Honsdeleteuser’ ——header "managerurl: http: 7192.168.11.196:7877" —header "user
: admin' —header ""pwd: YWRtalMxMjH="" —header '"Content—-Type: application-json'
—data—raw "{'userid’: 'Hasan’}"

"Sgcceed":"User(s) haz have heen deleted successfully. ™}

HAS

Figure 2.32: Deleting a user using cURL

49

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.17 Deleting a Zone
Use this API to delete a zone from the eG manager.
URL: http://192.168.8.206:7077/api/eg/orchestration/deletezone

Method: POST

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base {
URL of the

) "zonename":"EurAsia,globalwest"
eG Manager i.e.,,

http://<IP address of '}
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"zonename":"comma-
separated list of
zones"

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Zone has been deleted successfully."

}

50

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content

JSON {
"Error": "One or more given zone names do not exist."

}

POST heep://192.168.11.196:7077 /apifeg/orchestration/deletezone Params Send hd Save
orization Headers (3} Body @ Pre-request Script Tesi= @ Code
form-data xwww-formeurlencoded ® raw binary Text

1K

2 "zonename": “Europe"

3

Body Cookies Headers (11) TestResults @ Status: 200K Time: 1613 ms

Pretty Rawr Preview J5ON = Save Response

i-f

2 "Succeed": "Zone has been deleted successfully.™

3 1

Figure 2.33: Deleting a zone using Postman REST Client
2.17.1 Deleting a Zone using cURL

To delete a zone through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deletezone" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'zonename':'comma-separated list of zones'}"

Figure 2.34 shows an example of deleting a zone using cURL.

51

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

=ourl —location —request POST "http:- -192.168.11.196:7877/apirsegsorchestrat
ionsdeletezone” ——header "managerurl: http:- 7192 _168.11.196:7877" —header

: admin" ——header “pud: YWRtaWdxMjM=" —header "Content—-Type: application/json"
—data—-raw "{’zonename’: ’'Europe’"

"Sl.)l.CCEEd":"ZDI'IE hasz bheen deleted successfully ">

NG

Figure 2.34: Deleting a zone using cURL
2.18 Disabling Tests

Use this API to disable one/more tests of a chosen component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/disabletests
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "componenttype":"Microsoft SQL",
user: eG username or "tests":"SQL Blocker Processes, SQL locks"
domain/eG username

}
pwd: Base64 encoded Example with both Default and Optional Key
password Values:

{

"componenttype":"Microsoft SQL",

testtype:"configuration"

52

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

"tests":"Drives"

}

Body Default:
{

"'componenttype":"Component
Type",

"tests":"comma-separated list
of tests"

}
Optional:

{

"testtype":"performance/
configuration",

}

Success Response

JSON 200 {

"Succeed": "Test(s) is/are disabled for this component type."

}

Failure Response

Type ‘ Content

JSON {

"Error": "One or more tests are not available for this component type."

}

53

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST http://182.168.11.196: 7077 /api/eg/orchestration/disabletests Params Save

(3) Body ® L] Code
form-data x-www-form-urlencoded ® raw bina Te
10K
2 "componenttype"”:"VMware vSphere ESK",
1 "performance™,

*r"Wirtual network traffic, wm device status”

Bod (1 L] Status: 2000K Time: 634 ms
Pretty 15O =) Save Response

"Succeed": "Test(s) isfare disabled for this component type."

Figure 2.35: Disabling one/more tests of a chosen component type using Postman REST Client
2.18.1 Disabling Tests using cURL

To disable one/more tests of a chosen component type through the REST API using cURL, the
command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/disabletests" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'componenttype':'Component Type', 'tests':'comma-

separated list of tests', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.36 shows an example of disabling one/more tests of a chosen component type using cURL.

54

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Snourl —location ——request POST “http:= 7192 168.11.1%6:7877/apisegsorchestrat
Hon~dizabhletests" ——header "managerurl: http:-/-192_168.11.196:7877" —header "us
pr: admin® —header "puwd: YUWRtaWdxMjH=" ——header "Content—-Type: application~json
' —data—raw "{'componenttype’ :’'UMware vSphere ESE’',. ‘testtype’:’performance’, *
ests’ i'Uirtual network traffic. vm device status'>"

"Succeed":"Test{(s) iz are disabled for this component type.">

NP

Figure 2.36: Disabling one/more tests of a chosen component type using cURL
2.19 Enabling Tests

Use this API to enable one/more tests for a chosen component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/enabletests
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the Example with both Default and Optional
eG Manager i.e., http://<IP address of Key Values:

the eG console:Port>

{

LB ©F LBEMEME OF "'componenttype":"Microsoft SQL",

domain/eG username
testtype:"configuration”

pwd: Base64 encoded password
"tests":"Operating System,Drives"
}

Example with Default key values:

{
"'componenttype":"Microsoft SQL",

55

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
Body Default: tests": S(HlL Blocker Processes,
SQL locks
{
}

"componenttype":"Component Type",

"tests":"comma-separated list of tests"

}

Optional:

{

"testtype":"performance/configuration",

}

Success Response
Type Code Content
JSON 200 {
"Succeed": "Test(s) is/are enabled for this component
type."
}
Failure Response
Type Content

JSON {

"Error": "One or more tests are not available for this component type."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST http://192.168.11.196:7077 /api/eg/orchestration/enabletests Params Save

(3) Body @ L] Code
form-data w-www-form-urlencoded ® raw binary Text

i

2 "componenttype"”:"VMware vSphere ESX",
3 "testtype":"performance",
4 "tests":"Wirtual network traffic, wm device status®
5 1
Body (11) [] Status: 2000K Time: 1613 ms
Pretry JSON =i Save Response
1-k
2 "Succeed": "Test(s) is/are enabled for this component type."
R

Figure 2.37: Enabling one/more tests for a chosen component type using Postman REST Client
2.19.1 Enabling Tests using cURL

To enable one/more tests for a chosen component type through the REST API using cURL, the
command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/enabletests" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'componenttype':'Component Type', 'tests':'comma-

separated list of tests', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.38 shows an example of enabling one/more tests of a chosen component type using cURL.

57

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nourl ——locatlon ——1eque°t POST “"http:rr192_ 168.11.196: 737?/ap1/eg/01che°t1at
-un/enahlete*tﬂ ——header "managerurl: http:/-192.168.11.196:7877" —header se
v2 admin' ——header "pud: YWRtalldxMjM=" —header "Content-Type: appllcatlun/a* n'
——data-raw "{’componenttype’ :’'UMuare uvSphere ESX’. ’‘testtype’:’performance’, 't
psts’ ' Uirtual network traffic,. um device status'>"

"Succeed:"Test(s) iz~ are enabhled for thiz component type.'>

N

Figure 2.38: Enabling one/more tests for a chosen component type using cURL
2.20 Exclude Components for Test

Use this API to exclude one/more components for a test.

URL: http://192.168.8.206:7077/api/eg/orchestration/excludecomponentsfortest
Method: POST

Content-Type: application/json

Inputs to be Specified

III!HHHHHHHHH!IIIIIIIIIII'H%!HHHH%IIIIIIIIIIIIIIIIIIIIIIIIIII|%HiiiiHIIIIIIIIIIIIIIIII

Headers managerurl: Base URL of the ' Example with Default key values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "componenttype":"2X Client Gateway",
user: eG username or "'componentname":"client_1:80,client_2:80",

domain/eG username "testname":"2X Gateway Status"

pwd: Base64 encoded }

password
Example with both Default and Optional Key
Values:
{

"componenttype":"2X Client Gateway",

58

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
"componentname":"client_1:80,client_2:80"
Body Default: P —-eu,clent_s:eu,
i "testtype":"configuration”,
" n.n "testname":"DriveS”
componenttype":"component
type", }

'componentname":"comma-
separated list of component
names:Port number",

"testhame":"Test name"

}
Optional:

{

"testtype":"performance/
configuration",

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Component(s) is/are excluded successfully."

}

Failure Response

Type ‘ Content

JSON {

"Error": "One or more component names do not exist."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST hetp://192.168.11.196: 7077 /apifeg/orchestration/excludecomponentsfortest Params Send b Save

(3) Body @ L] Code

form-data x-www-form-urlencoded ® raw binary ext

"componenttype":"oracle database",
3 "componentname”:"oraclell:1521egurkha™,
4 "testtype":"Performance”,
5 "testname":"Oracle Cursor Usage”

Body (11} L] Status: 200 DK

Pretty JSON = Save Response

“Succeed”: “"Component(s) is/sre excluded successfully.”

Figure 2.39: Example for excluding Components for Test using Postman REST Client
2.20.1 Excluding Components for Test using cURL

To exclude one/more components for a test through the REST API using cURL, the command
should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/excludecomponentsfortest”™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'component type',
'componentname': 'comma-separated list of component names:Port number', 'testname':'Test

name', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.40 shows an example of excluding one/more components for a test using cURL.

60

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

:s>ourl —location —request POST “"http: A 7192.168.11.196:7877/apiseg-sorchestrat
ion<sexcludecomponentsfortest” ——header "managerurl: http:- -1922.168.11.196:7877"

—header "user: admin' ——header "puwd: YWRtaWldxMjH=" —header "Content-Type: appl
icationsJjzon" ——data—-raw "{ ‘componenttype’ :’'oracle database’, ‘componentname’ :’
praclell:1521egurkha’, ‘testtype’ :'Performance’ . ’‘testname’ :’'0Oracle Cursor Usag
gty

"Succeed":"Component{s) iz are excluded successfully.">

RS-

Figure 2.40: Excluding one/more components for a test using cURL
2.21 Exclude Tests for Component

Use this API to exclude one/more tests for a chosen component.
URL.: http://192.168.8.206:7077/api/eg/orchestration/excludetestsforcomponent

Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base URL of the | Example with both Default and Optional Key
eG Manager i.e., Values:

http://<IP address of the
eG console:Port>

{

"'componenttype":"Active Directory",
user: eG username or

domain/eG username "'componentname":"actDir:389",

pwd: Base64 encoded "testtype":"configuration”,

SRS "testname":"Operating System,Drives"
}
Example with Default key values:
{

61

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
"componenttype":"Active Directory"
Body Default: P P v
i "componentname":"actDir:389",
" oo "testname":"AD Replications,Application
componenttype":"component |
" Events.
type’,
}

"'componentname":Component
name:Port number",

"testname":"comma-
separated list of test names"
}

Optional:

{

"testtype":"performance/
configuration”,

}

Success Response

Type Content

JSON 200 {

"Succeed": "Test(s) is/are excluded successfully."

}

Failure Response

Type Content

JSON {

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "One or more tests for the component are already excluded."

POST http://192.168.11.196:7077/apifeg/orchestration/excludetestsforcomponent Params Send v Save
(3) Body @ [] Code
form-data x-www-form-urlencoded ® aw binary Text

i
“componenttype™”: "VMware vSphere ESX",
"compenentname™: "Esx_14",

[T

"testname": "Virtual network traffic, wm device status"
¥
Body 1) . Status: 2000K Time: 1335ms
Pretty JSON 5 Save Response
1-k
2 "Succeed": "Test(s) is/are excluded successfully."”

Figure 2.41: Excluding one/more tests for a Component using Postman REST Client
2.21.1 Excluding Tests for Component using cURL

To exclude one/more tests for a component through the REST API using cURL, the command
should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/excludetestsforcomponent”™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'component type',
'componentname' :Component name:Port number', 'testname':'comma-separated list of test

names', 'testtype':'performance/ configuration'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.42 shows an example of excluding one/more tests for a component using cURL.

63

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

ssourl —location —request POST “http:r -192.168.11_196:7877-apiseqg-orchestrat
ionsexcludetestsforcomponent’ ——header "managerurl: http:--192_168_11._.1%96:7877"
—header ""uzer: admin” ——header "'pud: YWHtalldxMjH="" ——header "Content—-Type: appl
icationsjzon' ——data-raw "{ ‘componenttype’: "UMware uvSphere ESN',. ‘componentnam
e’ "Esx_14', "testname’: ’'Uirtual network traffic. vm device status’>"
"Succeed":"Test{s?» iz are excluded successfully.'}

-

Figure 2.42: Excluding one/more tests for a Component using cURL
2.22 Include Components for Test

Use this API to include one/more components for a test.

URL: http://192.168.8.206:7077/api/eg/orchestration/includecomponentsfortest
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the | Example with Default key values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "componenttype":"2X Client Gateway",
user: eG username or "componentname":"client_1:80,client_2:80",

domain/eG username "testname":"2X Gateway Status"

pwd: Base64 encoded }

password
Example with both Default and Optional Key
Values:
{

"componenttype":"2X Client Gateway",

64

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
"componentname":"client_1:80,client_2:80"
Body Default: P —-eu,clent_s:eu,
i "testtype":"configuration”,
" n.n "testname":"DriveS”
componenttype":"component
type", }

'componentname":"comma-
separated list of component
names:Port number",

"testhame":"Test name"

}

Optional:
{

"testtype":"performance/
configuration”,

}

Success Response

Type Content

JSON 200 {

"Succeed": "Component(s) is/are included successfully."

}

Failure Response

Type Content

JSON {

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "One or more component names do not exist."

POST heep://192.168.11.196:7077/apifeglorchestration/includecompenentsfortest Params Save
(3) Body ® [] Code
form-data x-wwnw-form-urlencoded ® raw binary Text

i
"comgonenttype”:"oracle database",
"componentname"”: "oraclell:1521:egurkha”,
"testtype":"Performance™,
"testname":"Oracle Cursor Usage"

L R

Body “n . Status: 2000K Time: 1719 ms
Pretry JSON = Save Response
i-f
2 "Succeed": “Component(s) is/are included successfully.”
3 1

Figure 2.43: Example to include one/more components for a test using Postman REST Client
2.22.1 Include Components for Test using cURL

To include one/more components for a test through the REST API using cURL, the command
should be specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/includecomponentsfortest”" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'component type',
'componentname': 'comma-separated list of component names:Port number', 'testname':'Test

name', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default and Optional key values.

2.22 shows an example of including one/more components for a test using cURL.

66

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

s»ourl —location —regquest POST “http:- -s192.168.11.196:7877 apirsegsorchestrat
Honinc ludecomponentsfortest” —header "managerurl: http:- 7192 _168.11.196:7877"

—header "user: admin' ——header "puwd: YWRtalldxMjM="" —header "Content-Type: appl

ication/json" —data—raw '""{ ‘componenttype’:’oracle database’. ‘componentname’:’
praclell:1521 tequrkha’ . ‘testtype’ :’Performance’ . ‘testname’ :’0Oracle Cursor Usag)
-l "

"Succeed" - "Component{s? iz~rare included successfully "'

Figure 2.44: Including one/more components for a test using cURL
2.23 Include Tests for Component

Use this API to include one/more tests for a component.

URL: http://192.168.8.206:7077/api/eg/orchestration/includetestsforcomponent
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e.,

http://<IP address of the {
eG console:Port> "'componenttype":"Active Directory",
user: eG username or "'componentname":"actDir:389",

domain/eG username "testname":"AD Replications,Application

pwd: Base64 encoded Events."
password)

Example with both Default and Optional Key
Values:

{

"componenttype":"Active Directory",

67

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
"componentname":"actDir:389"
Body Default: P '
i "testtype":"configuration”,
" oo "testname":"Operating System,Drives"
componenttype":"component
type", }

"'componentname":Component
name:Port number",

"testname":"comma-
separated list of test names"
}

Optional:

{

"testtype":"performance/
configuration”,

}

Success Response

Type Content

JSON 200 {

"Succeed": "Test(s) is/are included successfully."

}

Failure Response

Type Content

JSON {

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "One or more tests are not available for this component type."

POST herp://192.168.11.196:7077 /api/eg/archestration/incudetestsfarcomponent Params Send N Save
@ Body ® . Code
form-data x-www-form-urlencoded ® raw binary Text

i
"componenttype”: "VMware vSphere ESX",
"componentname”: “Esx_14",
"testname™: "Virtual network traffic, vm device status"

WL pa

Body (1) L] Status: 2000K Time: 713 ms

Pretry JSON = Save Response
1-|
2 “Succeed": "Test(s) is/are included successfully."

3 1

Figure 2.45: Example to include one/more tests for a component using Postman REST Client
2.23.1 Including Tests for Component using cURL

To include one/more tests for a component through the REST API using cURL, the command
should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/includetestsforcomponent” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'component type',
'componentname' :Component name:Port number', 'testname':'comma-separated list of test

names', 'testtype':'performance/ configuration'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.46 shows an example of including one/more tests for a component using cURL.

69

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

»Jeurl —location —request POST “"httpor 7192 168.11 1967077 7apiseg-sorchestrat
ionsincludetestsforcomponent’ ——header "managerurl: http:- -192.168.11.196:7877"
» "user: admin' —header "pud: YWRtaWdxMjM="" —header "Content-Type: app
] " —data-raw "{ ‘componenttype’: 'UMware uSphere ESE’. ‘componentna
_ » 'testname’: ‘Uirtual network traffic, vm device status’>"
"Sgcceed":"Test(s) izsare included successfully.™>
N

Figure 2.46: Including one/more tests for a component using cURL
2.24 Managing Components

Administrators can use this APl to manage components in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/managecomponent
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e., {
http://<IP address of the
eG console:Port> "componenttype":"Microsoft SQL",
user: eG username or "componentname":"MSSQL",
domain/eG username "port":"1433"
pwd: Base64 encoded }
password
Example with both Default and Optional Key
Values:
{

70

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example
"componenttype":"Oracle Database Server"
Body Default: P P '
i "'componentname":"Oradb",
. n r |I:Il1 21"
"'componentname":"The nick port™:"1521%,
name of the component”, "sid":"egora"

"'componenttype":"Component }
type”,

"port":"Port"

}

Optional:

{
"sid":"SID"
}

Success Response

Type Content

JSON 200 {

"Succeed": "Component has been managed
successfully."

}

Failure Response

Type Content

JSON {

"Error": "The selected component does not exist."

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

POST http:/f192.168.11.196:7077/api/eg/orchestration/managecomponent Params Save
(3) Body @ [] Code
form-data wwww-form-urlencoded '® raw binary Text

{
"componenttype”: "Oracle Database”,
"componantname™: "oracleDBY,
"port": "1521",
"sid": "egurkha"

(- NV R ST N

Body (1M [] Status: 2000K Time: 1668 ms

Pretty JSON 5 Save Response

1~ {
2 "Succeed": "Compaonent has been managed successfully.”
3 [

Figure 2.47: Example to manage components using Postman REST Client
2.24 .1 Managing Components using cURL

To manage a component through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/managecomponent"” -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componentname':'The nick name of the

component', 'componenttype':'Component type', 'port':'Port', 'sid':'SID'}"

Note that the command specified above contains both the Default and Optional key values.

Figure 2.48 shows an example of managing a component using cURL.

72

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nvourl —location —request POST "http:r s192.168.11.196:7872 apisegs/orchestrat
Hons/manageconponent' ——header "managerurl: http:-- /192 168 .11 .196:7077" ——header
»: admin' ——header "pud: YWRtalldxMjM=" ——header "Content-Type: application.j

" —data-raw "{ ‘componenttype’: ‘Oracle Database’. ‘componentname’: ’oracleD

, Tport’:s 168217, ’sid’: "egurkha’:”
"Succeed":"Component has been managed successfully.'
S

Figure 2.48: Managing a component using cURL
2.25 Modifying a Component

Use this API to modify the details of a component.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifycomponent
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the | Example with both Default and Optional Key
eG Manageri.e,, Values:
http://<IP address of the {

eG console:Port>
"hostip":"192.168.11.175",
user: eG username or

domain/eG username "componenttype":"Microsoft SQL",
pwd: Base64 encoded "componentname":"MSSQL",
password

"oldcomponentname":"MSSQL",
"newcomponentname":"MSSQL_DB",

"newport":"1433"
}

73

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

Example with Default key values:

{
"componenttype":"Microsoft SQL",

Body Default:

{

"hostip":"Host IP",

"'componentname":"The nick componentname”.“M55QL,
name of the component", "port":"1433"

"'componenttype":"Component }
typell

}

Optional:

{

"port":"Port",
"oldhostip":"Old host IP",
"newhostip":"New host IP",

"oldcomponentname":"Old
nick name",

"newcomponentname":"New
nick name",

"oldport":"Old port",
"newport":"New port"

}

Note:

If an Oracle Database server is added with multiple SIDs, then the eG Enterprise system will monitor
each SID as a different Oracle Database server. Therefore, while removing an Oracle Database
server that supports multiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

74

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Component has been modified successfully."

}

Failure Response

Type Content

JSON {

"Error": "The old component name or port does not exist."

POST hetp://192.168.11.196: 7077 /api/egforchestratien/modifycomponent Params “ Save
orization Headers (3) Body @ Pre-request Script Tests @ Code
form-data sx-www-form-urlencoded L binary Text

1(

2 "hostip": "192.163.8.191",

3 “componenttype™: “"Real user moniter”,

4 "componentname™: "RUM_191",

5 "port"™ : "NULL",

6 "oldcomponentname”™: “RUM_191",

7 "newcomponentname”: "5_191_rum"

8 1

Body Cookies Headers (11) Test Results @ TEIS FPTE U T

Pretty Ra Previe JSON 5 Save Response

1-{

2 "Succeed": "Component has been modifisc successfully.™

RN

Figure 2.49: Example to modify the details of a component using Postman REST Client
2.25.1 Modifying a Component using cURL

To modify the details of a component through the REST API using cURL, the command should be
specified in the following format:

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifycomponent” -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'ComponentType',
'hostip': 'IP address of the component', 'componentname': 'nick name of the component',
'port': 'port at which the component listens', 'oldhostip':'0Old host IP',

'newhostip':'New host IP', 'oldcomponentname':'Old nick name', 'newcomponentname':'New

nick name', 'oldport':'0Old port', 'newport':'New port'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.50 shows an example of modifying a component using cURL.

:nvourl —location ——reguest POST "http: /»192.168.11.1%6:7077 apisegrorchestrat
Hon/modif ycomponent” ——header "managerurl: http:- --192.168.11.196:7877" —header
'user: admin'" —header "puwd: YWRtalldxMjH=" ——header "Content-Type: application.j
on" —data—raw "{ ‘'hostip’: "1%2.168.8.191’, ‘componenttype’: 'Real user monito
', 'componentname’: 'RUM_191°, *port’ :© 'HULL’, *oldcomponentname’: *RUM_1%1°*,
newcomponentname’ : ‘&_191_rum’ ¥"

"Succeed":"Component has heen modified successfully.'}
NP

Figure 2.50: Modifying a component using cURL
2.26 Modifying a Group

Administrators can use this API to modify the details of an existing group.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifygroup
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e., i
http://<IP address of the

76

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

eG console:Port> "groupname":"MGRGroup",

user: eG username or "disassociateelements":"lIS Web:iis1:80"
domain/eG username)

Pl Bt nceete prssiiert Example with both Default and Optional Key

Body Default: Values:
{ {
"groupname":"Group name", "groupname":"MGRGroup",

"disassociateelements":"Elements" "disassociateelements":"IIS Web:iis1:80",

} "associateelements":"Active
Directory:ad:1234"

Optional: }
{

"associateelements":"Elements"

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Group has been modified successfully."

}

Failure Response

Type Content

JSON {

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content

"Error": "One or more invalid elements to associate. Invalid elements"

POST http://192.168.11.196:7077/api/eg/orchestration/modifygroup Params Send hd Save
(3) Body @ L] Code

form-data wwww-form-urlencoded ® raw binary Text

1 {

2 "groupname™: "microsoft’,

3 “sssocisteelements”: "Microsoft Windows:windowsl®

4}

Body (1) Test Results @ Status: 2000 Time: 1319 ms

Pretty JSON 5 Save Response
1-§

2 "Succeed”: “Group hes been modified successfully.”

N

Figure 2.51: Example to modify the details of a group using Postman REST Client
2.26.1 Modifying a Group using cURL

To the details of an existing group through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifygroup" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'groupname':'Group name',

'disassociateelements':'Elements', 'associateelements':'Elements'}"

Note that the command specified above contains both the Default and Optional key values. 2.26
shows an example of the details of an existing group using cURL.

78

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nourl —location —regquest POST “http:r»192.168.11.196:7877/apisegsorchestrat
ionsmodif ygroup' —header "managerurl: http:- -192_168.11.196:-7877" —header "use
2 admin” ——header "pud: YURtaW4xMjH="" ——header "'Content—-Type: application~json'
——data-raw "{’groupname’: ‘microsoft’, ‘'associateelements’: 'Microsoft Windows
twindows1'>"

"Succeed":"Group haz been modified successfully.'>

N

Figure 2.52: Modifying the details of an existing group using cURL
2.27 Modifying a Maintenance Policy

Use this API to modify the details of an existing maintenance policy.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifymaintenancepolicy
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base URL of the Example with both Default and Optional key
eG Manager i.e., http://<IP address of values:
the eG console:Port> {

user: eG username or :
"policyname":"QMP1",

domain/eG username

"addtimefrequency":"Daily=13:30-
pwd: Baseb4 encoded password a Y Y

14:30",
Body Default: "rmtimefrequency":"Daily=10:15-11:15"
{)
"policyname":"Policy name"
}
Optional:

79

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

{

"addtimefrequency":"[Daily]/[First day
of month]/

[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday
/Thursday/Friday/Saturday]/
[MM/DD/YYYY-
MM/DD/YYYY]=HH:MM-HH:MM",

"rmtimefrequency":"[Daily]/[First day
of month]/

[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday
/Thursday/Friday/Saturday]/
[MM/DD/YYYY-
MM/DD/YYYY]=HH:mm-HH:MM"

}

Success Response

Type Content

JSON 200 {

"Succeed": "Maintenance policy modified successfully."

}

Failure Response

Type Content

JSON {

"Error": "One or more time frequencies you are trying to remove do not
exist."

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Content
POST http://192.168.11.196: 7077 /api/eg/orchestration/modifymaintenancepolicy Params Save
(3) Eody @ [] Code
form-data x-www-form-urlencoded ® raw binary Text
i
"policyname”: "esx_maintenance",

"addtimefreguency”: "Daily=13:38-14:3@,Daily=15:38-14:38",
“rmtimefrequency”: "Friday=18:15-11:15"

[V SN

Body (11) [] Status: 2000K Time: 1261 ms

Pretty JSOM 5 Save Response

1= i
2 "succeed": "Maintensnce policy modified successfully.”

Figure 2.53: Example to modify the details of an existing maintenance policy using Postman REST Client
2.27.1 Modifying a Maintenance Policy using cURL

To modify the details of an existing maintenance policy through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifymaintenancepolicy" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'policyname':'Policy name',
'addtimefrequency':'[Daily]/[First day of month]/[Last day of month]/
[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday]/[MM/DD/YYYY-MM/DD/YYYY]=HH:MM-
HH:MM', 'rmtimefrequency':'[Daily]/[First day of month]/[Last day of month]/
[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday]/ [MM/DD/YYYY-MM/DD/YYYY]=HH : mm—
HH:MM'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.54 shows an example of modifying the details of an existing maintenance policy using cURL.

81

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

sourl —location ——request POST "http:/2192.168.11.196:7877/apisegsorchestrat
ionsmodif ymaintenancepolicy” ——header "managerurl: http:--192.168.11.1926:=7877" —
header "user: admnin' —header "pud: YWRtaWdxMjM=" ——header "Content-Type: appli
ation/json" —data—rauw "{ "policyname’: ‘esx_maintenance’, ’'addtimefrequency’:
'Daily=13:38—14:38.Daily=15:38—-16:=38" ., ‘'rmntimefrequency’ ' "Friday=10:15-11:15">""

"Succeed":"Maintenance policy modified successfully.'*
NP

Figure 2.54: Modifying the details of an existing maintenance policy using cURL
2.28 Modifying a User

Administrators can use this API to modify a user existing in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifyuser
Method: POST

Content-Type: application/json

Inputs to be Specified

Fara- Key values Example
meters y P
Headers 'managerurl: Base URL of the Example:

eG Manager i.e., http://<IP address of
the eG console:Port>

{

"userid":"john",
user: eG username or

domain/eG username "userrole":"AlarmViewer",

pwd: Base64 encoded password "password";"FHEEEE

"expirydate'":"12/12/2024",

"alarmsbymai
m,
9884011111",

saranl@eginnovations.co

82

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Para-
Key values Example
meters
Body Default: cc": saranyi@eglnnovatlons.com,
9840391695",
{ "bcc":"sample@eginnovations.com"
"userid":"User ID")
}
Optional:
{

"userrole":"User role",
"password":"Password",
"expirydate":"MM/dd/yyyy",

"alarmsbymail":"Critical/Major/Mino
r/
All",

"to":"comma-separated list of Mail
IDs/Mobile numbers",

"cc":"comma-separated list of Mail
IDs/Mobile numbers",

"bcc":"comma-separated list of Mail
IDs/Mobile numbers"

}

Success Response

Type Content

JSON 200 {

"Succeed": "User has been modified successfully."

}

83

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content
JSON {

"Error": "User ID does not exist."

POST http://192.168.11.196:7077 fapi/eg/orchestration/modifyuser Params Save
(3) Body @ [] Code

@ form-data wwww-form-urlencoded ® raw binary Text

1 i

2 “userid": "Haasan",

3 “userrole”: “AlarmViewsr"

4 F
Body (11} . Status: 200 0K Time: 1313 ms
Pretty JSON 5 Save Response

1-

2 “Succeed": "User has been modified successfully.™

EN

Figure 2.55: Example to modify a user using Postman REST Client

2.28.1 Modifying a User using cURL

To modify a user through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifyuser" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'userid':'User ID', 'userrole':'User role',
'password': 'Password', 'expirydate':'MM/dd/yyyy',
'alarmsbymail':'Critical/Major/Minor/All', 'to':'comma-separated list of Mail IDs/Mobile
numbers', 'cc':'comma-separated list of Mail IDs/Mobile numbers', 'bcc':'comma-separated
list of Mail IDs/Mobile numbers'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.56 shows an example of modifying a user using cURL.

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

nJeurl ——location ——request POST “"http:r /192 _168.11.196:78777apisegrsorchestrat
Honsmodif yuser'" ——header "managerurl: http:- -192_.168.11.196:7877" —header 'usen
: admin' ——header "puwd: YWRtaWd4xMjH="" ——header "Content-Type: application-json"
‘ugerid’: 'Haszan’,. 'uszerrole’: ‘Alarmliewer’:"
:"User has been modified successfully.">

Figure 2.56: Modifying a user using cURL
2.29 Modifying a Zone

Administrators can use this API to modify the details of a zone created in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifyzone
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the {
eG Manager i.e., http://<IP address ,, oon "
zonename :"westzone’,
of the eG console:Port>

"displayimage":"Banking",
user: eG username or

domain/eG username "disassociateelements":"Microsoft
pwd: Base64 encoded password SQL:MSSQL._DB:1433"
Body Default:)
{
"zonename":"Zone name"
}
Optional:

85

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

{

"associateelements":"Elements",
"disassociateelements":"Elements",

"displayimage":"Display image",

"autoassociate":"yes/no"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Zone has been modified successfully."

}

Failure Response

Type Content

JSON {
"Error": "One or more invalid elements to associate. Invalid elements"

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST http:/f192.168.11.196: 7077 /api/egforchestratien/madifyzone Params Send hd Save
(3) Body @ L Code
form-data s-wwew-form-urlencoded ¥ raw binary Text
2 "zeonename": “"Europe",
3 “@ssociateelements”: "Trend Micro Server:iooc: 23,
4 "displayimage"”: "Infrastructure”
ER
Body 113 ™ Status: 2000K Time: 8096 ms
Pretry JSON 5 Save Response
1-k
2 "Succeed": "Tone has been modified successfully.”
ER

Figure 2.57: Example to modify a zone using Postman REST Client
2.29.1 Modifying a Zone using cURL

To modify the details of a zone through the REST API using cURL, the command should be
specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifyzone"” -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'zonename':'Zone name',
'associateelements':'Elements', 'disassociateelements':'Elements',

'displayimage': 'Display image', 'autoassociate':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.58 shows an example of modifying a zone using cURL.

87

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

:snJourl —location —reguest POST "http:r 192 168 .11 . 196:7877- apiseg-sorchestrat
Honsmodif y=one' ——header "managerurl: http:- - 192.168.11.196:7877" ——header "user
: admin' —header "puwd: YWRtalld4xMjM=" —header "Content-Type: application~json"

—data—raw "{’'zonename’: ’'Europe’, ‘associateelements’: ‘Trend Micro Server:xwxx
23" . ‘displayimage’: ‘Infrastructure’>"

"Succeed":"Zone has bheen modified successfully. ">

NP

Figure 2.58: Modifying a zone using cURL
2.30 Renaming a Group
Use this API to rename an existing group in eG Enterprise.
URL: http://192.168.8.206:7077/api/eg/orchestration/renamegroup
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL {
of the eG Manageri.e., , "o
http://<IP address of groupname:
the eG console:Port> "newgroupname":"West_group"

westgroup",

user: eG username or }
domain/eG username

pwd: Baseb4 encoded
password

Body Default:
{

"groupname":"Group
name",

88

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters [GACIES Example

"newgroupname":"New
group name"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"Succeed": "Group has been renamed successfully."

}

Failure Response

Type Content

JSON {

"Error": "The given group does not exist."

}

POST hetp://192.168.11.196:7077/api/egf/orchestration/renamegroup Params “ Save
Authorization Headers (3) Body @ Pre-request Script Tests @ Code
form-data x-www-form-urlencoded Lo binary Text
1 f
2l "groupname™: "Component-no-port”,
3 "newgroupname": "Mo-port-components™
4 1
Body Cookies Headers (11) Test Results @ Status: 200K Time: 1313 ms
Pretty Raw Preview JSON 5 Save Response
1=K
2 "Succeed": "Group has beesn renamed successfully.™
3l

Figure 2.59: Example to rename a group using Postman REST Client

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.30.1 Renaming a Group using cURL

To rename an existing group through the REST API using cURL, the command should be specified
in the following format:

curl --location —--request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/renamegroup"” -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'groupname':'Group name', 'newgroupname':'New group

name'}"

Figure 2.60 shows an example of renaming a group using cURL.

nJeurl —location ——request POST "http:r/192_.168.11.196:7877/apisegsorchestrat]
Hons/renamegroup'” ——header "managerurl: http: 7192 _168.11.196:7077" —header "use|
=2 admin" —header "puwd: YWRtalldxMjM="" —header "Content-Type: application~json"'
——data—raw "{’'groupname’: ‘Component—no-port’, ‘neugroupname’: ‘No—port—compon
ents’ 3"

"Succeed":"Group has been renamed successfully.'2

N

Figure 2.60: Renaming a group using cURL
2.31 Renaming a Zone
Administrators can use this API to rename an existing Zone in eG Enterprise.
URL: http://192.168.8.206:7077/api/eg/orchestration/renamezone
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {

URL of the "zonename":"NOrchone”;

20

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

eG Manageri.e., "newzonename":"North_zone"
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"zonename":"Zone
name",

"newzonename":"New
zone name"

}

Success Response

Type ‘ ‘ Content

JSON 200 {

"Succeed": "Zone has been renamed successfully."

}

Failure Response

Type Content

JSON {

"Error": "The given zone does not exist."

}

http://192.168.11.196:7077/apifeg/orchestration/renamezone Params Send v
gl Body @ .
form-data x-www-form-urlencoded raw binary
"zonename™: “"Eurdsis",
"newzonename": "Europe"
1
Bod 11 . 200 OK 1242 ms
Pretty
"Succeed": “Zone has been renamed successfully.”
1

Figure 2.61: Example to rename an existing Zone using Postman REST Client
2.31.1 Renaming a Zone using cURL

To rename an existing zone through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/renamezone" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'zonename':'Zone name', 'newzonename':'New zone

name'}"

Figure 2.62 shows an example of renaming a zone using cURL.

sourl ——location ——request POST "http:r 7192 .168.11.196:787 7 apisegs/orchestrat
ionsrenamezone’ —header "managerurl: http: /7192.168.11.196:7877" —header "user
: admin' —-header "puwd: YWHtaWldxMjM="" —header '"Content-Type: application/json”
—data—raw "{'zonename’: ’'Europe’. ‘newzonename’: ’'Eastern—Europe’}"
"Succeed":"Zone has been renamed successfully.'

N

Figure 2.62: Renaming a zone using cURL

92

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.32 Displaying Components

Administrators can use this API to display all the components available in the target environment.
URL: http://192.168.8.206:7077/api/eg/orchestration/showcomponents

Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters ‘ Key values ‘ Example

Headers managerurl: Base URL of the | {
eG Manageri.e.,
http://<IP address of the
eG console:Port> i

"'componenttype":"Citrix XenApp7.x"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"'componenttype":"Component
t\/pe"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 [
{

"componentType": "Real User Monitor",

"ip":"192.168.8.191",

93

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Code Content

"componentName": "11_196_RUM",

"port": "-",

"externalAgent": "mobilecollector",

"internalAgent": "mobilecollector"

b

Failure Response

Type ‘ Content

JSON {
"Error": "Component type is not available."

}

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST htep://192.168.11.196:7077/api/eg/orchestration/showcomponents Params Send 7 Save

(3) Body @ Code

form-data x-ww-form-urlencoded ® raw binary Text
2 "componenttype™: “"Real user monitor"
ERNN
Body (11) Status: 2000K Time: 1261 ms
Pretty JSON = Save Response
- I
v {

": "Resl User Monitor”,
31",
5 11_196 RUM",
7 " "mobilecollactor”,
8 "internalAgent": “mobilecollector”
10 - 1
11 “componentTyps": “Resl User Monitor™,

Figure 2.63: Displaying the components in the target environment using Postman REST Client
2.32.1 Displaying Components using cURL

To display the components in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showcomponents" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'Component Type'}"

Figure 2.64 shows an example of displaying the components in the target environment using cURL.

95

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

s»Jourl —location —request POST "http:ir s192_168_11.196:787 7 apisegsorchestrat
Hon/zhowcomponents" —header "managerurl: http:- -192_.168.11.126:7877" —header "
wer: admin' ——header "“pud: YURtaWdxMjH="" —header "Content-Type: application~js

" —data-—raw "{‘componenttype’: 'Real wuser monitor'"
[{"componentType':"Real User Monitor"."ip":"@.8.8.8"."componentMame':""11_176_RUH
Lport iV YexternalfAgent': "mobilecollector” YinternalAgent:"mobhilecollector"
. {"componentType':"Real User Monitor" . "ip":"192.168.8.121", "componentMame :""8_1
1 _rum',. "port: """ "externalAgent':"mobilecollector',. "internalAgent' :"mobilecoll
ector'? {"componentType":"Real User Monitor" "ip":-"8B.0.8_.68","componentMame':"egR
M, "poprt'":"-" "externalAgent':"mohilecollector",."internalAgent” :"mobhilecollecto
23 L "co nentType':"Real User Monitor". "ip":'""192.168.8.191",. "componentHame' : "R
M 8 191", "port":"-"_ "externalAgent":"mohilecollector' . "internalAgent ' : "mohileco
llector'>]

N

Figure 2.64: Displaying the components in the target environment using cURL
2.33 Displaying External Agents
Use this API to display all the external agents in the target environment.
URL: http://192.168.8.206:7077/api/eg/orchestration/showexternalagents
Method: POST

Content-Type: application/json

Inputs to be Specified

IIIIHHHHHHHHHHHIIIIIIIIIl%HHHHH!H%iIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHHHHiiHIIIIIIIIIIIIIIIIIIIIIII

Header managerurl: Base Not Applicable
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

96

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Success Response

Type ‘ Code ‘ Content

JSON 200 [
{

"agentName": "mobilecollector"”,

"hostlp": "mobilecollector"

b

POST http:/f192.168.11.196:7077 /apifegforchestration/showexternalagents Params Save

thorization Headers (3) Bod: Pre-request Script Tests @ Code
Key Value Description Bulk Edit Presets ¥
managerurl hitp://192.168.11.196:7077
user admin
pwd YWReaW M=
Body Cookies Headers (11) T Status: 000K Time: 1214 ms
Pretty Raw Preview JSON 5 Save Response
10
2~ {
3 "agentilame”: "mobilecollectar”,
4 "hostlp™: "mobilecollector”
5 I
6~ {
7 "agentName": “"Agent_191",
8 "hostIp”: "192.168.5.191"
9 I
10~ {
1 "agentName": "mobilecollectorextagt”,
12 "hostIp™: "mobileccllector”
13 }
14]

Figure 2.65: Displaying the External agents in the target environment using Postman REST Client
2.33.1 Displaying External Agents using cURL

To display all the external agents in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showexternalagents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password"

97

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Figure 2.66 shows an example of displaying all the external agents in the target environment using
cURL.

svourl —location —request POST “"http:r/-7192.168.11.196:78Y7/apisegs/orchestrat
Hon/showexternalagents' —header "managerurl: http: -192.168.11.126:7877" —hea
i dmin" ——header “'puwd: ¥YWRtalldxMjH=""

[{"agentHame":"mobilecollector”, "hostIp”:"mobilecollector'? . {"agentName':"Agent
192", "hostIp”:"192_.168_8.191"> . {"agentName":"mobilecollectorextagt"' . "hostIp": "mo
ilecollector'>]

NP

Figure 2.66: Displaying all the external agents in the target environment using cURL
2.34 Displaying Remote Agents
Use this API to display all the remote agents in the target environment.
URL: http://192.168.8.206:7077/api/eg/orchestration/showremoteagents

Method: POST

Inputs to be Specified

Headers managerurl: Base Not Applicable
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

98

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Success Response

Type ‘ Code ‘ Content

JSON 200 [
{

"agentName": "mobilecollector"”,

"hostlp": "mobilecollector"

b

POST http://182.168.11.196:7077/api/eg/orchestration/showremaoteagents Params Save
orization Headers (3) Body Pre-request Script Tests @ Code
Key Value Description Bulk Edit Presets *
managerurl http://192.168.11.186:7077
user admin
pwd YWRtaWaxMjh=
Body Cookies Headers (11) Test Results @ Status: 2000K Time: 1231 ms
Pretty Raw Previe JSON 5 Save Response
1= [
2+ {
3 "agenthame”: "mobilecollector™,
4 "hostIp™: "mobilecollector"
5 Ts
6~ 1
7 "agenthame": "AG_191",
8 "hostIp™: "192.168.8.191"
2 1
18 - 1
11 “agsnthame”: "mobilecollectorextagt”,
12 "hostIp™: "mobilecollector”
13 }
14]

Figure 2.67: Displaying the Remote agents configured in the target environment using Postman REST Client
2.34.1 Displaying Remote Agents using cURL

To display all the remote agents in the target environment through the REST API using cURL, the
command should be specified in the following format:

99

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showremoteagents™ -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password"

Figure 2.68 shows an example of displaying all the remote agents in the target environment using
cURL.

snourl ——location ——request POST “"http: /7192.168.11.196:7877-apisegsorchestrat]
Honsshowremoteagents" ——header "managerurl: http: - -192_.168.11.196:7877" ——header
"user: admin" —header "'pud: jM=""
[{"agentMame":"mobilecollector", " obilecollector"? {"agentMame'':
nl%ecturextagt","hnstlp
HaN-

mohilecollector']

Figure 2.68: Displaying all the remote agents in the target environment using cURL
2.35 Displaying Maintenance Policies

Administrators can use this API to display all the maintenance policies configured in the target
environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmaintenancepolicynames

Method: POST

Inputs to be Specified

|II|%HHHH%HHIIIIIIIIIHHHHHHHHIIIIIIIIIIIIIIIIIIIIIIIEHHHHHIIIIIIIIIIIIIIIIII

Header managerurl: Base Not Applicable
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

100

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

pwd: Base64 encoded
password

Success Response

Content

JSON 200 {
"policyNames": [
"esx_maintenance",
"Manual_restart",
"VDI_maintenance"

]
}

POST hetp://192.168.11.196:7077/apifeg/orchestration/showmaintenancepolicynames. Params m Save

Authorization Headers (3) Body Pre-request Script Tests Code
Key Value Description Bulk Edit Presets =
managerurl http://192.168.11.196:7077
user admin
pwd YWRtaWdxMjM=
Body Cookies Headers (11) Test Results Status: 200 0K Time: 1427 ms
Pretty Raw Preview JSON 5 Save Response
1-
2~ "policyNames": [
3 "esxl_maintenance”,
4 "esx_maintenance",
5 "Manual_restart"”,
& "WDI_maintenance"
7]
i %

Figure 2.69: Displaying the Maintenance Policies configured in the target environment using Postman
REST Client

101

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

2.35.1 Displaying Maintenance Policies using cURL

To display all the maintenance policies configured in the target environment through the REST API
using cURL, the command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showmainteanncepolicynames" -H "managerurl:http://<eG
Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded

password"

Figure 2.70 shows an example of displaying the maintenance policies configured in the target
environment using cURL.

»Jeurl —location —request POST “http:rs-s192 168_11.196:7@7 7 apiseg-sorchestrat
Hon/shoumaintenancepolicynames' ——header “managerurl: http:/»192.168.11.196:7877
—header "user: admin' ——header "pud: YURtalldxMjH="'

"policyNamesz":[Yesxl_maintenance","esx_maintenance",."UDI _maintenance™ 1>

Figure 2.70: Displaying the maintenance policies in the target environment using cURL
2.36 Displaying Details of Maintenance Policies

Use this APIlto display all the details of the Maintenance Policies configured in the target
environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmaintenancepolicydetails
Method: POST

Content-Type: application/json

102

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Inputs to be Specified

Parameters ‘ Key values ‘ Example

Headers managerurl: Base URL {
of the eG Manager
i.e., http://<IP address
of the }
eG console:Port>

"policyname":"QMP1, QMP2"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"policyname":"comma-
separated list of
Maintenance Policies"

}

Success Response

Type Content

JSON 200 [
{
"policyName": "VDI_maintenance",
"policyStatus": "Deactive",
"policySchedule": ["Last Day of Month=00:00-23:59"],
"nextScheduleDate": "Sep 30, 2020 0:00-23:59",
"associatedElements": {
"component": ["Vdi_113"]
}
L

103

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Type Code Content

Failure Response

Type Content

JSON {

"Error": "One or more maintenance policy does/do not exist."

}

I POST http://192.168.11.196:7077 /api/eg/orchestration/showmaintenance policydetails Params Save

orization Headers (3) Body ® Pre-request Script Tests Code
form-data x-www-form-urlencoded ' ® raw binary Text
1 [{
2 "policyname": "VDI_maintenance"

Status: 2000K Time: 1201 ms

Body Cookies Headers (11) Test Results
Pretty Raw Preview JSOM 5 Save Response
L=
- 1

3 "policyName": "VDI_msintenance"”,
4 "policyStatus": "Deactive”,

5w "policySchedule™: [

["Last Day of Month=20:00-23:53"
7
8

1,
"nextScheduleDate™: "Oct 31, 2028 6:80-23:59",

ERS "associatedElements": {
1@~ "component™: [
11 “wgi 173"

Figure 2.71: Displaying the details of the Maintenance Policies in the target environment using Postman
REST Client

2.36.1 Displaying Details of Maintenance Policies using cURL
To display the details of the Maintenance Policies in the target environment through the REST API

using cURL, the command should be specified in the following format:

104

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showmaintenancepolicydetails" -H "managerurl:http://<eG
Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded
password" -H "Content-Type: application/json" --data-raw "{'policyname':'comma-separated

list of Maintenance Policies'}"

Figure 2.72 shows an example of displaying the details of the Maintenance Policies using cURL.

snourl ——location —request POST “hitp:rrs192 168.11 .196:7877 api-egsorchestrat
ionsshowmaintenancepolicydetails" ——header "managerurl: http:--192 _168.11.196:70
?" ——header "user: admin'' ——header “pud: YWRtaldxMjH="" —header "Content-Type:
hpplication/json'" ——data-raw "{ ‘policyname’: *UDI_maintenance, esx_maintenance’
ll

[{"policyName":"UDI_maintenance”,policyStatus":"Deactive”,"policySchedule":["La
t Day of Month~uBB3dBB:-B0-23:592"1, "nextScheduleDate™:"0ct 31, 2020 B:88-23:5%",
'azzociatedElements " :{"component™:["Udi_113"13>,.{"policyName'": "esx_maintenance",
'policyStatus'="Deactive’.,."policySchedule™: ["Daily~uB@3di3:30—14:30 15:38—-16:38"
1. "nextScheduleDate:"0ct B2, 2028 13:30-14:38"."associatedElements":{"component
':[;Esx_14"]}}]

NP

Figure 2.72: Displaying the details of the Maintenance Policies in the target environment using cURL
2.37 Displaying the Hosts Managed in the Target Environment

Use this API to display the hosts that are managed in the target environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmanagedhosts
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base Example with Default Key values:
URL of the {
eG Manager i.e.,
http://<IP address of "agentname":"192.168.11.136"

the eG console:Port>)

105

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

user: eG username or Example with Default and Optional Key values:
domain/eG username i

pwd: Base64 encoded ,,

g agentname":"ext12"
passwor

"agenttype":" External agent"

}

Body Default:
{

"agentname":"Agent
name"

}

Optional:

{

"agenttype":"External
agent/Remote agent"

}

Note that the agenthame key value is case-sensitive.

Success Response

Type ‘ ‘ Content

JSON 200 {
"managedHosts": |
"Esx_14",
"mobilecollector",
"network_10",
"Rds_196",
"Wdi 113",
"windows1"
J
}

106

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST hrep://192.168.11.196:7077 /api/eg/orchestration/showmanagedhosts Params Send e Save
@ Bodye Gk
form-dats w-wnww-form-urlencoded ® raw binary Text
1 {
2 “sgentname": "mobilecollectorextagt”,
3 "sgenttype": “externalagent"”
41
Baody 11 Status: 2000K Time: 1395 ms
Pretty JSON 5 Save Response
-
2~ "managedHosts": [
3 "Esx_14",
4 “mobilecollector”,
5
9]
i@ 1

Figure 2.73: Displaying the hosts managed in the target environment using Postman REST Client
2.37.1 Displaying the Hosts Managed in the Target Environment using cURL

To display the hosts managed in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showmanagedhosts™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'agentname':'Agent name',

'agenttype':'External agent/Remote agent'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.74 shows an example of displaying the hosts managed in the target environment using cURL.

107

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

»ourl ——location —request POST “http:ir /192 .168.11.196:7877 apisegsorchestrat]
Honsshowmanagedhosts" —header “"managerurl: http: 7192 _168_11.196:7877" —header
"User: admin' ——header ""pud: YURtal4xMjH="" ——header "Content—Type: application
json" ——data—raw "{ 'agentname’: ‘mobhilecollectorextagt’. ’'agenttype’: ‘externa

hgent " >"

"managedHosts":["Esx_14", "mobilecollector", "network_16",."Rds_196",."Udi_113" . "wi

dows1"1>
N

Figure 2.74: Displaying the hosts managed in the target environment using cURL

2.38 Displaying the Details of the Tests

Use this API to display the details of a test pertaining to a chosen Component Type.

URL: http://192.168.8.206:7077/api/eg/orchestration/showtestsdetails

Method: POST

Content-Type: application/json

Inputs to be Specified

Headers

Body

managerurl: Base URL of the | Example with Optional Key values:
eG Manager i.e.,

http://<IP address of the {

eG console:Port> "componenttype": "Citrix NetScaler
VPX/MPX",

user: eG username or

domain/eG username "'componentname": "Netscaler176:NULL",

pwd: Base64 encoded password "testtype": "Performance”,

Optional: "testname": "Application Flows"

{ }

"componenttype":"Component
type”,

108

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

"componentname":"Component
name",

"testtype":"Performance /
Configuration",

"testname":"Test name"

}

Success Response

Type Code Content

JSON 200 [
{
"componentType": "Citrix NetScaler VPX/MPX",
"componentName": "Netscaler176:NULL",
"testType": {
"performance": [
{
"testName": "Application Flows",
"details": {
"TESTPERIOD": "5 mins",
"HOST": "192.168.10.176",
"NETSCALER USERNAME": "Sunconfigured",
"NETSCALER PASSWORD": "Sunconfigured",
"SSL™: "No",
"AGENTLESS": "y",
"OSs": "win7",
"SSHPORT": "22"
}

109

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Content

"configuration": []

Failure Response

Type Content

JSON {

"Error": "The test is not available for this component type."

}

POST http://192.168.11.196:7077 /api/eg/orchestration/showtestsdetails Params “ Save

Authorization Headers (3) Body @ Pre-request Script Tests Code

form-data s-wnann-form-urlencoded ® raw binary Text

1K

Fl "componsnttype”: "Citrix NetScalsr VPX/MPX",

3 "componentname™: “"Netscalerl76:MULL",

4 "testtype™: "Performance”,

5 "testname": "Applicstion Flows"

6)

Body Cookies Headers (11) est Results Status: 2000K Time: 1345 ms

Pretty Raw Preview JSON 5 Save Response
1.0
2+ 1
3 “componentType": "Citrix MNetScsler VPX/MPX™,
4 "componentMama": "Metscalerl7&:MULL",
5~ "testType": {
(4 "performance": [
- 1
8 "testName": "Application Flows",
9~ "details": {

18 "TESTPERIOD": "5 mins™,

Figure 2.75: Displaying the details of a test using Postman REST Client

110

2.38.1 Displaying the Details of the Tests using cURL

To display the details of a test through the REST API using cURL, the command should be specified
in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showtestsdetails™ -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'Component type',
'componentname': 'Component name', 'testtype':'Performance / Configuration',

'testname':'Test name'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.76 shows an example of displaying the details of a test using cURL.

:nJeurl ——location ——regquest POST “http:r »192.168.11.1%96:7877 apisegrorchestrat]
ion-/showtestsdetails" —header "managerurl: http:/7192.168.11.196:=7877" ——header
"user: admin'' —header "pud: YWRtaldxMj ——header "Content-Type: application
jzon" —data—raw "{ ‘componenttype’: 'Gitrix MetScaler UPR/MPX’', ‘componentname’
- ‘Netscalerl?6:NULL’. 'testtype’: ’'Performance’. 'testname’: 'Application Flows|
}ll
itrix MetScaler UPX/MPR","componentNam "Netﬂcaleri?ﬁ HULL'
ance":[{"testHamne":"Application Flov

R Sunconf igured”. "SSL" Mo* . "AGENTLESS" ="
'22"}}] "configuration':[13>1]

Figure 2.76: Displaying the details of a test using cURL
2.39 Displaying Test Names for a Component Type

Administrators can use this API to obtain all the performance/configuration tests pertaining to a
chosen Component Type.

URL: http://192.168.8.206:7077/api/eg/orchestration/showtests
Method: POST

Content-Type: application/json

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Inputs to be Specified

Parameters Key values ‘ Example

Headers managerurl: Base URL of the Example with Default key values:
eG Manager i.e., http://<IP address of i
the eG console:Port>

"componenttype:"oracle database"
user: eG username or
domain/eG username }
pwd: Base64 encoded password Example with Default and Optional Key
lues:
Body Default: values
{
{
; . \ "'componenttype":"oracle database",
componenttype":"Component type

) "category":"enabled",
Optional: testtype":"performance
i }
"category":"Enabled/Disabled/All",
"testtype":"Performance/Configuration"
}

Success Response

Type Code Content

JSON 200 {
"enabledTests": [
"Drives",
"Drives Capacity",
"Environment Entries",
"Hotfix/Patch",
"IP Settings Configuration",

"IPC Semaphores Configuration”,

112

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Content

"IPC Shared Memory Configuration",
"Network Adapters Configuration",
"Operating System",

"Oracle Audit",

"Oracle Automatic Storage Management",

"Oracle Backup",

1,
"disabledTests": |

"File Information"
]
}

POST http://192.168.11.196:7077/api/eg/orchestration/showtests Params Send N Save
Authorization Headers (3} Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded ® raw binary Text
1
2 "componenttype™: "Oracle Database",
3 "testtype": "Configuration”
4 X
Body Cookies Headers (11) Test Results Status: 200 0K Time: 1222 ms
Pretty Rawr Preview JSON 5 Save Response
i- i
2- "enabledTests": [
3 "Drives”,
4 "Drives Capacity",
5 "Environment Entries”,
["Hotfix/Patch”,
7 "IP Settings Configuration",
8 "IPC Semsphores Configuration™,
9 "IPC Shared Memory Configuration”,
18 "Metwork Adapters Configuration",

Figure 2.77: Displaying the tests for a chosen Component Type using Postman REST Client

113

2.39.1 Displaying Test Names for a Component Type using cURL

To display the tests for a chosen Component Type through the REST API using cURL, the
command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/showtests" -H "managerurl:http://<eG Manager IP:Port>"-H
"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-
Type: application/json" --data-raw "{'componenttype':'Component type',

'category':'Enabled/Disabled/A11l', 'testtype':'Performance / Configuration'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.78 shows an example of displaying the tests for a chosen Component Type using cURL.

iseurl —location ——request POST "http:/7122.168.11.1%96:7877/apiregs/orchestrat
ionsshowtests" —header "managerurl: http:- -192_ 168.11.1%6:7877" ——header "user:
admin" ——header “pud: YWRtaWdxMjM=" ——header "Content—-Type: application-json" —
data-raw "{’'componenttype’: ‘Oracle Database’. ‘testtype’: ‘Configuration’"
"enabledTests": ["Drives" . "Drives Capacity","Environment Entries',"Hotfix~Patch"
."IP Settings Configuration",. "IPC Semaphores Configuration”."IPC Shared Memory C
onf iguration”."Metwork Adapters Configuration'. "Operatlng System”. "O-acle Audit™
"Oracle Hutumatlc Storage Management'. "Oracle Backu

rac le DataFllef Cunflguratlnn","ﬂracle DataGuard

"Oracle I-0%."Oracle Language Settings'."Oracle
License","Oracle Listeners"."0Oracle Lng","Oracle Memory', "Oracle MIS Server'.'0
racle Open Links".'"Oracle Optimizer”,"Oracle Parallel Server',.'Oracle PDB Config
wration', "Oracle PL/SQL'.'"Oracle Rollback Segments Configuration”."Oracle Server
", "Oracle Service Configuration"”."Oracle Shared Server',."Oracle Sort Area".,.'Orac
le Standby Database"."Oracle Tablespaces Configuration'."Oracle Trace'."Oracle U
do" . "Oracle Uersion","Page File Configuration".'"Processor Configuration."Regis
ry Entries". "Snftuare" "Stream Tunable Configuration'."System Manufacturer'].'d
isabledTests":["File Information'1>
N

Figure 2.78: Displaying the tests for a chosen Component Type using cURL
2.40 Disassociating Agents from Managers in a Redundant Setup
Use this API to unassign agents from the eG managers in a redundant setup.
URL: http://192.168.8.206:7077/api/eg/orchestration/unassignagents
Method: POST

Content-Type: application/json

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Inputs to be Specified

Parameters

Key values ‘ Example

Headers managerurl: Base {

URL of the . "managerip:"192.168.8.104",
eG Manager i.e.,

http://<IP address of = "agents":"gen1,ora8"
the eG console:Port> }

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"managerip":"IP of
the eG manager from
which agents are to
be delinked",

"agents":"Comma-
separated list of
agents"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "one or more agents unassigned
successfully."

}

115

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

POST hetp:/#192.168.11.196:7077 fapi/eg/orchestration/unassignagents Params Save

4 Body @ [] Code

form-data *-www-form-urlencoded ¥ raw binary SON (application/json)

2 "managerip”: "192.168.8.219",
3 "agents": "Serverlé_l18"

Body (11 [] Status: 200 0K Time: 372 ms

Pretty JSON 5 Save Response

2 "Succeed": "Agents have been unassigned successfully.”
ERNS |

Figure 2.79: Unassign agents from the eG managers in a redundant setup using Postman REST Client

2.40.1 Disassociating Agents from Managers in a Redundant Setup using
cURL

To unassign agents from the eG managers in a redundant setup through the REST API using cURL,
the command should be specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/unassignagents" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'managerip':'IP of the eG manager from

which agents are to be delinked', 'agents':'Comma-separated list of agents'}"

Figure 2.80 shows an example of unassigning agents from the eG managers in a redundant setup
using cURL.

116

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

snourl —leocation —regquest POST "http:r-192.168.11.176:78Y7/apiseg-orchestrat]
ion unassignagents" ——header "managerurl: http:- -192_168_11.196:7877" —header °*
1zer: admin' —header "puwd: YWRtalMxMjM="" ——header "Content-Type: application~js

pn"' ——data—raw "{ ‘managerip’: '192.168.8.219°,. 'agents’': ‘Serverdit_18.Serverlt
L7 . Serverli6_16" 3"

"Succeed":"Agents have been unassigned successfully.'

HA

Figure 2.80: Unassigning agents from the eG managers in a redundant setup using cURL
2.41 Unmanaging a Component

To unmanage a component from the target environment, use this API.

URL: http://192.168.8.206:7077/api/eg/orchestration/unmanagecomponent
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the | Example with both Default and Optional Key
eG Manager i.e., Values:
http://<IP address of the i

eG console:Port>
"componenttype":"Oracle Database",
user: eG username or

domain/eG username "componentname":"oracleDB",
pwd: Base64 encoded "port™:"1521",
password "sid":"egurkha"

}

Example with Default key values:

{

"componenttype":"Microsoft SQL",

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Parameters Key values Example

Body Default: componentname":"MSSQL",
"port":"1433"

{
"'componenttype":"component)
type",

"'componentname":"Nick
name",

"port":"Port",

}
Optional:

{
"sid":"SID"
}

Note:

If an Oracle Database server is added with multiple SIDs, then the eG Enterprise system will monitor
each SID as a different Oracle Database server. Therefore, while unmanaging an Oracle Database
server that supports multiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

Success Response

Type Code Content

JSON 200 {

"Succeed": "Component has been unmanaged
successfully."

}

118

Chapter 2: The REST APl Commands for Orchestration of eG Administrative

Failure Response

Type Content

JSON {

"Error": "Please enter the SID of the component."

POST htp://192.168.11.196:7077/api/eg/orchestration/unmanagecomponent Params Send v Save
(3} Body ® [] Code
form-data sx-wwn-form-urlencoded ® raw binary Texr
1K
2 "componenttype”: "Oracle Database”,
3 “componentname™: "oracleDB",
4 "port™: "1521",
= "sid": "egurkha"
6 1
Body (11 . Status: 2000K Time: 1210 ms
Pretty JSON = Save Response
1x K
2 "Succeed": "Component has been unmanaged successfully.™
3 1

Figure 2.81: Unmanaging a component using Postman REST Client
2.41.1 Unmanaging a Component using cURL

To unmanage a component through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/unmanagecomponent" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -
H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':'Nick name', 'port':'Port', 'sid':'SID'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.82 shows an example of unmanaging a component using cURL.

119

»Jeurl —location —request POST "http:ir -192 168_11.196:787? apiseg-sorchestrat
Honsunmanagecomponent' —header "managerurl: httpsr-s192 168.11.196:-7877" ——heade
"wzer: admin' ——header “'pud: YWHtaW4xMjH="'" —header "Content—-Type: application
" ——data—raw "{ ‘componenttype’: ‘Oracle Databhase’. ‘'componentname’: ‘oracl
‘port’: '1521°, ‘sid’: 'egurkha’}"
"Succeed":"Component has been unmanaged successfully.'}
HaN-

Figure 2.82: Unmanaging a component using cURL

120

Chapter 3: Performing Operations in Bulk Using eG REST API

Chapter 3: Performing Operations in Bulk Using
eG REST API

One of the key benefits of the eG REST API is that, administrators are allowed to process
commands in bulk, thus allowing to perform multiple tasks simultaneously without logging into the eG
console - for instance, you can add multiple components at one shot using the eG REST API. This
saves administrators the time and trouble involved in performing redundant tasks.

To execute commands in bulk, the eG REST API requires a CSV file that contains the details of the
operations to be performed. This file (CSV) should be created on the eG Manager on which the
operations are to be performed.

Once the file is created, invoke the relevant eGREST APl command from the RESTClient by
providing the manager ID and the full path to the CSV file. The command will then read the
instructions defined in the CSV file and then execute them on the specified manager to perform the
operation.

Note:

To ensure that the CSV file supports multi-byte component names and agent nick names, ensure
that you save the CSV file in the UTF-8 mode.

The sections below discuss how the CSV file can be used for performing multiple administrative
operations on an eG manager.

3.1 Adding Components in Bulk

For every administrative operation to be performed in bulk by the eG REST API, separate CSV files
should be created. This implies that for adding new components to the eG Enterprise system, a
dedicated CSV file is required.

To configure a CSV file with the details of the components to be added, entries of the following
format should be included in that file:

121

Chapter 3: Performing Operations in Bulk Using eG REST API

Element,action

Component, add

componenttype, hostip/hostname, componentname, port,externalagents
<Details of componentl>

<Details of component2>

For example, if you want to add 3 IIS web servers to the eG Enterprise system using the host IP, do
the following:

Element,action

Component, add

componenttype, hostip, componentname, port, mtsenabled, externalagents

IIS web,192.168.10.96,1is96,80,n0,ext43

IIS web,192.168.10.173,1is173,7077,n0,extl73

IIS web,192.168.10.90,web90,80,no,ext85

If you want to add 3 1IS web servers to the eG Enterprise system using the host name of the
component, do the following:

Element, action

Component, add

componenttype, hostname, componentname, port, mtsenabled, externalagents

IIS web,egurkha25,iis96,80,n0,ext43

IIS web,egurkha26,i1is173,7077,n0,ext173

IIS web,egurkha277,web90,80,n0,ext85

Note that the column names (componenttype, hostip, etc.) used here are the same as the input
parameters of the ‘addcomponent’ command supported by eG REST API (see Section 2.1 of this
document). These column names cannot be changed. Also, while providing the details of the
components to be added, ensure that you follow the same order of the column names.

While adding components of different types or those which support different parameter sets, make
sure that you leave the columns not applicable for a component specification, blank. At the same
time, ensure that the column names you specify in the CSV file are a super-set of the parameters
supported by all the components that are being added. In other words, the column names provided
in the CSYV file should correspond to the following:

« the parameters that are common across all the components to be added, and;
« the parameters that are distinct/unique for each of the components being added;

For instance, you can add an IIS web server and a Microsoft Windows component using the same
CSV file, with the help of the following specification:

122

Chapter 3: Performing Operations in Bulk Using eG REST API

Element,action

Component, add

componenttype, hostip, componentname, port, mtsenabled, externalagents IIS
web,192.168.10.96,11is96,80,n0,ext43

Microsoft Windows,192.168.10.173, winl73,,,ext180

In this case, note that the columns componenttype, hostip, componentname, and externalagents are
common for both the IIS web server and the Microsoft Windows server, but the port and mtsenabled
columns are supported only by the 1IS web server. Moreover, since the Microsoft Windows server is
a non-port-based component and does not support the mtsenabled parameter, the columns port
and mtsenabled have been left blank in the specification that corresponds to the Microsoft Windows
server.

If you want to say, associate multiple external agents with a component, then your specification
should include a comma-separated list of external agents provided within double-quotes:

Element,action

Component, add

componenttype, hostip, componentname, port, mtsenabled, externalagents
IIS web,192.168.10.96,11s96,80,no, "ext43,ext60"

IIS web,192.168.10.173,1is173,7077,no,extl73

Similarly, you can add an Oracle database sever with multiple SIDs.
Note:

If an Oracle database server with multiple SIDs is added to the eG Enterprise system, then each SID
will be registered as a separate Oracle database server in the eG Enterprise system.

Once all the required entries are defined in the CSV file (let's say, the name of the file is
addcomponent.csv), execute the command specified in the URL of the table below to extract the
component information from the file, connect to the required eG manager, and add the specified
components to the eG Enterprise system.

Note:

A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addcomponent/bulk
Method: POST

Content-Type: multipart/form-data

123

Chapter 3: Performing Operations in Bulk Using eG REST API

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl: Base {
URL of the

) "file": G:\addcomponent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Component has been added successfully."

}

Failure Response

Type Content

JSON {
"Error": "Following component(s) could not be configured.",

"Description": |

124

Chapter 3: Performing Operations in Bulk Using eG REST API

Type Content

"Component already exist under this type. Component type :<Component
Type>,Component name :<hostname of the Component>",

]

POST http://192.168.11.196:7077/api/eg/orchestrationfaddcomponent/bulk Params Send v Save
)] Body @ Code
® form-data x-www-form-urlencoded raw binary
Key Value Description Bulk Edit
file Choose Files | addcomp.csv
-
Body (11} Status: 200 0K Time: 3534 ms
Pretry JSON = Save Response
i- i
2 "Succeed": "Component has been added successfully.™
3 7

Figure 3.1: Example to add components in bulk using Postman REST Client
3.1.1 Adding Components in Bulk using cURL

To add components in bulk through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addcomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.2 shows an example of adding components in bulk using cURL.

125

snsepssAdministratorecurl —request POST “"http-- 71922 168.11.1926:-7877-api‘eg-or|
hestrationsaddcomponentsbulk"” —header "managerurl: http:- -172_168.11.196:7877"
——header "user: admin" —header "pud: YWRtalMxMjM="" —header "Content-Type: mul
ipart/form—data'" —form "file=0 C:-Documents-Bulkfiles- addcomp.csu"
"Succeed':"Component hasz heen added successfully "'

UzerssAdministratorr

Figure 3.2: Adding components in bulk using cURL
3.2 Managing Components in Bulk

To manage components in bulk, you can create a dedicated CSV file for this purpose and configure
it with entries related to each component to be managed. Given below is the format of the entries in
such afile:

Element,action

Component, manage

componenttype, componentname, port, sid
<Componentl to be managed>

<Component2 to be managed>

For instance:

Element,action

Component, manage

componenttype, componentname, port, sid
Microsoft Windows,winl, ,
AGate,agtel0, 3900,

Oracle Database,orab55,1521,multi

Note that the column names used in the CSV file are the same as the input parameters of the
‘ManageComponent’ command supported by the eG REST API.

Note:

126

Chapter 3: Performing Operations in Bulk Using eG REST API

« If an Oracle database server with multiple SIDs is to be managed, then the entry for the Oracle
server in your CSV file should not include a comma-separated list of SIDs; instead, you should
provide a separate entry for each SID to be managed.

« If one/more column names in your CSV file are not applicable to a component specification, then
make sure that such columns are left empty in the specification.

Once the CSV file (let's say, the name of the file is managecomponent.csv) is created on the eG
manager, invoke the URL command mentioned in the below table from the eG REST API Client to
update the eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/managecomponent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of }
the eG console:Port>

"file": G:\\managecomponent.csv

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

127

Chapter 3: Performing Operations in Bulk Using eG REST API

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "Component has been managed
successfully."

}

Failure Response

Type ‘ Content

JSON {
"Error": "Following component(s) could not be managed.",
"Description™: [

"The selected component does not exist. Component type :<Component
TYpe>,Component name :<hostname of the component>",

]
}

3.2.1 Managing Components in Bulk using cURL

To manage components in bulk through the REST API using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addcomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" -F "file=QFull path to the CSV file"

Figure 3.4 shows an example of managing components in bulk using cURL.

128

http:/f192.168.11.196:7077/apifeg/orchestration/managecomponent/bulk Params

= binary

Key Value Description

file | Choose Files | managecomp.csv

i
Ial
m

"Component has been managed successfully.”

Figure 3.3: Managing components in bulk using cURL
3.2.2 Managing Components in Bulk using cURL

To manage components s in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/managecomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=Q@ Full path to the CSV file"

Figure 3.4 shows an example of managing components in bulk using cURL.

soourl ——request POST “"hitp:/71922.168.11.196:7877/apisegs/orchestration/managec
pmponent/bulk"” —header "managerurl: http:--192.168.11.126:7877" —header "user:
admin" ——header "pud: YWRtalldxMjH="" —header "Content-Type: multipart-form—data
' —form "File=@ C: DocumentsBulkfiles/managecomp.csu’

"Sgcceed":"ﬂumpnnent has been managed successfully_ '

NI

Figure 3.4: Managing Components in bulk using cURL

129

Chapter 3: Performing Operations in Bulk Using eG REST API

3.3 Modifying Components in Bulk

As already mentioned, an exclusive CSV file should be created to handle bulk modifications to
component details.

Entries in this file should be of the following format:

Element, action

Component,modify
componenttype,hostip/hostname, componentname, port,externalagents
<Modification to componentl>

<Modification to component2>

For example, if you want to modify the port numbers of 2 IS web servers, do the following:

Element,action

Component,modify

componenttype, hostip, componentname, oldport,Newport, mtsenabled, externalagents
IIS web,192.168.10.96,1iis96,7077,8088,no,ext43

IIS web,192.168.10.173,1is173,7077,7078,no,extl73

The CSV file can also be used to modify the details of components of multiple types at one shot.
While doing so, make sure that you leave the columns not applicable for a component specification,
blank. At the same time, ensure that the column names you specify in the CSV file are a super-set of
the parameters supported by all the components that are being modified. In other words, the column
names provided in the CSV file should correspond to the following:

« the parameters that are common across all the components to be modified, and;

« the parameters that are distinct/unique for each of the components being modified:;

For instance, say you want to modify the nick name of an Oracle database server, and want to
change the monitoring mode of an MS SQL server from agent-based to agentless. The specification
in this case will be, as follows:

Element, action

Component,modify

componenttype, hostip, componentname, oldcomponentnamnme,

newcomponentname, port, sid, agentless,mode, os, externalagents, remoteagent

Oracle database,192.168.10.8,,0ra8,0ral08,1521,egora,,,,extl25,

Microsoft SQL,192.168.10.63, sgl63,,,1433,,yes,perfmon,Windows2012,extl173, reml?2

In the above specification, you can find that the column list includes the following:

130

Chapter 3: Performing Operations in Bulk Using eG REST API

« parameters such as componenttype, hostip/hostname, port, and externalagents that are common
to both the Oracle and MS SQL servers

« the oldcomponentname, newcomponentname, and sid parameter that are available only for the
Oracle component

« the componentname, agentless, mode, OS, and remoteagent parameters that are relevant for
only the MS SQL server being modified

From the above specification, it is also evident that columns not applicable to a component
specification have been left blank.

If say, you want to add multiple SIDs to an Oracle database server, your specification should be as
follows:

Element,action
Component,modify
componenttype, hostip, componentname, port, sid, externalagents

Oracle database,192.168.10.8,0ra08,1521, "egora,egoracle",extl25
Note:
If an Oracle database server with multiple SIDs is added to the eG Enterprise system, then each SID

will be registered as a separate Oracle database server in the eG Enterprise system.

Once the CSYV file (let's say, the name of the file is modifycomponent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifycomponent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters [GACIES Example

Header managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of '}
the eG console:Port>

"file": G:\modifycomponent.csv

131

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type Content

JSON 200 {

"Succeed": "Component has been modified successfully."

}

Failure Response

Type ‘ Content

JSON {
"Error": "Following component(s) could not be modifed.",
"Description™: [

"The old component name or port does not exist. Component type
:<Component Type>,Component name :<Component name>",

"The old component name or port does not exist. Component type
:<Component Type>,Component name :<Component name>",

]
}

132

http://192.168.11.196:7077/apifeg/orchestration/modifycomponent/bulk

o
a
[
[n
]
=
a
<

Key Value Description

file | Choose Files | modifycomp.cs

: "Component has been modified successfully."

Figure 3.5: Modifying Components in bulk using Postman REST Client
3.3.1 Modifying Components in Bulk using cURL

To modify components in bulk through the REST AP using cURL, the command should be specified
in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/modifycomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=Q@ Full path to the CSV file"

Figure 3.6 shows an example of modifying components in bulk using cURL.

swnrourl ——regquest POST "hittp- 2192 .168.11.196: 7877 /apisegsorchestrationsmodif yc
omponentbulk" ——header "managerurl: http:/-172.168.11.126:7877" ——header "usep:
admin” —header "'puwd: YWRtaWdxMjM="" —header "Content-Type: multipart-form—data
" —form “"File=@ C:-Documents-Bulkfiles- modif yconp_csuv"

"Slslcceed":"Cumpunent haz been modified successfully. '

NI

Figure 3.6: Modifying Components in bulk using cURL

133

Chapter 3: Performing Operations in Bulk Using eG REST API

3.4 Deleting Components in Bulk

The components to be deleted simultaneously from the eG Enterprise system should be included in
a CSV file that is created exclusively for this purpose.

Such a CSV file should contain entries of the following format:

Element, action

Component, delete

componenttype, hostip/hostname, componentname, port
<Componentl to be deleted>

<Component2 to be deleted>

For example, if you want to delete an Oracle and an MS SQL server together using their respective
host IPs, then your CSYV file should include the following entries:

Element,action

Component,delete
componenttype, hostip, componentname, port, sid
Oracle database,192.168.10.96,0ra9%6,1521,egora
Microsoft SQL,192.168.10.173,s9qll173,1433,

If you want to delete an Oracle and an MS SQL server together using their respective host names,
then your CSV file should include the following entries:

Element,action

Component,delete
componenttype, hostname, componentname, port, sid
Oracle database,egurkha25,0ra96,1521, egora
Microsoft SQL,egurkha26,sqgll73,1433,

As already stated, if an Oracle database server is added with multiple SIDs, then the eG Enterprise
system will monitor each SID as a different Oracle server. Therefore, while removing an Oracle
database server that supports multiple SIDs, each SID should be treated as a different Oracle
server, and a separate specification for each SID should be included in the CSV file. For example,
say, an Oracle database server has been added with the following SIDs: egdemo,egora. To remove
this Oracle server completely, your CSV file should contain the following entries:

Element,action

Component,delete
componenttype, hostip, componentname, port, sid
Oracle database,192.168.10.96,0ra9%6,1521,egora
Oracle database,192.168.10.96,0ra9%96,1521, egdemo

134

Chapter 3: Performing Operations in Bulk Using eG REST API

Note:
Components included in a zone, segment, or service cannot be deleted.

Once the CSYV file (let's say, the name of the file is deletecomponent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletecomponent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl: Base {
URL of the

) "file": G:\deletecomponent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type Content

JSON {

"Succeed": "Component has been removed successfully."

135

Chapter 3: Performing Operations in Bulk Using eG REST API

Type Content

Failure Response

Type ‘ Content

JSON {
"Error": "Following component(s) could not be deleted.",
"Description™: [

"The selected component does not exist. Component type :<Component
Type>,Component name :<nick name of the component>",

"The selected component does not exist. Component type :<Component
Type>,Component name :<nick name of the component>",

POST http://192.168.11.196:7077/apifeg/orchestration/deletecomponent/bulk Params Send b Save

thorization Headers (3) Body @ Pre-request Script Tests @ Code

® form-data x-www-form-urlencoded raw binary
Key Value Description Bulk Edit

file Choose Files | deletecomp.csy
Body Cookies Headers (11} TestResuls ® SELEONKEIESS

Pretry R Preview JSON = Save Response

i-f

2 "Succeed": "Component has been removed successfully."

N

Figure 3.7: Deleting Components in bulk using Postman REST Client

136

3.4.1 Deleting Components in Bulk using cURL

To delete components in bulk through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deletecomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.8 shows an example of deleting components in bulk using cURL.

nourl —request POST "hitp:r/-192.168.11.196:7877-apiseg/orchestrationsdeletec
omponentsbulk’ ——header "managerurl: http: /-192_168.11.196:7877" —header "user:
admin' —header "puwd: ¥YURtaWdxMjM=" ——header "Content-Type: multipart-form—data
" —form "file=0@ C:rDocuments~Bulkfiles~deletecomp.csuv"

"Succeed'":"Component has been removed successfully.'
N

Figure 3.8: Deleting components in bulk using cURL
3.5 Unmanaging Components in Bulk

The components to be unmanaged should be included in a CSV file that is created exclusively for
this purpose.

Such a CSV file should contain entries of the following format:

Element, action

Component, unmanage

componenttype, componentname, port, sid
<Componentl to be managed>

<Component2 to be managed>

For instance:

137

Chapter 3: Performing Operations in Bulk Using eG REST API

Element,action

Component, unmanage

componenttype, componentname, port, sid
Microsoft Windows,winl, ,

AGate, agtel0, 3900,

Oracle Database,ora55,1521,multi

Note that the column names used in the CSV file are the same as the input parameters of the
‘unmanagecomponent’ command supported by the eG REST API.

Note:

« Components included in a zone, segment, or service cannot be unmanaged.

« If an Oracle database server with multiple SIDs is to be managed, then the entry for the Oracle
server in your CSV file should not include a comma-separated list of SIDs; instead, you should
provide a separate entry for each SID to be managed.

« If one/more column names in your CSV file are not applicable to a component specification, then
make sure that such columns are left empty in the specification.

Once the CSYV file (let's say, the name of the file is unmanagecomponent.csv) is created on the eG
manager, invoke the URL command mentioned in the below table from the eG REST API Client to
update the eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/unmanagecomponent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base {
URL of the

) "file": G:\unmanagecomponent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

138

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example
Body Default:
{
"file" : "Full path to
the CSV file"
}

Success Response

Type Code Content

JSON 200 {

"Succeed": "Component has been unmanaged
successfully."

}

Failure Response

Type Content

JSON {
"Error": "Following component(s) could not be unmanaged.",
"Description": [

"The selected component does not exist. Component type :<Component
Type>,Component name :<host name of the Component>",

"The selected component does not exist. Component type <Component
Type>,Component name :<host name of the Component>",

"The selected component does not exist. Component type :<Component
Type>,Component name :<host name of the Component>"

]
}

139

Chapter 3:

Performing Operations in Bulk Using eG REST API

POST

//apifeg/orchestration/unmanagecomponent/bulk

Value

| Choose Files | unmanzgecomp.csv

: "Component has been unmanaged successfully.”

e ‘:‘L-‘I‘..IE

Description

Status: 200 OK

Save Response

3.5.1 Unmanaging Components in Bulk using cURL

To unmanage components in bulk through the REST API using cURL, the command should be

Figure 3.9: Unmanaging Components in bulk using Postman REST Client

specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/unmanagecomponent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=Q@ Full path to the CSV file"

Figure 3.10 shows an example of unmanaging components in bulk using cURL.

wourl ——request POST “http:r-192.168.11_196:7877apisegsorchestrationsunmanag
pcomponent/bulk"” —header "managerurl: http:- -192.168.11.196:7877" —header 'use
admin' ——header "pud: ¥YWRtaW4xMjH=" ——header "Content-Type: multipart form—da
——form "file=0 C:/Documents/Bulkfiles unmanagecomp.csu®

a
"Succeed':

Component has heen wunmanaged successfully.'>

Figure 3.10: Unmanaging components in bulk using cURL

140

Chapter 3: Performing Operations in Bulk Using eG REST API

3.6 Adding Remote Agents in Bulk

The CSV file created specifically for adding multiple remote agents to the eG Enterprise system,
should contain the following entries:

Element,action
RemoteAgent, add

hostip, agentname

<Details of remoteagentl>
<Details of remoteagent2>

<Details of remoteagent3>

For instance:

Element,action
RemoteAgent, add
hostip, agentname
192.168.10.8, rem8
192.168.10.10, reml0
192.168.10.12,1inl12

Note that the column names used in the CSV file are the same as the input parameters of the
‘addremoteagent’ command supported by the eG REST API.

Once the CSV file (let's say, the name of the file is addremagent.csv) is created on the eG manager,
invoke the URL command mentioned in the below table from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/addremoteagent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Headers managerurl: Base {
URL of the

) "file": G:\addremagent.csv
eG Manager i.e.,

141

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type Code Content

JSON 200 {
"Succeed": "Remote agent has been added successfully."

}

Failure Response

Type ‘ Content

JSON {
"Error": "Following remote agent(s) could not be added.",
"Description™: [

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the remote agent>",

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the remote agent>"

142

Chapter 3: Performing Operations in Bulk Using eG REST API

Type Content

POST http://192.168.11.196:7077/api/egforchestration/addremoteagent/bulk Params Save
thorization Headers (3} Body @ Pre-request Script Tests @ Code
® form-data x-www-form-urlencoded raw binary
Key Value Description Bulk Edit
file Choose Files | addRmAg.csv
Eody Cockies Headers (11) Test Results @ Stat 3200 RN eSSt ine
Pretty T Preview JSON = Save Response
i~ f
2 "Succeed": "Remote sgent has been added successfully.™
3 1

Figure 3.11: Example to add remote agents in bulk
3.6.1 Adding Remote Agents in Bulk using cURL

To add remote agents in bulk through the REST API using cURL, the command should be specified
in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addremoteagent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.12 shows an example of adding remote agents in bulk using cURL.

143

NJourl —request POST "http:r/»192.168.11.1%6:7877apiseg-/orchestration//addremo|
eagent/bulk” —header "managerur http:/#192.168.11.126:7877" —header "user:
dmin" —header "pud: YWRtaW4xMjM="" —header "Content-Type: multipart-form-data’
—form "file=R C:/Documents/Bulkfiles~-addRmAg.csv"

:"Remote agent has been added successfully.'>

Figure 3.12: Adding remote agents in bulk using cURL
3.7 Adding External Agents in Bulk

The CSV file created specifically for adding multiple remote agents to the eG Enterprise system,
should contain the following entries:

Element, action
ExternalAgent,add
Hostip/hostname, agentname
Details of extenalagentl>
<Details of extenalagent2>

<Details of extenalagent3>

For instance:

Element, action
ExternalAgent, add
hostip, agentname
192.168.10.8,ext8
192.168.10.10,extl0
192.168.10.12,1inl12

If you use the host name instead of hostip, then your specification should be:

Element,action
ExternalAgent,add
hostname, agentname
egurkha25, ext8
egurkha26,extl10
egurkha27,1inl?2

144

Chapter 3: Performing Operations in Bulk Using eG REST API

Note that the column names (hostip,hostname,etc.) used in the CSV file are the same as the input
parameters of the ‘addexternalagent’ command supported by the eG REST API.

If the eG license enables the client emulation capability, then the CSV file should include an
additional clientemulation column. Therefore, if you want to add two external agents - one to be used
for client emulation and another that is not used for client emulation - then, your CSV specification
should be as follows:

Element,action
ExternalAgent, add
hostip,agentname,clientemulation
192.168.10.8,ext8, yes
192.168.10.10,ext10,no

Once the CSV file (let's say, the name of the file is addextagent.csv) is created on the eG manager,
invoke the URL command mentioned in the below table from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/addexternalagent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base {
URL of the

) "file": G:\addextagent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

145

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example

Success Response

Type Code Content

JSON 200 {
"Succeed": "External agent has been added successfully."

}

Failure Response

Type Content

JSON {
"Error": "Following external agent(s) could not be add.",
"Description": [

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the external agent>",

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the external agent>"

]
}

146

htep://192.168.11.196:7077/api/eg/orchestration/addextermnalagent/bulk Params Send &

3) Eody @ ®
form-data w-wwnw-form-urlencoded Faw binary

Key Value Description

file | Choose Files | zddExAg.cav

Pretty

"Succeed": "External agent has been added successfully."

Figure 3.13: Example to add external agents in bulk using Postman REST Client
3.7.1 Adding External Agents in Bulk using cURL

To add external agents in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/addexternalagent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.14 shows an example of adding external agents in bulk using cURL.

ssUserssAdministrator>ods

sourl —request POST "hittp:o /71922168 .11.126:7877/apisegsorchestrationsaddexte
snalagent bulk” ——header "managerurl: http:- ~192_168.11.126:7877" —header "user
: admin® —header "pud: YWRtalld4xMjM="'" ——header "Content-Type: multipart- form—dat
" —form "file=0BC: /Documents Bulkfiles addExAg.csu'

"|Succeed':"External agent has heen added successfully.'>

Ha

Figure 3.14: Adding external agents in bulk using cURL

147

Chapter 3: Performing Operations in Bulk Using eG REST API

3.8 Deleting Remote Agents in Bulk

The CSV file that is specifically created for deleting a number of remote agents in bulk, should
contain the following entries:

Element,action
RemoteAgent,delete
agentname

<Nickname of remote agentl>
<Nickname of remote agent2>

<Nickname of remote agent3>

For instance:

Element,action
RemoteAgent,delete
agentname

rem8

remlO

externall?2

Once the CSV file (let's say, the name of the file is deleteremagent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteremoteagent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base {
URL of the

) "file": G:\deleteremagent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or

148

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example

domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"Succeed": "Remote agent has been deleted successfully."

}

Failure Response

Type Content

JSON {
"Error": "Following remote agent(s) could not be deleted.",
"Description": [

"The remote agent you are trying to delete does not exist. Agent name
:<name of the remote agent>",

"The remote agent you are trying to delete does not exist. Agent name
:<name of the remote agent>"

]
}

149

Japifeg/orchestration/deleteremoteagent/bulk Params Send 7

Body @ .

Key Value Description

file | Choose Files | delRmAg.csv

"Succeed": "Remote sgent has been deleted successfully."

Figure 3.15: Deleting remote agents in bulk using Postman REST Client
3.8.1 Deleting Remote Agents in Bulk using cURL

To delete remote agents in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location —--request POST "http://<eG Manager
IP:Port>/api/eg/orchestration/deleteremoteagent/bulk" -H "managerurl:http://<eG Manager
IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.16 shows an example of deleting remote agents in bulk using cURL.

snreurl —request POST “hittp: /7192 168.11.196:7877/apiregsorchestrationsdeleter
emoteagent -bulk" —header "managerurl: http:/»192.168.11.1926:7877" —header "use
2 admin'' ——header "pwd: YWRtalMxMjH="" —header "Content-Type: multipart-form—d
a'" —form "File=0BC: Documents Bulkfiles delRmAg.csu"

"Sl;cceed":"ﬂemote agent has been deleted successfully.'>

N

Figure 3.16: Deleting remote agents in bulk using cURL

150

Chapter 3: Performing Operations in Bulk Using eG REST API

3.9 Deleting External Agents in Bulk

The CSV file that is specifically created for deleting a number of remote agents in bulk, should
contain the following entries:

Element,action
ExternalAgent,delete
agentname

<Nickname of external agentl>
<Nickname of external agent2>

<Nickname of external agent3>

For instance:

Element,action
ExternalAgent,delete
agentname

ext8

extl0

extl2

Once the CSV file (let's say, the name of the file is deleteexternalagent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eG manager with all the modifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteexternalagent/bulk
Method: POST

Content-Type: multipart/form-data

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base {
URL of the

) "file": G:\deleteexternalagent.csv
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or

151

Chapter 3: Performing Operations in Bulk Using eG REST API

Parameters Key values Example

domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Succeed": "External agent has been deleted
successfully."

}

Failure Response

Type ‘ Content

JSON {
"Error": "Following external agent(s) could not be deleted.",
"Description": [

"The external agent you are trying to delete does not exist. Agent name
:<name of the external agent>",

"The external agent you are trying to delete does not exist. Agent name
:<name of the external agent>"

]
}

152

heep://192.168.11.196:7077/api/eg/orchestration/deleteexternalagent/bulk Params Send o

Key Value Description

file |m| delExAg.csv

": "External agent has been deleted successfully.’

Figure 3.17: Example to delete external agents in bulk using Postman REST Client

3.9.1 Deleting External Agents in Bulk using cURL

To delete external agents in bulk through the REST API using cURL, the command should be

specified in the following format:

curl --location —--request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteexternalagent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.18 shows an example of deleting external agents in bulk using cURL.

sourl ——request POST “"http:rss192.168.11.196:78777apisegsorchestrationsde letee
kternalagent bulk” ——header "managerurl: http:/-192.168.11.1926:-7877" ——header "u
er: admin" ——header "pud: YURtaWdxMjHM=" ——header "Content-Type: multipart- Form

ata" —form "file=CC: /Documents-Bulkfiles~-delExAg.csuv"
"Succeed":"External agent has been deleted successfully.'>
NI

Figure 3.18: Deleting external agents in bulk using cURL

153

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Chapter 4: Retrieving Analytical Data from eG Manager
Using eG REST API

An important aspect of the eG REST API is that, apart from performing administrative activities on
the eG manager, administrators are allowed to retrieve analytical data from the eG manager (for
e.g., alarms raised in the target environment, the detailed diagnosis data of a chosen measure,
health of the components in the target environment). Administrators can export this data to other
management portals to provide a seamless user interface. This data can also be used by the
administrators for different purposes such as creating more powerful dashboards, consolidation with
asset / configuration tracking systems etc.

The sections below will discuss in detail on how to retrieve analytical data from the eG manager.
4.1 Retrieving Count of Alarms Raised in the Target Environment

By default, using the eG REST API, administrators can retrieve the count of alarms raised in the
eG manager. The URL to retrieve the count of alarms should be in the following format:

URL:http://<eG manager IP:port>/api/eg/analytics/getAlarmCount
URL: http://192.168.8.206:7077/api/eg/analytics/getAlarmCount
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base Not Applicable
URL of the

eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Baseb4 encoded
password

154

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Success Response

Type Example Response

JSON 200 {
"TOTAL": 43,
"CRITICAL": 7,
"MAJOR": 13,
"MINOR": 23
}

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/api/eg/analytics/getAlarmCount Params “ Save
Authorization Headers (3) Body Pre-request Script Tests Code
Key Value Description Bulk Edit Presets v
user admin
pwd YWREaWAxMj=
managerurl hrep:/M92.168.8.183:7077
Body Cookies Headers (11) Test Results Status: 000K Time: 2121 ms
Pretty Raw Preview JSON 5 Save Response
1-f
2 TOTAL™: 43
3 "CRITICAL": 7,
4 "MAJCOR": 13,
5 “MINOR™: 23
6 1

Figure 4.1: Example to retrieve current alarm count using Postman REST Client

155

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

4.1.1 Retrieving Count of Alarms Raised in the Target Environment using cURL

To retrieve the count of alarms in the target environment using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getAlarmCount"
-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H

"managerurl:http://<eG Manager IP:Port>" --data-raw ""

Figure 4.2 shows an example of retrieving the count of alarms raised in the target environment using
cURL.

sProgram Filesscurl-7.72%bin2curl -L —¥ POST “"http:--192.168.8.183:V8Y7/apireyg
analytics/getAlarmCount’” —H "uwser: admin' -H “"puwd: YURtaWd4xMjH="" -H "managerurl
: http:/7192.168.8.182:787?" —data-raw "

"TOTAL =
"CRITICAL"
"MAJOR": 11,
"MINOR": 24

wProgram Filesscurl-7.72%bin>_

Figure 4.2: Retrieving current alarm count in the target environment using cURL
4.2 Retrieving Live Measures of a Component

Using the eG REST API, the measures reported by executing the tests of a component during the
current measurement period can be retrieved.

URL: http://<eG manager IP:port>/api/eg/analytics/getLiveMeasure
URL: http://192.168.8.206:7077/api/eg/analytics/getLiveMeasure
Method: POST

Content-Type: application/json

156

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters Key values Example

Headers managerurl: Base URL of | {
the eG Manageri.e.,

http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"servername":"windows_136",

user: eG username or }

domain/eG username Example for retrieving current measures from an

pwd: Base64 encoded Oracle Database Server:
password {

Body { "servername":"Oractest:1521:egora",

"servername":"Hosthname ,,

servertype":"Oracle Database Server"
of the component:Port",

"servertype":"Component
Type"

}

If current measures of
the Oracle Database
server is to be retrieved,
then the Key values
should be specified as
follows:

{

"servername":"Hostname
of the
component:Port:SID",

"servertype":"Component
Typell

}

157

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Success Response

Type ‘ Code ‘ Content
JSON 200 [{"Measure Details for windows_136:Microsoft
Windows": [{
"Disk Space": {
"State": "GOOD",

"Last Measurement Time": "Aug 17, 2020 00:30:36",

"Total capacity": [{

"State": "GOOD",
"Value": "51098",
"Unit": "MB"
1
}
}]
1
Failure Response
Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

158

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST hopa 102168111 36: 707 /p: 'egfanalyice/pesl nehleasune Params E: - Save

"servername™; “windows_136%;

“servertype”: “Hloroseft Windms™

Figure 4.3: Example to retrieve current measures of a component using Postman REST Client
4.2.1 Retrieving Live Measures of a Component using cURL

To retrieve the measures of a component during the current measurement period through the
REST APl using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getLiveMeasure" -H "user:<eG username or domain/eG username>" -
H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -d"
{\"servertype\":\Microsoft Windows\", \servername\":\"name of the component\"}" -

H"Content-Type:application/json" -s

Figure 4.4 shows an example of retrieving the current measures of a component using cURL.

159

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Figure 4.4: Retrieving current measures of a component using cURL
4.3 Retrieving Historical Data of a Measure

To figure out whether the target environment is functioning without any glitches, more often than not,
administrators tend to monitor the performance of certain key measures over a period of time. Using
the eG REST API, administrators are befitted in monitoring the performance of the measures over a
period of time without logging into the eG console. The table below specifies the parameters that
should be used to retrieve the historical data of the measures.

URL: http://192.168.8.206:7077/api/eg/analytics/getHistoricalData
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the

eG Manager i.e.,
http://<IP address of | "server":"Microsoft Windows:win112:NULL",

the eG console:Port>

"timeline":"1 hour",

"test":"Network",

160

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

user: eG username or| "measure":"packet loss"
domain/eG username)

PGS [BEEEE EMOCtEe Example for retrieving historical data of a measure

password pertaining to an Oracle Database Server:
Body Default: {
{

"timeline":"1 day",
"timeline":"Timeline
for retrieving the
measure data (in
hours/days/weeks)", "test":"Oracle Sessions",

"server":"Oracle Database
Server:Oradb:1521:egora",

"server":"Component "measure":"Active Sessions'
Type:Component }
name:Port/Null",

"test":"Test name",

"measure":"Measure
name"

}

If current measures
of the Oracle
Database server is to
be retrieved, then the
Key values should be
specified as follows:

{

"timeline":"Timeline
for retrieving the
measure data (in
hours/days/weeks)",

"server":"Component
Type:Component
name:Port:SID",

"test":"Test name",

"measure":"Measure
name"

161

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

Success Response

Type ‘ ‘ Example Response

JSON 200 {

"NetworkTest": [

{
"Date": "29/09/2020 05:33:13",

"Value": "0.0"
L
{
"Date": "29/09/2020 05:38:40",
"Value": "0.0"
L
]
}
Failure Response
Type ‘ Code ‘ Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

162

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192.168.8.183:707//api/eg/analytics/getHistoricalData Params Send v Save
form-data x-www-form-urlencoded ® raw binary Text
10
2 "timeline":"1 hour",
3 "server":"Microsoft Windows:winlS3:NULL",
4 Mtest":"Network",
5 "measure"”:"Packet loss"
6 X
Body n Status: 200 0K Time: 334 ms
Pretty JSON = Save Response
2~ "NetworkTest": [
4 "Date": "29/89/2029 @5:33:13",
5 "Walue": "@.8"
6 Is
- :
"Date": "29/89/2028 85:33:48",
L) "Walue": "@8.8"
16 Is
11~ {
12 "Date": "29/09/2020 95:43:17",
13 "Walue": "@.@"
14 I
15~ {

Figure 4.5: Retrieving historical data of a measure using Postman REST Client
4.3.1 Retrieving Historical Data of a Measure using cURL

To retrieve the historical data of a measure using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getHistoricalData"™ -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the
measure data (in hours/days/weeks)\", \"server\":\"Component Type:Component

name:Port\",\"test\":\"Test name\", \"measure\":\"Measure name\"}"

Figure 4.6 shows an example of retrieving the current measures of a component using cURL.

163

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

~FProgram Files\curl—?.?E\hin)curl -L -3 POST “"http:/-122.168.8.183 Y877 api~e
analytics/getHistoricalData"™ -H "oser: admin®™ —-H "pud: TURtaU4xHJH—" —H "manage
Hurl- http=»»122.168.8.183:=7877" —H "Content—Type: applicationsjson" —data—raw
imeline~'":%"1 hour~"_ “"szserver~":“"0Oracle Databhaze:0Oracle_DB:-1521:-xe " . ~"tes
HMetworks" . ~"measure~" %" "Network availabhility ~"3"

"MetworkTest": [
£

"Date: "25-.8%7-2828 BA5:17:17",
"Walue': "1686.0"

"Date: "25-.87-2820 B5:22:28",
"Walue': "1686.0"

"Date: "25-87-2828 BA5:27:12",
"Walue': "1686.0"

"Date: "25-.87-2820 B5:32:686",
"Walue': "1686.0"

"Date: "25-.8%7-2828 BA5:37:87".
"Walue': "1686.0"

"Date": 258720820 A5:42:62",

Figure 4.6: Retrieving historical data of a measure using cURL
4.4 Retrieving Detailed Diagnosis of a Measure

More often than not, administrators may want additional information on a key performance measure.
Such additional information is provided as part of detailed diagnosis by eG Enterprise. Using
eG REST API, administrators may be able to retrieve the detailed diagnosis of a measure without
logging into the eG console. The table below specifies the URL and the parameters that should be
used to retrieve the detailed diagnosis of a measure.

URL: http://192.168.8.206:7077/api/eg/analytics/getDiagnosisData
Method: POST

Content-Type: application/json

Inputs to be Specified

IIII%HHHE%HH!IIIIIIIIIH%HHHH%!IIIIIIIIIIIIIIIIIIIIIIIIHEHHHHIIIIIIIIIIIIIIIII

Header managerurl: Base URL | {
of the eG Manageri.e.,

Ilt- | ||:II1 h ”’
http://<IP address of the our

164

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

eG console:Port> "server":"Microsoft Windows:win112:NULL",

user: eG username or | "test":"Network",
domain/eG username

"measure":"packet loss",
pwd: Base64 encoded

"descriptor":""
password
Body Default:)
{ Example to retrieve Detailed Diagnosis for a descriptor

of a measure:

"timeline"="Timeline for (
retrieving the measure
data (in "timeline":"1 hour",

hours/days/weeks)", "server":"Windows_server:win112:NULL",

"server"="Component

Type:Component
name:Port/Null", "descriptor":"Disk0 C:",

"test":"Disk Activity",

"test"="Test name", "measure":"Disk busy"

"measure"="Measure |
name",

"descriptor
name"

}

For an Oracle Database
server, the Key values
should be specified as
follows:

{

"timeline"="Timeline for
retrieving the measure
data (in
hours/days/weeks)",

Descriptor

"server"="Component
Type:Component
name:Port:SID",

test="Test name",

165

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

measure="Measure
name"

}

Note:

The "descriptor" key value is mandatory for non-descriptor based tests too. In such case, the key
value should be blank as shown in the example.

Success Response

Type Code Content

JSON 200 [
{
"PROCESS ID": "4196",
"APPLICATION NAME": "Symantec Service Framework",

"PROCESSNAME": "C:\\Program Files
(x86)\\Symantec\\Symantec Endpoint
Protection\\14.2.5587.2100.105\\Bin\\ccSvcHst.exe /s
Symantec Endpoint Protection /m C:\\Program Files
(x86)\\Symantec\\Symantec Endpoint
Protection\\14.2.5587.2100.105\\Bin\\sms.dll
/prefetch:1",

"|O RATE(KB/SEC)": "59.44",

"|O READ RATE(KB/SEC)": "59.44",

"0 READ OPS RATE(OPS/SEC)": "2.99",
"|O WRITE RATE(KB/SEC)": "0",

"0 WRITE OPS RATE(OPS/SEC)": "0",
"FILE NAME": "-",

"FILE |0 READ RATE(KB/SEC)": "-",
"FILE |0 WRITE RATE(KB/SEC)": "-",
"TOTAL FILE 10 RATE(KB/SEC)": "-",
"RESPONSE TIME(SECS)": "-"

166

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Content

Failure Response

Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED

n ", n n, n "
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST hetp://192.168.8.183:7077/api/eg/analytics/getDiagnosisData Params “ Save
Authorization Headers (3) Bady @ Pre-request Script Tests Code

form-data x-www-form-urlencoded ® raw binary Text

1

2 "timeline":"1 hour",

3 "serwver":"Microsoft Windows:winlB83:NULL",

4 "test™:"Disk Activity",

5 "measure":"Disk busy ",

& “descriptor":"Disk® C:"

71

8

Body Cookies Headers (11) Test Results Status: 2000K Time: 1951 ms

Pretty Rew Preview JSON = Save Response
i~
2+ 1
3 "PROCESS ID": “59@4,
4 UAPBLICATION MAME®: "WMI Provider Host",
5 "PROCESSMAME™: "C:\\Windows\\system32\\wbem\\wmiprvse.exe",
6 "I0 RATE(KB/SEC)": "165.55",
7 "I0 READ RATE{KB/SEC)": "155.18",
8 "I0 READ OPS RATE(OPS/SEC)": "4.32",
9 "I0 WRITE RATE(KB/SEC)": "@.38",

18 "I0 WRITE OPS RATE(OPS/SEC)": "3.38",

Figure 4.7: Retrieving detailed diagnosis of a measure using Postman REST Client

167

4.4 1 Retrieving Detailed diagnosis of a Measure using cURL

To retrieve the detailed diagnosis of a measure using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getDiagnosisData" -H "user:<eG username or domain/eG username>"
-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-
Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the detailed
diagnosis data (in hours/days/weeks)\",\"server\":\"Component Type:Component
name:Port\",\"test\":\"Test name\", \"measure\":\"Measure

name\", \"descriptor\":\"Descriptor name\"}"

Figure 4.8 shows an example of retrieving the detailed diagnosis of a measure using cURL.

»Program Filesscurl-?.72%bin>curl -L -8 POST "http:- -192_168.8_183:7877 api-e
analytics getDiagnozisData” -H "user: admin™ -H "pud: YWRtaW4xMjijM="" -H “manager
wl: http:/7192.168.8.183:7877" —-H "Content-Type: applicationsjson” —data—rauw '
S"timeline~":%"1 hours' “'"servers":\"Microsoft Windows:winlB83 ::HULL".“"test":
EHetuurk\".\"measure\":\"Packet losss" . “descriptoprs' o5

"HOPCOUMWT "= ‘1%,
"ROUTER": "19%2.168.8.183",
"HOPDELAYS<MS>": "“uBB3cl;~uBB3cl ;~uBB3cl"

“"HOPCOUMWT ''= ‘1%,
"ROUTER": "192.168.8.183",
"HOPDELAYS<MS>": " uBB3cl;~uBB3cl ;~uBB3cl"

"HOPCOUNT "= ‘1",
"ROUTER": '192.168.8.183",
"HOPDELAYS<M3>": "uB@3cl;~uBB3cl ;~uB@3c1"

Program Files“cuwrl-7.72%bin2_

Figure 4.8: Retrieving Detailed diagnosis of a measure using cURL
4.5 Retrieving Top-N Analysis Data

To identify the best/worst players in a particular performance area, administrators need to rank
components/descriptors for every metric collected by the eG Enterprise. For such ranking,
administrators need to figure out the Top-N Analysis data offered by eG Enterprise. Using the
eG REST API, administrators can figure out the Top-N data of the components/descriptors of a
measure reported by eG Enterprise without logging into the eG console. The table below specifies
the parameters that should be used to retrieve the health of the infrastructure.

168

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

URL: http://192.168.8.206:7077/api/eg/analytics/getTopNData
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters L GACI S Example

Headers managerurl: Base URL | {
of the eG Manager i.e., .

http://<IP address of
the eG console:Port> "server":"win112:NULL:Microsoft Windows",

timeline":"1 hour",

user: eG username or "test":"Disk Activity",
domain/eG username "descriptor”:"Disk0 C:",

pwd: Base64 encoded

g "measure":"Disk busy"
passwor

Body Default: }

{

"timeline":"Timeline for
retrieving the measure
data (in
hours/days/weeks)",

"server":"Component
Type:Component
name:Port/Null",

"test":"Test name",

"measure":"Measure
name",

"descriptor":"Descriptor
name"

}

169

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Success Response

JSON

Type ‘ Code ‘ Content

200 [
{
"Name": "win183 {Disk0 C: D:}",
"Value": "7.5"
}
J

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/apifeg/analytics/getTopNData Params “ Save
Authorization Headers (3) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded ® o binary Text
10K
2 "timeline":"1 hour",
3 "server":"winl83:NULL:Microsoft Windows",
4 "fest™:"Disk Activity",
5 "measure”:"Disk write rate",
& "descriptor”:"Disk® C: D:"
7 1}
8
Body o Headers (11) Test Res Status: 2000K Time: 668 ms
Pretty Ra Preview JSON 5 Save Response
i [
i~ i
3 "Mame": "winld3 {Disk@® C: D:}",
4 "Walue": "7.5"
5 H
6 |1

Figure 4.9: Retrieving Top-N Analysis Data using Postman REST Client

170

4.5.1 Retrieving Top-N Analysis Data using cURL

To retrieve the Top-N Data of components/descriptors using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTopNData" -
H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H
"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "
{\"timeline\":\"Timeline for retrieving the Top-N data (in
hours/days/weeks) \", \"server\":\"Component Type:Component name:Port\",\"test\":\"Test

name\", \"measure\":\"Measure name\", \"descriptor\":\"Descriptor name\"}"

Figure 4.10 shows an example of retrieving the Top-N Analysis Data using cURL.

SProgram Files“curl-?.72%bin>curl -L —¥ POST "http:- -192_.168.8.183:-7877apieq
analytics/getTopNData” —-H "uwser: admin" —-H "pwd: YWRtaW4xMjM=" —-H "managerurl:
wwtps 192 168 .8 1837877 —H "Content—-Type: applicationsjson" —data—raw "{~""ti
egline~":%'"1 hour~" . ~\"zerver" " "winl83:NULL:Microsoft Windows ' . “"tezst " 5" "Netu
Erk\".\"measure\":\"ﬂetwurk availabilitys".“"descriptors s """

“Mame': "winl83<{eGDP169>",
"Walue': 188"
>
1

»Program Filescurl-7.725bin>_

Figure 4.10: Retrieving Top-N Analysis Data using cURL
4.6 Retrieving Test Data

Using the eGREST API, administrators can retrieve the measurement data collected upon
execution of tests across all relevant component types. The table below specifies the parameters
that should be used to retrieve the measures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getTestData
Method: POST

Content-Type: application/json

171

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters

Headers

Body

Key values Example

managerurl: Base URL of the {
eG Manager i.e., http://<IP address |,

test":"TCP Port Status",
of the eG console:Port>

Ilhost":llsqlll’
user: eG username or
domain/eG username "port":"1433",
pwd: Base64 encoded password | "lastmeasure":"true",
Default: "startDate":"2020-01-29 18:00:26",
{ "endDate":"2020-01-29 18:15:03"
"test":"Test name", }

"host":"Host name",

"port":"Port",
"info":"info"

}

Optional:

{

"lastmeasure":"true/false",
"startDate":"start date",
"endDate":"End date",

"measures":"comma-separated list
of measures",

"msmthost":"Measurement Host",
"type":"dd",

"segment":"Segment name",
"service":"Service name",
"searchhost":"Search Host",
"searchinfo":"Search info",

"groupby":"measure",

"orderby":"Ascending/Descending",

172

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

"dateformat":"Date formant",

}

Success Response

Type Code Content

JSON 200 [

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME AVAILABILITY AVAILABILITY_ST
RESPONSETIME RESPONSETIME_ST ",

nn
7’

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:34:58 100.0000 GOOD 0.0030 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:39:48 100.0000 GOOD 0.0030 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:44:41 100.0000 GOOD 0.0040 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:49:39 100.0000 GOOD 0.0070 GOOD",

Failure Response

Type Code Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

173

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST hitp://192.168.8.183:7077/apifeg/analytics/getTestData Params Save

Authorization (3) Body @

form-data s-wwan-form-urlencoded raw binary

':iES’.":"_CP Port Status”
b

Bady (11) Status: 200 OK Time: 1411 ms
Pretty JSOM Save Response

= [

PORT_NO

"TRGT_HOST T RESPONSETIME RESPONSETIME_ST

Figure 4.11: Retrieving measurement data of a test using Postman REST Client
4.6.1 Retrieving Test Data using cURL

To retrieve the measurement data collected upon execution of tests across all relevant component
types using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTestData" -
H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H
"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "
{\"test\":\"test name\"}

Figure 4.12 shows an example cURL command for retrieving the measurement data that is reported
by eG Enterprise by monitoring all the components in the target environment.

w»Program Filesscurl-7.72%bincurl —-L —H POST “"http:--~192.168.8.183:-7877 api-eqg
analutics/getTestData' —H "wser: admin'" -H "“puwd: ¥WRtalldxMjM="'" —H “"managerurl:
ttpsA7122.168.8.183:-7877" —H "Content-Type: applicationsJjson' ——data—raw "{~'"te

"2 Y"TCP Port Statuss'2'_

Figure 4.12: An example cURL command to retrieve the measurement data of the test

Figure 3 shows a sample output that retrieves the measurement data of a chosen test reported by
eG Enterprise using cURL.

174

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

17:47:13 180.888A GOOD BA.@848 GOODY,"devcvad2@B3iddcl 80 NULL +80 eGDPi69? 2828-8A
—25 17:52:28 1868.8888 GOOD 8.8038 GOOD","devcvadZBW3ddcl 88 NULL +88 eGDP16% 2
p28-@9-25 17:57:14 180.88088 GOOD A.8@4A GOOD',"deucvadZB@3iddcl 88 HULL +88 eGDP|
69 2020-@A9-25 18:82:18 100.8088 GOOD A.8048 GOOD".,'devcvad2@B3ddci 88 HWULL +88Q
eGDP169 2028-89-25 18:A6:58 10A8.8088 GOOD @.8A3A GOOD".'devcuvad2B@3ddcl 88 HUL
+8@ eGDP16% 2820-@A9-25 18:11:34 188.AAAA GOOD A.AA4A GOODY,"devcvad2@@3ddcl 8
HULL +88 eGDP16? 2020-09-25 18:16:46 100.80688 GOOD A.@048 GOOD'."devcuvad2@@3d]
cl 8@ NULL +88 eGDP1i69 2828-A9-25 18:21:57 1680.8800 GOOD A.AA7A@ GOOD', " cvadddc
v1912 80 NULL +88 eGDP16%? 2028-8%-25 17:36:83 1608.8088 GOOD A.8044 GOOD".''cuad
dc?uvl?12 88 NULL +88 eGDP16% 2820-09-25 17:41:88 100.68808 GOOD A.8848 GOOD"."c
adddc?v1912 88 HULL +88 eGDP16? 2020-A9-25 17:46:20 160A.8AAA GOOD A.AA3A GOOD"
"cvadddc?v1912 88 HULL +868 eGDP169 2820-@A9-25 17:51:35 100.8888 GOOD A.8A48 GO
DD, "cvadddc?vi?12 88 NULL +88 eGDP16%? 2020-@A9-25 17:56:26 160.888A GOOD B.0A30
GOODY, "cvadddc?7ui?12 8@ NULL +88 eGDPi69 28280-09-25 18:81:84 100.0888 GOOD 0.9
38 GOOD', "cvadddc7ui?12 8@ HULL +88 eGDP1i6% 28280—@9-25 18:86:18 180.8088 GOOD
8868 GOOD","cvadddc7vi?12 88 NULL +80@ eGDP16% 2820—@A9-25 18:11:89 100.8008 GO|
DD @.8838 GOOD", "cvadddc?vl?12 8@ HULL +88 eGDP169 2020-09-25 18:16:15 16060.0000
GOOD B.8A48 GOOD'.'"cvadddc?vi?12 BA NULL +88 eGDP16Y9 2820-89-25 18:28:58 1080.0H
ARA GOOD A.@848 GOOD.'vmware vcenter NULL NULL +Web_service eGDP169 2828-89-25

eb_service eGDP169 20820-@9-25 17:52:51 1860.88600 GOOD @A.8848 GOOD"."umware_vcent
er MULL NULL +Web_service eGDP169 2828-89-25 17:57:53 188.8888 GOOD B.8048 GOOD
' 'vmuare_veenter NULL WULL +Web_service eGDP167 2028-@7-25 18:-02:56 10608.000800 G

—-25 18:17:36 1688.8088 GOOD A.AASA GOOD","umware_vcenter MU
+leh_service eGDP169 2028-@9-25 18:22:80 100.800A GOOD @.@A48 GOOD']1
o Files“curl-7.72%bin>

Figure 4.13: Sample output with the measurement data of a test across all monitored component types
4.7 Retrieving Trend Data

Using the eG REST API, administrators can retrieve the trend data of the tests across all relevant
component types. The table below specifies the URL and the parameters that should be used to
retrieve the measures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getTrendData
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters (GACINES Example

Headers managerurl: Base URL of the {
eG Manager i.e., http://<IP address ,

test":"Oracle Latches",
of the eG console:Port>

"host":"Oracle",
user: eG username or

domain/eG username "port":"1521",
pwd: Base64 encoded password "info":"egurkha+redo allocation",
"type":"Trend"

175

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

Body Default:
{
"test":"Test name",

"host":"Host name",

"port":"Port",
"info":"info"
}

Optional:

{

"startDate":"start_date",
"endDate":"end_date",

"measure":"comma-separated list
of measures",

"msmthost":"Measurement Host",
"type":"trend",
"segment":"Segment Name",
"service":"Service Name",
"searchhost":"Search Host",
"searchinfo":"Info",

"groupby":"measure",

"orderby":"Ascending/Descending",

}

Success Response

Type ‘ Content

JSON 200 [

176

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME ",

mnn
7’

"eGDP169 NULL NULL +Disk0 C: D: eGDP169 2020-08-01

00:00:00 ",
"HISELKVPMASO1 NULL NULL +dm-0 eGDP169 2020-08-
01 00:00:00 ",
"HISELKVPMASO1 NULL NULL +dm-1 eGDP169 2020-08-
01 00:00:00 ",
"HISELKVPMASO1 NULL NULL +sda eGDP169 2020-08-01
00:00:00 ",
"javal83 NULL NULL +Disk0 C: D: javal83 2020-08-01
00:00:00 ",
"win183 NULL NULL +DiskO C: D: win183 2020-08-01
00:00:00 ",
]

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}

UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

177

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192.168.8.183:7077/api/eg/analytics/getTrendData Params Send R Save
Body @
fo data *: rm-urlencoded raw binary
i
“test™:"Disk Activity",
"mez :"Disk busy,Disk resd time",
"type":"Trend"
h
Body 1" 200 0k sem
Pretty 0 ave Response
= [
"TRGT_HOST PORT_MO SITE_NAME INFQ MSMT_HOST MSMT_TIME ",
HULL +Disk@ C
MULL NULL +a
NULL NULL +d

Figure 4.14: Retrieving trend data of a chosen measure using Postman REST Client
4.7.1 Retrieving Trend Data using cURL

To retrieve trend data of the tests using cURL, the command should be specified in the following

format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTrendData"
-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H
"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "
{\"test\":\"Test name\", \"measure\":\"comma-separated list of

measures\", \"type\":\"Trend\"}"

Figure 4.15 shows an example to retrieve the trend data for the measures of a chosen test using
cURL.

»Program Filesscurl—-7.72%bin2curl —L -8 POST "http:--7192_168.8.183:7877api ey
analytics/getTrendData” —H "wzer: admin' —H "puwd: YWRtaW4xMjM="" —-H "managerurl:
http: /2192 _.168.8.183::7877" -H "Content—-Type: application/jzon" —data—raw "{\'"t
st i "Disk Activitys'" . “"measure~":%\"Disk busy . Dizsk read timew'".“'"typex":%"Tren

W

Figure 4.15: An example cURL command to retrieve the trend data for the measures

Figure 3 shows a sample output that retrieves the trend data for the chosen measures of a chosen
test reported by eG Enterprise using cURL.

178

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

0 | | HAH—Y b =K - WY H ML N I I | H
12819 b =W - B8 DP169 [H | DPF169 H20-B7 HA:-H
§ PFMASH 0 DP169 H20—-B7 Al = B PMASH
I DP169 H2H0-1\7 HH = B PMASH :
DP169 H2H0-B9 HH = Y i) H [2 { H2H0-1\7
HH = BH i) i [i H2H0-B9 SHEIG 1]
h 3 | I [DP169Y 2319 A = UK MAS B
H P 0 1280197 [N = B AL H DP169Y M
2 A1y [N = B PMAS I eGDP169 H2H0-17 A = B
H [0 [H 12019 [N - B 1
[[1 H H2H-1Y A = WY eGDP16Y [i [(3
DP16% A20—-1Y [l - Y PMASH i DP16Y 32019
B - @W - B8 KUPMAS DP16% A20—-1Y B =W - @0]
PMAS B DP16Y B2 8—-1Y B @0 :- A6 H [G
| 1 A2B0—-1AY B 00 :-06 H [G) H H26
17 B 80 :- A0 eGDP169 [G | DP169 A2B0—-1AY B 00 :-06
ASH 0 DP169 H2A0—-A9 g - A - 1Y PMASH
eGDPF169 H2H0—-A7 B - A - i PMASH eGDEP
h 9 12019 B AWl H 1 H [{ H2H0—-A7 H
[AH = A B) H [nl8 HZ20—H7 B =AW :-B8 DP16Y
) & [DP169 H28—1AY T B8 -8 PFHASH
H DP169 H2H-1AY ?:88:88 MAS B eGDPF169 H28-H
7 ?:88: 80 PMASH eGDP16Y H2H0-B7 88 :-48
5 i | H I avall H2-HY9 ?:88: 80 1
[H [{ 2819 T:88:-88 DP169 | H [P16
7 328019 D:81: 80 KUPMASH H DP16Y 128019 raH G
alh PMASH DP16Y 328019 D:81: 80 PMA
oL e GDE 0 1280197 D :818:8a0 H [[)
1 H2B—-1Y ?:80:-08 H [[) H B2 8-
3 ?:8H - 3f DP169Y 1 [) DP16%9 A2H—1Y TG

Figure 4.16: Sample output with the trend data for the chosen measures of a chosen test
4.8 Retrieving Threshold Data

Using the eG REST API, administrators can retrieve the threshold configured for the measures of a
chosen test. The table below specifies the URL and the parameters that should be used to retrieve
the measures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getThresholdData
Method: POST

Content-Type: application/json

Inputs to be Specified

Key values Example

Headers managerurl: Base URL of the {
eG Manager i.e., http://<IP address |,

test":"Oracle Latches",
of the eG console:Port>

"host":"Oracle",
user: eG username or

domain/eG username "port":"1521",

n.n

pwd: Base64 encoded password "info":"egurkha+redo allocation",

179

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

"type":"Threshold"
}

Body Default:
{

"test":"Test name",
"host":"Host name",

"port":"Port",

"info":"info"

}
Optional:
"type":"Threshold",

"measure":"comma-separated list
of measures",

"searchhost":"Search Host",
"searchinfo":"Search info",
"groupby":"TRGT_HOST",
"orderby":"Ascending/Descending",

}

Success Response

Type ‘ Code ‘ Content

JSON 200 [

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME_START MSMT_TIME_END TOTAL_
CAPACITY_MIN TOTAL_CAPACITY_MAX USED_SPACE_
MIN USED_SPACE_MAX FREE_SPACE_MIN FREE_SPACE_
MAX PERCENT_USAGE_MIN PERCENT USAGE_MAX
DRIVE_AVAIL_MIN DRIVE_AVAIL_MAX ",

mnn
7’

"win183 NULL NULL +D win183 2020-09-12 19:30:00

180

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

2020-09-12 20:30:00-1-1-1-1-1-1-199/97/95 -/-/90 -
1"’

"win183 NULL NULL +D win183 2020-09-12 20:30:00
2020-09-12 21:30:00-1-1-1-1-1-1-199/97/95 -/-/90 -
1"[

"win183 NULL NULL +D win183 2020-09-12 21:30:00
2020-09-12 22:30:00-1-1-1-1-1-1-199/97/95 -/-/90 -
1"’

"win183 NULL NULL +D win183 2020-09-12 22:30:00
2020-09-12 23:30:00-1-1-1-1-1-1-199/97/95 -/-/90 -
1"’

"win183 NULL NULL +D win183 2020-09-12 23:30:00
2020-09-13 00:30:00-1-1-1-1-1-1-199/97/95 -/-/90 -
1l|’

Failure Response

Type Code Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

181

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192.168.8.183:7077/api/eg/analytics/getThresholdData Params Save

ITE_MAME INFQ MSh
EE_SPACE_MIN FREE

{ USED_SPACE_MIN

s

3

Figure 4.17: Retrieving Threshold data configured for the measures using Postman REST Client

4.8.1 Retrieving Threshold Data using cURL

To retrieve the threshold configured for the measures of a chosen test using cURL, the command

should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getThresholdData"™ -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-

Type:application/json" --data-raw "{\"test\":\"Test name\",\"host\":\"Host
name\", \"type\":\"Threshold\"}"

Figure 4.18 shows an example to retrieve the threshold configured for the measures of a chosen test

using cURL.

nProgram Filesscurl-7.72%bin>curl -L -8 POST “"http:-/-192_168.8.183:7877/api-eq
analytics/getThresholdData” —H "user: admin' -H ""puwd: YWRtalld4xMjH=" —-H "manager
wrl: http: /71922.168.8.183:7877" —H "Content-Type: applicationsjson'" ——dataraw "
S"testn":N"Disk Space~'. .S Thosts":\"winl83%" . N"types":\"Thresho 1d~"> "

Figure 4.18: An example cURL command to retrieve the threshold configured for the measures

Figure 3 shows a sample output that retrieves the threshold configured for the measures of a chosen

test reported by eG Enterprise using cURL.

182

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

"winlg3 HULL NULL +D winif3 2028-09-18 20:38:08 2028-09-18 21:38:88 -1 -1 -1 -1

1 -1 -1 2929795 —»—?0 —1",."winl183 HULL HULL +D winl83 28260-87-18 21:30:68 282

A-A9-18 22:36:660 -1 -1 -1 -1 -1 -1 -1 29.927/95% ——»78 —1"."winl183 HULL MNULL
2020-A9-18 22:30:68 2020-A%9-18 23:368:68 -1 -1 -1 -1 -1 -1 -1 799795

-1 -1 -1 -1 -1 299795 ——78 -1"."winl183 HULL MULL +D winl183 28260-07-12 80:38
68 2620-89-19 B1:38:68 -1 -1 -1 -1 -1 -1 -1 ?29/.97/7% —/—-78 —-1"."winl1l83 HULL MU
+D winl83 2820-07-17 A1:30:600 2820-07-1% 62:30:=80 1 1 -1 -1 -1 -1 -1 2297
—/—/?8 —1"."winl183 HULL MULL +D winlB83 2620-89-1% B2:38:00 2020-87-19 @3:38:
-1 -1 -1 -1 -1 -1 -1 2929795 —/—?8 —1"."win183 HULL MULL +D winl83 2826-87-1
B3:38:00 2620-87-17 B4:38:660 -1 -1 -1 -1 -1 -1 -1 299795 ——78 —1"."winl83
ULL MULL +I' winl83 2620-89-19 #4:38:08 26020-@9-19 @5%:38:680 -1 -1 -1 -1 -1 -1 -1
299295 ——/28 -1"."winl83 HULL NULL +D' winlB83 26828-07-1% B5:30:00 2620-69-19
A6:=30:88 -1 -1 -1 1 -1 -1 -1 2992795 ——98 —-1"."winl183 MHULL HULL +D winl1B83 28
28-07-17 B6:30:80 2628-07-1% A7:30:80 -1 -1 -1 -1 -1 1 -1 292795 ——»78 -1"."
pin183 MULL MWULL +D winlB83 2820-89-1% @7:38:00 2828-897-1% A8:368:88 -1 -1 -1 -1
-1 -1 299795 ——28 —1"."win183 HULL HULL +D winl83 2020-07-1%7 Bi:30:00 20206
B?-17 A?:38:860 -1 -1 1 -1 -1 -1 -1 ?927/95 -8 —1"."win183 HULL HULL +D wi
183 2820-07-12 #7:30:80 20260-09-17 16:36:860 -1 -1 1 1 -1 -1 -1 292795 -7
-1"."winl183 MULL MULL +I' winlB83 2628-09-17 18:38:688 2620-09-179 11:38:688 -1 -1
1 -1 -1 -1 -1 29.99/9% —/—-98 -1"."winl183 HULL MULL +D winl183 28268-89-19 11:38:
g 2828-687-1% 12:36:868 -1 -1 -1 -1 1 -1 -1 229795 ——28 -1"."winl183 HULL HU
+D winl83 28260-87-17 12:30:60 2820-07-17? 13:360:=:80 -1 1 -1 -1 -1 -1 -1 22.97/9
/=8 —1"."winl183 HULL NULL +D winlB83 2620-89-19 13:38:00 2820-87-19 14:30:006
-1 -1 -1 -1 -1 -1 -1 ?2.9995 —/—?8 —1"."win183 HULL MULL +D wini83
14:38:80 2620-69-1% 15%:38:660 -1 -1 -1 -1 -1 -1 -1 299795 ——?8 —1"."winl83
LL HULL +I' win183 26828-89-1%7 15:30:80 2628-69-19 16:360:68 -1 -1 -1 1 -1 -1 -1
299795 ——280 —-1"."winl183 HULL MULL +D winl83 2826-07-19 16:38:88 2820-07-17 1
=3@:868 -1 -1 -1 -1 1 1 -1 29/.927/9% ——~28 —-1"."winl83 HULL MNULL +D winl183 202
A-A9-1% 17:30:00 2028-A%?-1% 18:38:68 -1 1 -1 -1 -1 -1 1 999795 ——-98 1" "y

Figure 4.19: Sample output with the threshold data configured for the measures of a chosen test
4.9 Retrieving Infrastructure Health

Using the eGRESTAPI, administrators can figure out the health of the
Zone/Service/Segment/Component Type managed in the eG manager without logging into the
eG console. The table below specifies the URL and the parameters that should be used to retrieve
the health of the infrastructure.

URL: http://192.168.8.206:7077/api/eg/analytics/getinfraHealth
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of the eG Manager Example to retrieve the health of a
i.e., http://<IP address of the zone:
eG console:Port> i
user: eG username or " o "
type":"Zone",

domain/eG username

n.n

"name":"east zone"
pwd: Base64 encoded password

183

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example
}
Body Default: Example to retrieve the health of

the components of a chosen

{ .
Component Type:

"type":"Zone/Service/Segment/Component

Type",

"name":"Name of type":"Component Type",

Zone/Service/Segment/Component Type" "name":"Microsoft Windows"

} }

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"root": [
{
"Component": "Virtual _center:.vmware_vcenter:NULL ",
"State": "HIGH"
L
{
"Component": "VmEsx_i_server:esx51-15:NULL ",
"State": "HIGH"
b,
{
"Component": "VmEsx_i_server:vmware_vsphere_
esx:NULL ",

"State": "INTERMEDIATE"

b
{

184

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

"Component": "Xen_desktop_server:citrix_xenserver_
vdi:NULL ",

"State": "LOW"
I3
{

"Component": "Xen_virtual_server:citrix_xenserver_
vdi:NULL ",

"State": "LOW"
L
{

"Component": "commzCompl_ex:commzgatel183:NULL

n
7

"State": "UNKNOWN"

}
1,
}

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

185

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http:/f192.168.8.183:7077/api/eg/analytics/getinfraHealth Params Save
(3} Eody @ Code
form-data x-www-form-urlencoded ¥ raw binary = Text
i
“type™ i Ione”,
"name":"Zone_mgr"
4%
5
Body 11) Status: 2000K Time: 317 ms
Pretty JSON 5 Save Response
- root": [
3+ {
4 "Component': "Wirtusl_cemter:ivmwars_vcenter:NULL 7,
5 "State": "HIGH"
6 Is
7= {
8 "Component™: "VmEsx_i_server:esx51-15:NULL ",
9 "State": "HIGH"
16

Figure 4.20: Retrieving the health of the components in a zone using Postman REST Client
4.9.1 Retrieving Infrastructure Health using cURL

To retrieve the health of the Zone/Service/Segment/Component Type managed in the eG manager
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getInfraHealth" -H "user:<eG username or domain/eG username>" -
H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-
Type:application/json" --data-raw "{\"type\":\"Zone/Service/Segment/Component

Type\", \"name\": \"Name of Zone/Service/Segment/Component Type\"}

Figure 4.21 shows an example of retrieving the health of the components within a zone in the target

environment using cURL.

186

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

sProgram Files“curl-7.72%bin>curl -L —¥ POST “"http:-~122.168.8.183:-7877api ey
analyticssgetInfraHealth” —-H "user: admin' —H "pwd: YWRtalldxMjH=" —H "managerup
1: http:/-71922_.168.8.183:7877" —-H "Content-Type: application/json' ——data—raw ""{%
"typest s Eones s name~" s Zone _mgpestt

"poot™: [

"Component': "Uirtuwal_ center:vmware_vcenter:MULL *.
"State": "HIGH"

"Component': "UmEzx_i_sevrver:iumuare_uvsphere_esx:iMULL ',
"State": “INTERMEDIATE"

"Component': "Hen_desktop_server:citrix_xenserver_vdi:HULL ",
“"State: "LOWY

"Component': "Hen_wvirtuwual_server:citrix_xenserver_vdi:HULL ".
"State: "LOW"

"Component'": "commzCompl_ex:commzgatel83 HULL *'.
"State': "UNENOLIN'

Figure 4.21: Retrieving the health of the components in a zone using cURL
4.10 Retrieving Problem Distribution of Components

Use the URL specified below to retrieve the priority based problem distribution of the chosen
components in the target environment using the eG REST API.

URL: http://192.168.8.206:7077/api/eg/analytics/getServerListProblemDistribution
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of |{
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

serverlist":"Microsoft
Windows:win112:NULL,Oracle Database
Server:Oradb123:1521:egora"

}

user: eG username or
domain/eG username

pwd: Base64 encoded

187

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example
password
Body Default:
{
"serverlist":"comma-
separated

list of ComponentType:
Component:Port/Null:SID",

}

Success Response

Type Code Content

JSON 200 {
"eG_Manager:eGDP169:7077": |

{
"date": "16/09",

"CRITICAL": "0",
lIMAJORll: IIOII’
lIMlNORII: Iloll

L

}

188

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:707 7 /apifeg/analytics/getServerListProblemDistribution Params Save
(3) Body @ Code

form-data x-www-form-urlencoded ® raw binary Text

10K

2 "serverlist":"eG Manager:eGDP169:7877,0racle Datsbase:0Oracle_DB:1521:xe"

3 0%

Body (1} Status: 2000K Time: 519 ms

Pretry JSOM 5 Save Response
1- K
2~ "eG@_Manager:2GDP169:7077": [
5w {
4 "date":
5 CRITICAL
6 MATJOR™: "av,
7 "MINCR™: "a@"
8 ts
9- {

10 "date": "19/89"

Figure 4.22: Retrieving the priority based problem distribution of a chosen component using Postman
REST Client

4.10.1 Retrieving Problem Distribution of Components using cURL

To retrieve the priority based problem distribution of the chosen components using cURL, the
command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getServerListProblemDistribution”" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H"Content-Type:application/json" --data-raw "{\"serverlist\":\"comma-separated

list of ComponentType:Component:Port/Null:SID\"}

Figure 4.23 shows an example of retrieving the priority based problem distribution of the chosen
component using cURL.

189

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

SProgram Filesswcurl-7.72%bhin}curl -L —-H POST “http:- ~172.168.8.183:-7877-api-eq|

analytics/getServerListProblemDistribution” —H "user: admin' —-H "pwd: YURtall4xM

jiH=" —-H "managerurl: http:/-192_168.8.183:7877" —H "Content-Type: application~js

.B; Igg?ta—rag "{Nsepverliztnin"eG Manager:eGDP16%:7877,.0racle Database:0Oracle
= :xe\ll L1}

"eG_Manager:eGDP16? 7877 [
{

“date': "11-8%7",
“"CRITICAL': @,
llH“JORlI: llall'
lIHIHORlI: llall

“"date': "12/89",

IIB"'
"MAJOR" a.
YMIMOR": "@"

"date': "13-8%9",
“CRITICAL": “@".
"MAJOR" = uau'
YMIMOR": "@"

Figure 4.23: Retrieving the priority based problem distribution of a chosen component using cURL
4.11 Retrieving Problem Distribution of the Target Environment

Using the eG REST API, administrators can retrieve the alarm count based on severity for all
component types, components, layers and tests specific to the target environment.

4.11.1 Retrieving Problem Distribution for all Component Types
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/servertype
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl {
user "timeline":"1 hour"
pwd }

Body Default:
{

190

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters Key values Example

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Problem Distribution": [

{

"Server Type": "Java Application”,

"CRITICAL": "0",
"MAJOR": "47",
lIMlNORIl: II7|I
9
1

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

191

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST hetp://192.168.8.183:7077/api/eg/analytics/getProblemDistribution/servertype Params Send hd Save
() Boye
form-data x-www-form-urlencoded ® raw binary Text
{"timeline":"2 weeks"}
Body 1) Status: 2000K Time: 379 ms
Prety JSON 5 Save Response
1+
2 "Problem Distribution™: [
4 "Sarver T "lavs Application”,
5 "CRI
6 "MAIOR
7 "MINOR"
8 I
g 1
16 "Server Type": "eG@ Manager",

Figure 4.24: Retrieving the alarm count based on severity for all component types using Postman
REST Client

4.11.2 Retrieving Problem Distribution for all Component Types using cURL

To retrieve the alarm count based on severity for all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDistribution/servertype" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks) \"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all component types
managed in the target environment using cURL.

192

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

wProgram Filesscurl-7.72%bin}curl -L —H POST "http://192.163.8.133:?37?/api/3
analyt1co/getPPuhlemD1atP1hut1un/¢eruertyp " —H "user: admin" —-H "pud: YUWRtalldx
M— —H "managerurl: http:- 7192 _168_.8_183:7077" —-H "Content-Type: application/j
on" —data—raw "{“"timeline“'":%\"2 weeks-'"}"

“"Problem Distribution™: [
£

"Server Typ i ion'.

"Server Typ
“"CRITICAL":
"MAJOR™: '@
"HINOH"- IIEIF

"Server Type': "eG Manager".
“"CRITICALY™: 47",
IIHHJOHII- l 1ll

Y"MINHOR'": "'g@"

"Server Type': "Microsoft SQL™,
“CRITICAL": “&".

“"MAJOR'": “1@",

IIHINORII: ll4ll

Figure 4.25: Retrieving the alarm count based on severity for all component types using cURL
4.11.3 Retrieving Problem Distribution for all Components
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/servername
Method: POST

Content-Type: application/json

Inputs to be Specified

Header managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of }
the eG console:Port>

"timeline":"1 hour"

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

193

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

{

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Success Response

Type Content

JSON 200 {

"Problem Distribution": [

{

"Server Name": "esx51-15",

"CRITICAL": "11",
"MAJOR": "26",
"MINOR": "148"
L

{

"Server Name": "win183",
"CRITICAL": "5",
"MAJOR": "6",
"MINOR": "1"

I

}

194

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/api/eg/analytics/getProblemDistribution/servername Params Save
3) Body @ Code
form-data *»-www-form-urlencoded ® raw binary Text
1 {Itimeline":"2 weeks"}
y
Body 1 Status: 2000K Time: 2033 ms
Pretty JSON 5 Save Response
1-f
2= "Problem Distribution™: [
?' {
:)
g- { ‘
16 "Server I-Ja_me": "winlg3"

Figure 4.26: Retrieving the alarm count based on severity for all components using Postman REST Client
4.11.4 Retrieving Problem Distribution for all Components using cURL

To retrieve the alarm count based on severity for all components managed in the target environment
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDistribution/servername” -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks)\"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all components
managed in the target environment using cURL.

195

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

»Program Filesscurl-7_Y2%bin>curl -L —X POST “http:--192_168_8.183:7877-api- e

analyticz/getProblemDiztributionsservername’” —-H "uszer: admin™ —H "puwd: YUWRtalldx

JH="" —H "managerurl: http: - -192_168.8_.183:78Y7" —H "Content—Type: application~/j
" ——data—raw "{\"timeline~':N\"2 weeksh\'RY

"Problem Distribution": [

"Server Mame': “esx51-15",
"CRITICAL": “'?'.

"MAJOR": 22",

"MINOR": 189"

"Server Mame'": "Oracle_DB:1521:xe".
“CRITICAL": "@".

.'HHJOR": llall.

llHINORll: lliﬂll

"Server Name': "winlB3".
“CRITICAL™: "1i",
"MAJOR": 24",

“MINHOR": "14"

"Server Mame': “"Netscaler".
"CRITICAL": "

.'HHJOR" ll2

"MINOR'" -

Figure 4.27: Retrieving the alarm count based on severity for all components using cURL
4.11.5 Retrieving Problem Distribution of the Layers of a Component Type
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/layer
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters (GACIS Example

Headers managerurl: Base URL of |{
the eG Manager i.e.,
http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"timeline":"1 hour",

user: eG username or 1
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

196

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component
Typell

}

Success Response

Type Content

JSON 200 {
"Problem Distribution": [

{

"Layer Name": "Application Processes",

"CRITICAL": "4",
"MAJOR": II3|I’
lIMlNORII: Iloll
L
}

Failure Response

Type ‘ Code ‘ Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

197

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192,168.8.183:7077/api/eg/analytics/getProblemDistribution/layer Params Save

(3] Body ® Code

form-data x-www-form-urlencoded ® raw binary Text

{"timeline":"2 weeks","servertype":"Microsoft SQL"}

Body (11) Status: 200 0K Time: 232 ms
Pretty JSON 5 Save Response
5- "Problem Distribution™: [
M {

4 "Layer Name": "Applicaticn Processes™,

18 "Layer Mame": "Network",

Figure 4.28: Retrieving the alarm count based on severity for all layers of a Component Type using Postman
REST Client

4.11.6 Retrieving Problem Distribution of the Layers of a Component Type
using cURL

To retrieve the alarm count based on severity corresponding to all layers of a chosen Component
Type managed in the target environment using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDistribution/layer" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks)\", \"servertype\":\"Component Type\"}"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity corresponding to all
layers of a chosen Component Type managed in the target environment using cURL.

198

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

»Program Filesscurl-7.72%bin>curl -L —¥ POST “"http:- /7192.168.8.183:7877 apire
analytics/getProbhlemDisztributionslaver” —H "wser: admin" -H "pud: Y¥YWRtaWdxMjH='
—H "managerurl: http:--122.168.8.183:7877"" —H "Content-Type: applicationsjson"
—data—raw "{~'"timelinex":%\"2 weeks " “"servertyper':\"Microsoft SQLN'2Z"
"Problem Distribution: [
"Layer Hame": "Application Processes",
“"CRITICAL'= "1',

"MAJOR" = ll2ll.
Y"MINOR": "@"

"Layer Mame': "Metwork".
“"CRITICAL":= "5",
IIMHJORII: IIBII'

lIMINORIF: |'B|'

"Layer Mame": '"MS SQL Service".
"CRITICAL' '

"HHJOR": Ll L1}

“"MINOR":

|

wProgram Filesscurl-7.72%bhin>_

Figure 4.29: Retrieving the alarm count based on severity for all layers of a Component Type using cURL
4.11.7 Retrieving Problem Distribution of the Tests of a Component Type
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/test
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters L GACIS Example

Headers managerurl: Base URL of |{
the eG Manager i.e.,
http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"timeline":"1 hour",

user: eG username or 1
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

199

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component
Typell

}

Success Response

Type Content

JSON 200 {
"Problem Distribution": [

{

"Test Name": "Windows Services",

"CRITICAL": "5",
"MAJOR": IIOII’
lIMlNORII: Iloll
L
}

Failure Response

Type ‘ Code ‘ Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

200

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192.168.8.183:7077/api/eg/analytics/getProblemDistribution/test Params Send hd Save
(3 Body @ Code
form-data x-www-form-urlencoded ¥ raw binary Text
1 {"timeline":"2 weeks","servertype”:"Microsoft Windows"}
2
Body (11) Status: 200 0K Time: 169 ms
Pretty JSON > Save Response
2~ "Problem Distribution™: [
4 "Test Mame": "Windows Services”,
5 "CRITICAL": "5",
6 "MATOR": 87,
7 "MINOR™: "@”
8 Is
g c
16 "Test Mame": "System Event Log",

Figure 4.30: Retrieving the alarm count based on severity for all tests of a Component Type using Postman
REST Client

4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using
cURL

To retrieve the alarm count based on severity for the tests of a chosen Component Type managed in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDistribution/test" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the

alarms (in hours/days/weeks)\", \"servertype\":\"Component Type\"}"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all tests of a chosen
Component Type managed in the target environment using cURL.

201

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

»Program Filesscurl-7.72bin>curl -L -8 POST "http:- -192.168.8_183:7877-api-eqg
analytics/getProblemDistributionstest” —H "user: admin” -H "pud: ¥YWRtaW4<MjM=""
H "managerurl: http: -192.168.8.183:7877" —H "Content-Type: applicationsjson" -
data—-raw "{“'"timeline~":%'"2 weeks " “"szservertype~':“"Microsoft Windowss'">"

"Problem Distyibution: [

"Tezt Mame”: "System Event Log',
“"CRITICAL':= “'@",

ll"n JORI! ’

"MINOR":

"Test Hame"':
“"CRITICAL": @
.'H“JOR.': L1 -
ll"INORll: ll14|l

"Test Name™: "Disk Activity',
"CRITICAL "

"MAJOR":

"MINOR™:

"Test NHame": "Application Event Log'.
"CRITICAL':=: @',

"MAJOR: -

llHINORll: llall

Figure 4.31: Retrieving the alarm count based on severity for all tests of a Component Type using cURL
4.12 Retrieving the Count of Events from Alarm History

Using the eG REST API, administrators can retrieve the count of events from Alarm History for all
component types, components, layers and tests specific to the target environment.

4.12.1 Retrieving the Count of Events from Alarm History for all Component
Types

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/servertype
Method: POST

Content-Type: application/json

Inputs to be Specified

IIII%HHHE%HHIIIIIIIII%HHHHE%IIIIIIIIIIIIIIIIIIIIIIIIEHHHHHIIIIIIIIIIIIIIIIII

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of }
the eG console:Port>

"timeline":"1 hour"

202

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example
user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline
for retrieving the
count of events (in
hours/days/weeks)"

}

Success Response

Type Content

JSON 200 {
"Event Count": [
{
"Server Type": "Java Application",
"Event Count": "54"
b
{

"Server Type": "eG Manager",

"Event Count"; "137"
1

203

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Failure Response

Type Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

POST http://192.168.8.183:7077/api/eg/analytics/getEventCount/servertype Params Save

orization Headers (3) Body @ Pre-request Script ests Code

form-data w-www-form-urlencoded ® raw binary Text

1 {"timeline":"2 weeks"}

2
Body Cookies Headers (11) Test Results Status: 2000K Time: 201 ms
Pretty Raw Preview JS0M 5 Save Response
1~k
2~ "Ewvent Count": [
£ {
4 "Server Type": "Java Application”,
5 "Event Count": "54"
6 ts
7~ {
8 "Server Type": "eG Manager",
9 "Event Count": "137"
10 Is

Figure 4.32: Retrieving count of events from Alarm History for all Component Types using Postman
REST Client

4.12.2 Retrieving the Count of Events from Alarm History for all Component
Types using cURL

To retrieve the count of events for all Component Types using cURL, the command should be
specified in the following format:

204

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getEventCount/servertype" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks) \"}"

Figure 4.33 shows an example of retrieving the count of events recorded for all Components Types
using cURL.

SProgram Filesscurl-7.72%hin>curl -L —¥ POST "http:--122.168.8.183:7877 api~eqg
analytics getEventCountszervertype” —H "user: admin® -H "puwd: YWRtaldxMjH="" —-H
"managerurl: http: /7192 _168_8_183:7877" —-H "Content-Type: applicationsjson" ——da

a—rauw "{N'"timelines'":N"2 weeks\'"
"Ewent Count': [
{
"Server Type': "“Java Application',
"Event Count'': 64"

r

"Server Type': "MetFlow Device''.
"Event Count''z 5"
¥
£
"Server Type': "eG Manager®,
"Event Count'': 138"

.
{

"Cerver Type': "Microsoft SQL*.
"Event Count': '"28"
¥

"Server Type': "Citrix MetScaler UPE-MPXE",
"Euvent Count'': 134"
1
"Server Type': "Citrix HenServer',
"Event Count'': 133"

Figure 4.33: Retrieving count of events from Alarm History for all Component Types using cURL
4.12.3 Retrieving the Count of Events for all Components
URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/servername
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the
eG Manager i.e.,
http://<IP address of '}

"timeline":"1 hour"

205

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline
for retrieving the
count of events(in
hours/days/weeks)"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"Event Count": [
{
"Server Name": "esx51-15",
"Event Count": "185"
L
{

"Server Name": "win183",

"Event Count": "12"
|3

206

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

Failure Response

Type ‘ ‘ Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

POST http://192.168.8.183:7077/api/eglanalytics/getEventCount/servername Params “ Save

orization Headers (3) Body @ Pre-request Script ests Code

form-data x-www-form-urlencoded L e binary Text

1 {"timeline™:"2 wseks"}
2

Body Cookies Headers (11) Test Results Status: 200 0K Time: 203 ms
Pretty Raw Preview JSON 5 Save Response
1K
2~ "Ewent Counmt": [
=52 {
4 "Server MNams": "esx51-15",
5 "Event Count": "185"
6 Is
T {
8 "Server Name": "winl83",
9 "Event Count": "12"
18 I

Figure 4.34: Retrieving count of events from Alarm History for all Components using Postman REST Client
4.12.4 Retrieving the Count of Events for all Components using cURL

To retrieve the count of events for all Components using cURL, the command should be specified in
the following format:

207

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getEventCount/servername”" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks) \"}"

Figure 4.33 shows an example of retrieving the count of events from Alarm History for all
Components using cURL.

sProgram Files“curl-7.72%bincurl -L —¥ POST “http:--172_168_8_.183:-7077/api-eq|
analytics/getEventCount/servertype” —H "user: admin' -H “"puwd: YWRtalMdxMjM="" —H
"managerurl: http:--192.168.8.183:7877" -H "Content-Type: application/json” ——da
a—raw "{“"timeline“~":%"2 weeks\"}"

"Event Count': [
"Server Type': "Java Application'',
"Event Count': "'64"

"Server Type': "MetFlow Device',
"Event Count': 5"

"Server Type "eG Manager".
"Event Count': 138"

"Server Type' 'Microsoft SQL"™.
"Event Count': 28"

"Server Type': "Citrix MetScaler UPH. MPE".
"Event Count' 134"

"Server Type': "Citrix HenServer".
"Event Count': 133"

Figure 4.35: Retrieving count of events from Alarm History for all Components using cURL

4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a
Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/layer
Method: POST

Content-Type: application/json

Inputs to be Specified

III!HHHHHHHHH!IIIIIIIIIlHHiHHHHHIIIIIIIIIIIIIIIIIIIIIIIIII|%HiiiiHIIIIIIIIIIIIIIIIIII

Headers managerurl: Base URL of |{
the eG Manageri.e.,

http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"timeline":"1 hour",

208

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

user: eG username or }
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline for
retrieving the count of
events (in
hours/days/weeks)",

"servertype":"Component
Typell

}

Success Response

Type Code Content

JSON 200 {
"Event Count": [
{
"Layer Name": "Operating System",
"Event Count": "3"
b
{
"Layer Name": "Oracle Service",

"Event Count": "2"

b

209

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Content

Failure Response

Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error |{"code": 500,"error": " Server Error "}

» getEventCount/layer Examples (0) «

POST http://192.168.8.182:7077/apifeg/analytics/getEventCount/layer Params “ Save

Authorization Headers (3) Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded '® raw binary Text

1 {"timeline":"2 weeks","servertype”:"Oracls Database"}

Body Cookies Headers (11) Test Results Status 200 0K Time: 208 ms

Prerry Raw Preview JSON e | Save Response
1-f
2 "Event Count": [
3-
4 “Laysr Name": “"Operating System”,
5 "Event Count™:; "3"
& I
7= {
8 "Layer Name": "Oracle Service"”,
9 "Event Count™: "2"
e Is

Figure 4.36: Retrieving count of events from Alarm History for the layers of a component type using Postman
REST Client

210

4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a
Component Type using cURL

To retrieve the count of events that are specific to layers of a component type using cURL, the
command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getEventCount/layer" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.33 shows an example of retrieving the count of events from Alarm History for the layers of a
chosen component type using cURL.

wProgram Filesscurl-7.72%bin>curl -L —-¥ POST "http:- -122_.168.8.183:-Y87 7 api~e
analyticssgetEventCountslayer” —H "user: admin" —-H "puwd: ¥YWRtalldxMjM=" —H "man
jerurl: http:-- 7192 _168_8_183:-:7877" —H "Content-Type: application-json'" ——data—»
g Ntimelines "2 weeks\'' SVservertypes':isOracle Databazest'>"

“"Event Count': [
i

"Layer Name': "Memory Structures'.
"Event Count''z 18"
¥
1

Program Filesscurl-7.72xbin>_

Figure 4.37: Retrieving count of events from Alarm History for the layers of a component type using cURL

4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a
Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/test

Method: POST

Content-Type: application/json

211

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters ‘ | GACI IS ‘ Example

Headers managerurl: Base URL of |{
the eG Manager i.e.,

http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"timeline":"1 hour",

user: eG username or 1
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline for
retrieving the count of
events (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"Event Count": |
{
"Test Name": "Network",
"Event Count": "1"
L

{
"Test Name": "Oracle SGA",

212

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

"Event Count": "35"

b

Failure Response

Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/api/eg/analytics/getEventCount/test Params “ Save
Authorization Headers (3} Body @ Pre-request Script Tests Code
form-data x-www-form-urlencoded ® o binary Text

1 g{"timeline":"2 weeks","servertype":"Oracle Database"}

Body Cookies Headers (11) Test Results Status: 20008 Time: 165 ms
Pretry Raw Preview JSON e } Save Response
1- K
2~ "Ewent Count": [
3~ i
4 "Test Name": "MNetwork",
5 "Event Count": "1"
6 Is
7 {
8 "Test Mame": "Oracle 5GA",
9 "Event Count"™: "35"
10 1

Figure 4.38: Retrieving count of events from Alarm History for the tests of a component type using Postman
REST Client

213

4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a
Component Type using cURL

To retrieve the count of events from Alarm History that are specific to tests of a component type
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getEventCount/test" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.33 shows an example of retrieving the count of events from Alarm History for the tests of a
chosen component type using cURL.

»Program Filesscurl-7.72%bincurl -L —H POST “"http:-- »122.168.8.183:-7877api-eqg
analutics/getEventCountstest'" —H "wser: admin'" —H "“"pwd: ¥WRtalld4xMjM=" —H "manag
erurl: http- 7192_168.8.183:7877" —H "Content-Type: applicationsjson' —data—raw
“{SMrimelines a2 weekstY NYservertypes''in"0racle Databaszes'"

"Event Count': [
£

"Test Hame'': "Oracle SGA".
"Event Count': '"18"

1

»Program Filesscurl-7.72%binx_

Figure 4.39: Retrieving count of events from Alarm History for the tests of a component type using cURL
4.13 Retrieving Problem Duration

Using the eG REST API, administrators can retrieve the duration for which an alarm was open for all
component types or components or layers specific to the component type or tests specific to a
component type.

214

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

4.13.1 Retrieving Problem Duration for Component Types
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/servertype
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example

Headers managerurl {
user "timeline":"1 hour"
pwd }

Body Default:
{

"timeline":"Timeline
for retrieving the
alarm duration (in
hours/days/weeks)"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {
"Problem Duration": [
{
"ServerType": "Java Application”,
"MIN_DURATION": "4m 7s",
"MAX_DURATION": "8h 4m",
"AVG_DURATION": "18m 23s"

215

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Failure Response

JSON 401

{"code": 401,"error":

UNAUTHORIZED

"Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/api/eg/analytics/getProblemDuration/servertype Params “ Save
Authorization Headers (3} Body @ e-request Script Te Code
form-data w-www-form-urlencoded ® aw binary Tex

1 {"timeline":"2 weeks"}
2

Body Cookies Headers (11) Test Res Status: 2000K Time: 186 ms
Pretty Raw Preview J50M 5 Save Response
i~k
2 "Problem Duration": [
3+ {
4 "ServerType": "lsve Applicstion”,
5 "MIN_DURATION 4m 7s",
6 UMAX_DURATION™: "&h 4m",
7 UAVG_DURATION™: "18m 23s"
8 Is
9 {
18 ServerType": "eG Mansger",

Figure 4.40: Retrieving the duration for which an alarm was open for all Component Types using Postman

REST Client

216

4.13.2 Retrieving Problem Duration for all Component Types using cURL

To retrieve the duration for which an alarm was open for the component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDuration/servertype" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarm duration (in hours/days/weeks)\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for the
component types managed in the target environment using cURL.

SProgram Filesscurl-7.72%bin>curl -L H POST "http: /7192168 81837877 apire
analytics/getProblenDuration/servertype" 'user: admin" -H "managerurl: http:
A192.168.8.183:7/877" —H "pud: YWRtaWdxMjM=" -H ""Content-Type: application~json’
——data—raw "{~"timeline~":%"2 weeks '}V
"Problem Duration':[{"ServerType":"Java Application","MIN_DURATION':"4m “s"."MA
K_DURATION":="8h 4m","AUG_DURATION":"33m 35s">, {“SeruePType"'“ etFlow Device","MI
_DURATIONW':=""21h 25m" "MRH_DURRTIQ "21ih 28m">, %;ﬁﬁrﬂg
1 R "M _DURATION":"14h 2
ix NetScaler UPE AMPE" . "
"7h 25m'} . {"SeruerTyp

m 355"} i ireless Cnntruller" "MI
"18m 18s" _ » _ '35m 358" . {"Server]

y
2h 20n'} {"Serverly M
4D 7h”,."AUG_DURATION' i nduuo","HIN DURATI
{"ServerType

M
¥ RenServer — UDI") D2
2m 325"} {"ServerType’ inux", "HIN DURHTION“'"3m 49s", "MAR
DURATION": "34m E8="_ "AlG_ DURATION":"23m 15s"> 13

SProgram Filesscurl-7.72%binX_

Figure 4.41: Retrieving the duration for which an alarm was open for all Component Types using cURL
4.13.3 Retrieving Problem Duration for all Components
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/servername
Method: POST

Content-Type: application/json

217

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl {
user "timeline":"1 hour"
pwd }
Body Default:
{

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Success Response

JSON 200 {
"Problem Duration": [
{
"Server Name": "esx51-15",
"MIN_DURATION": "0s",
"MAX_DURATION": "4D 1h",
"AVG_DURATION": "19h 21m"

b

218

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Failure Response

Type Code Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

POST http://192,168.8.183:7077/apifeg/analytics/getProblemDuration/servername Params Save

(3) Body @ Code
form-data w-wwnw-form-urlencoded ® raw binary Text

1 {"timeline":"2 weeks"}

Body M1y Test Results Status: 200 0K Time: 209 ms
Pretty JSON 5 Save Response
1-§
R "Problem Duration™: [
Iv
4 "Server Name": "esx51-15",
5 "MIN_DURATION™: "@s",
6 "MAX_DURATION™: "4D 1h",
7 "AVG_DURATION™: "1%9h 21m"
8 T
9~ {
18 “Cerver Name': “winlga"

Figure 4.42: Retrieving the duration for which an alarm was open for all Components using Postman
REST Client

4.13.4 Retrieving Problem Duration for all Components using cURL

To retrieve the duration for which an alarm was open for all components managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDuration/servername" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarm duration(in hours/days/weeks)\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all
components managed in the target environment using cURL.

219

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

o

0 D Lor D 0 A D 0
[} H 0 0 DB [}
1 0 ATIC 0 [} i 0
3 [) 0 4 [) 0 [A [) 0
L [) 0 g [) 0 [)
0 0 [} 0 [}
0 DU RA) Bl [}
0 £ [) 0 [) 0 0
[) i i [) 0 [) i [) 0
b DU RA 0 b [})
) [) 0) B DP169 [) 0
[) 0 [) 0 [[)
0 [} 0 b [) 0
[}) b [} i G 0 [) 0
[) 0 i) 0 [)
[) i [i E [} i
b [}) g [} i 0
[}) A [}) [})
i [) 0 [) [)
D) B [) 0 b [} D)
5 [}) 0 [} 0
H i [DUR 0 A [) 0 [)
i DU RA 0 [) 0 [) 0
Pro am = bin

Figure 4.43: Retrieving the duration for which an alarm was open for all Components using cURL
4.13.5 Retrieving Problem Duration for all Layers of a Component Type
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/layer
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl {
user "timeline":"1 hour",
pwd "servertype":Microsoft Windows"
Body Default: }
{

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component

220

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

Typell

Success Response

Type Code Content

JSON 200 {
"Problem Duration": [
{
"Layer Name": "Operating System",
"MIN_DURATION": "24m 36s",
"MAX_DURATION": "24m 36s",
"AVG_DURATION": "24m 36s"

L
}
Failure Response
Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}

UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

221

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

POST http://192.168.8.183:7077/api/eg/analytics/getProblem Duration/layer Params Save

(3) Body @ Code

form-data wwwew-form-urlencoded ® raw binary Text
1 {"timeline":"2 weeks","servertype":"eG Manager"}
2
Body 1 Status: 200 OK Time: 248 m
Pretry JSON 5 Save Respons:
1~k
2 "Problem Duration”: [
3 {
4 "Layer MName": "Operating System”,
5 "MIN_DURATION™: "24m 36s",
& UMAX_DURATION™: "24m 36s",
7 UAVG_DURATION™: "24m 36s"
8 ts
g {
18 "Laysr Name": "Tomcat Containsr”,

Figure 4.44: Retrieving the duration for which an alarm was open for all layers of a Component types using
Postman REST Client

4.13.6 Retrieving Problem Duration for all Layers of a Component Type using
cURL

To retrieve the duration for which an alarm was open for all layers of a component type managed in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDuration/layer" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the alarm duration (in hours/days/weeks)\", \"servertype\":\"Component Type\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all layers
corresponding to a component type managed in the target environment using cURL.

222

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

:wProgram Filesscurl-?.72%hin>curl -L —-¥ POST "http:-~-192_.168.8_183:7877 api-e
analytics/getProblemDurationslaver” -H "user: admin® -H "'pud: YWRtaW4xMjH=" —H
managerurl: http:/-192.168.8.183:7877" —H "Content-Type: application/json" —d
a—raw "{\"timeline~'":\"2 weeks\".“\'servertypen':\"eG Manager-'}"

"Prohlem Duration':[{"Layer MName Operating System"."MIM_DURATION":'"9m P="."MA
f_DURATION":"8h 3m'"."AUG_DURATION i1h 15m"> . {"Layer Name"':"Tomcat Container'.'
IN_DURATION":"2m 46=","MAK_DURATION":"4m &='_ "AUG_DURATION":"3m 325"} . {"Layer N

e':"eG Application', "MIN_DURATION":"3="_ "MAX_DURATION":"4h 3im',. "AUG_DURATIOMN':

'Sem 24#”} {"Layer Hame"'"JUM" "MIN DURHTIOH"'"lm 42z, "MAX_DURATION":"15m 5s".°'
AUG_DURATION":="5m 25" . {"Layer Name':"eG Access",."MIN_DURATION':"4m 46s".""MAX_]

RATION":'"5Sm 13","HUG_DURHTION":"4m L4s"> 12

:»Program Files“curl-7.72%hin>_

Figure 4.45: Retrieving the duration for which an alarm was open for all layers of a Component types using
cURL

4.13.7 Retrieving Problem Duration for all Tests of a Component Type
URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/test
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base URL of |{
the eG Manageri.e.,

http://<IP address of the
eG console:Port> "servertype":Microsoft Windows"

"timeline":"1 hour",

user: eG username or 1
domain/eG username

pwd: Base64 encoded
password

Body Default:

223

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters L GACI S Example

{

"timeline":"Timeline for
retrieving the alarms (in

hours/days/weeks)",
"servertype":"Component
Typell

1

Success Response

Type Code Content

JSON 200 {
"Problem Duration": [
{
"Test Name": "Uptime",
"MIN_DURATION": "4m 11s",
"MAX_DURATION": "5m 6s",
"AVG_DURATION": "4m 38s"

?
1
Failure Response
Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}

224

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code Content

UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.11.196:7077/api/eg/analytics/getProblemDuration/test Params Save
3 Eody ® Code
form-data x-www-form-urlencoded ® raw binary Text

1 {"timeline":"2 weeks","servertype":"=G Manager"}
2

Body 1) Status: 200 0K Time: 1325 ms
Pretty JSON == Save Response
1K
2~ "Problem Duration": [
3 {
4 "Test Name": “Uptime",
5 "MIN_DURATION™: "4m 11s",
6 "MAX_DURATION™: "Sm 6s",
7 "AVG_DURATION™: "4m 385"
8 Is
9~ {
18 "Test Mame": "Processes”,

Figure 4.46: Retrieving the duration for which an alarm was open for all Tests of a Component Type using
Postman REST Client

4.13.8 Retrieving Problem Duration for all Tests of a Component Type using
cURL

To retrieve the duration for which an alarm was open for all tests of a component type managed in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProblemDuration/test" -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -
H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the alarm duration (in hours/days/weeks)\", \"servertype\":\"Component Type\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all tests of
a component type managed in the target environment using cURL.

225

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

ssProgram Filesscurl-7.72%binkcurl -L -8 POST “"http:- -192.168.11.196:7877 apise
sanalyticssgetProblemDurationstest™ —H "user: admin' —H ""pud: ¥YWRtaW4xMjM='" —H
'managerurl: http: /71922_168.11_.196:7877" —H "Content—-Type: application~sjson' ——d
pta—raw "{“"timeline“":%"2 weeks“" . “servertype:'":%\"eG Manager-'"

"Prohlem Duration":[{"Test Hame":"Uptime","MIN_DURATION":"4m 11=","MAX_DURATION
'2"5m 6z, "AUG_D HTION"'"4m 38="> . {"Tes Hame":“Pruﬁesses“,"MI DURATION":"3m 2

'Memory Details",."MIM_DURATION":"1h 42m
h Zm :"3h 39n">,{"Test Mame':"JUM CPU Usage"."
1s". "MAX_DURATION":"?m 44s","AUG_DURATION":"4m 1Bs">.{"Test Hame
':"el Manager Error Log"."MIN_DURATION":"3m 37s","MAX_DURATION":"i4m 28s"."AUG_D
RATION":="?m 425"}, {"Test Name":"Memory Usage","MIN_DURATION":"5m 5="."MAX_DURAT
[ON":"21h 18m", "AUG_DURATION":"4h 7m'>,.{"Test Mame"z"HTTP","MIN_DURATION":"3m 25
“LUMARK_DURATION':="19m 23s"', "AUG_DURATION":"11m 365"} . {"Test Mame":"JMX Connecti
pn to JUM',."MIN_DURATION":"3m 225", "MAX_DURATION':"4m 27s".,"AUG_DURATION":"3m 58
"r.4"Test Name':"eG Helper Process"."MIN_DURATION":"Bs",."MAX_DURATION" m' . AU
_DURATION":"5m 25"} .{"Test Hame":"Metwork Traffic"."MIM_DURATION":"1h 1im".'MAK
DURATION":="1h 1im","AUG_DURATION":"1h 1m"},.{"Test MName":"JUM Uptime"."MIN_DURATIO
YeUESs L YMAR _DURATION:="18m 555" . "AUG_DURATION":"5Sm 32s"%,{"Test MName":"elG Data
ase Auto Indexing”,."MIN_DURATION':"Bs","MAX_DURATION":"2D 23h",."AUG_DURATION":"
h 49m"> . {"Test Mame":"Disk Activity"."MIN_DURATION":"4m 1@8s",."MAX_DURATION':"29
495", "AVG_DURAT ION 15m 38s"},{"Test Name":"eG User Logons","MIN_DURATION":"4
185", "MAX_DURATION":"18m 35", "AUG_DURATION":"6m 15s"> 12

wProgram Filesswcurl-7.72%hin2_

Figure 4.47: Retrieving the duration for which an alarm was open for all Tests of a Component Type using
cURL

4.14 Retrieving Percentage of Proactive Alarms in the Target
Environment

Use the URL specified below to retrieve the percentage of proactive alarms for all component types,
components, layers and tests specific to the target environment. The percentage is calculated by
considering the count of Major and Minor alarms against the Total alarms raised in the target
environment.

4.14.1 Retrieving Percentage of Proactive Alarms across Component Types
URL: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/servertype
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base {
URL of the
eG Manager i.e.,

"timeline":"1 hour"

226

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Parameters

Body

L GACI S

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Default:
{

"timeline":"Timeline
for retrieving
proactive alarm
percent (in
hours/days/weeks)"

}

Success Response

Type
JSON

‘Code

200 {

Content

Example

"Proactive Problem Percent": |

{

"Server Type": "Java Application”,

"ProactivePercent": "100"

L
{

"Server Type": "NetFlow Device",

"ProactivePercent": "0"

b

227

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Content

Failure Response

Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED

JSON 500 Server Error |{"code": 500,"error": " Server Error "}

POST hetp://192.168.8.183:7077/api/eg/analytics/getProactiveProblemPercent/servertype Params “ Save

Authorization Headers (3) EBody @ Pre-request Script Tests Code
form-data x-wwnw-form-urlencoded L binary Text

1 {"timeline™:"2 weeks"}

Status: 200 0K Time: 266 ms

Body Cookies Headers (11) Test Results

Pretty Raw Preview JSON 5 Save Response
1-k
2- "Proactive Problem Percent™: [
3~ {
4 "Server Type": "Java Application”,
5 "ProactivePercent": "1@8"
6 Is
T {
8 "Server Type": "MetFlow Device",
9 "ProactivePercent": "@"

18 T

Figure 4.48: Retrieving the percentage of proactive alarms for all Component Types using Postman
REST Client

228

4.14.2 Retrieving Percentage of Proactive Alarms across Component Types
using cURL

To retrieve the percentage of proactive alarms across all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProactiveProblemPercent/servertype" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving proactive alarm percent (in hours/days/weeks)\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for all component
types managed in the target environment using cURL.

»Program Filesscurl-7.72%binkcurl -L —& POST "http:r-122.168.8.183:7A77 api-e
analyticsrsgetProactiveProblemPercentsservertype’ —H “user: admin® -H ""pud: YWRt
plldxMiH=" —H "managerurl: http:-- -122.168.8.183:-78Y7" —H "Content—Type: applicati
pnsJson' ——data—raw "{“"timeline~':%"2 weekss':"

"Proactive Problem Percent™: [

"Server Type "Java Application®.

N "ProactivePercent': 188"
7

"Server Type': "MetFlow Device".
"ProactivePercent': 58"

7
"Gerver Type "eG Manager'.
"ProactivePercent': "74"

.

{

"Gerver Type': "Microsoft SQLY,
"ProactivePercent': "'47"

>,

{

"Server Type': "Citrix MetScaler UPH-MPHE",
"ProactivePercent': 71"

>,

£
"Server Type': "Citrix HenSewrver',
"ProactivePercent': '18A"

Figure 4.49: Retrieving the percentage of proactive alarms for all Component Types using cURL
4.14.3 Retrieving Percentage of Proactive Alarms across all Components

URL.: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/servername
Method: POST

Content-Type: application/json

229

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters ‘ Key values ‘ Example
Headers managerurl: Base {
URL of the

] "timeline":"1 hour"
eG Manager i.e.,

http://<IP address of }
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline
for retrieving
proactive alarm
percent (in
hours/days/weeks)"

}

Success Response

Type ‘ ‘ Content

JSON 200 {

"Proactive Problem Percent": |

{

"Server Name": "esx51-15",

"ProactivePercent": "80"

L
{

"Server Name": "win183",

230

Chapter 4:

Retrieving Analytical Data from eG Manager Using eG REST API

Content

"ProactivePercent"; "93"

b

Failure Response

Content

JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST hetp://192.168.8.183:7077/api/eg/analytics/getProactiveProblemPercent/servername Params “ Save
A rization Headers (3) Body @ Pre-request Script Tests Code
form-data w-wwew-form-urlencoded ® aw binary Text
1 {"timeline™:"2 weeks"}
2
Bady o Headers (11) Test Results Status: 200 0K Time: 244 ms
Pretty Raw Preview 150N 5 Save Response
1x K
2~ "Proactive Prablem Percent™: [
3~ {
4 "Server Name": "esx51-15",
5 "ProactivePercent”: "8@"
6 Ts
e {
8 "Server Name": "winlB3",
9 "ProactivePercent”: "93"
10 Is
Figure 4.50: Retrieving the percentage of proactive alarms for all Components using Postman REST Client

231

4.14.4 Retrieving Percentage of Proactive Alarms across Components using
cURL

To retrieve the percentage of proactive alarms across all components managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProactiveProblemPercent/servername"” -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving proactive alarm percent (in hours/days/weeks)\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for all components
managed in the target environment using cURL.

snProgram Filesscurl-7_72%binXcurl -L —X¥ POST “"http: -192_168.8.183:7877 apire
analytics/getProactiveProblemPercent/servername'” —H "user: admin' —-H "puwd: YUWRt
pll4xMjM=" —H "managerurl: http:- -192_.168_.8.183:7877" —H "Content—Type: applicati
pnsjson” ——data—raw "{“'"timeline-'"::\"2 weeks“'»"

"Proactive Problem Percent': [
{

"Server Mame': “esxbh1-15",
"ProactivePercent': "g2"

"Server Mame': "winl83",
"ProactivePercent': 76"

"Server Mame': "Oracle_DB:1521:xe".
"ProactivePercent': 108"

"Server Mame': "Metscaler'.
"ProactivePercent': 95"

"Server Name': "HISELKUPMASH1Y,
"ProactivePercent': 108"

"Server Mame": "mssqliP@:1433",
-IIL ""I T nr

Figure 4.51: Retrieving the percentage of proactive alarms for all Components using cURL

4.14.5 Retrieving Percentage of Proactive Alarms specific to Layers of a
Component Type

URL.: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/layer
Method: POST

Content-Type: application/json

232

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Inputs to be Specified

Parameters ‘ | GACI IS ‘ Example

Headers managerurl: Base URL of |{
the eG Manager i.e.,

http://<IP address of the
eG console:Port> "servertype":"Microsoft Windows"

"timeline":"1 hour",

user: eG username or 1
domain/eG username

pwd: Base64 encoded
password

Body Default:
{

"timeline":"Timeline for
retrieving proactive
alarm percent (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"Proactive Problem Percent": |

{

"Layer Name": "Operating System",
"ProactivePercent": "95"

b

{

"Layer Name": "eG Application",

233

Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API

Type Code

"ProactivePercent"; "38"

b

Failure Response

Type ‘ Code ‘

JSON 401
UNAUTHORIZED

Content

Content

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

POST hrep://192.168.8.183:7077/apifeg/analytics/getProactiveProblemPercent/layer
thorization Headers (3) Body ® Pre-request Script T
form-data 0 xewww-form-urlencoded ® binary Text

1 {"timeline":"2 weeks","servertype”:"eG Manager"}

Body Cookies Headers (11} Test Results
Pretty Raw Preview JSON 5 Save Response
1-f
2- "Proactive Problem Percent”: [
3~ {
4 "Layer Name": “Opersting System”,
5 "ProactivePercent”: "25"
6 Is
7- {
8 "Layer Wame": “eG Applicstion”,
a "ProactivePercent™: "33
18 T

pereme m Save

Code

Status: 2000K Time: 183 ms

Figure 4.52; Retrieving the percentage of proactive alarms for the layers of a component type using Postman

REST Client

234

4.14.6 Retrieving Percentage of Proactive Alarms specific to Layers of a
Component Type using cURL

To retrieve the percentage of proactive alarms specific to layers of a component type managed in the
target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/analytics/getProactiveProblemPercent/layer" -H "user:<eG username or
domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager
IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for
retrieving proactive alarm percent (in hours/days/weeks)\", \"servertype\":\"Component

Type\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for the layers specific
to a component type managed in the target environment using cURL.

SProgram Filesscurl-7.725binXcurl —-L —X POST "http: -192_168.8_183:-7877/apire

analytics/getProactiveFrobhlemPercentslayer” —H "user: admin” —H "puwd: YUWRtalldx

iH=" —H "managerurl: http:~--192.168.8.183:78077" —-H "Content-Type: application~sJjs
" ——data—-raw "{\"timelinex':v"2 weekss'' N'servertypen':neG Managers'>"

"Proactive Problem Percent': [
"Layer Name': "Operating System".
"ProactivePercent': "75"

"Layer Hame': "“eG Application®,
"ProactivePercent': "34"

l'LayEP Name': "Tomcat Container'.
"ProactivePercent': "@"

"Layer Name': "Metwork",.
"ProactivePercent': "180"

"Layer Hame'': "JUM'".
"ProactivePercent': "72"

"Layer Name'': “eG Access",
"ProactivePercent': "ifg@"

Figure 4.53: Retrieving the percentage of proactive alarms for the layers of a component type using cURL

235

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Chapter 5: Extracting Miscellaneous Data from eG Manager
Using eG REST API

In some environments, administrators may need certain additional information with respect to the
infrastructure configured in the eG manager. For example, administrators may need to figure out the
tests and measures supported by eG Enterprise. Such data can be retrieved with ease using the
REST APl commands.

The sections below will discuss in detail on the miscellaneous data that can be extracted from the
eG Manager.

5.1 Retrieving Details of Components Managed in the target
environment

The eGREST API can be used to retrieve all the components managed in the eG Manager along
with their respective Component Types. For this, specify the URL in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getComponentMapping
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base Not Applicable
URL of the

eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

236

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Success Response

Type ‘ Code ‘ Content

JSON 200 [
{
"ComponentType": "Cisco_router",
"servers": [

"cisco_router_d"

J

b

{

"ComponentType": "Citrix_NetScaler",
"servers": [

"Netscaler176",

"Netscaler"
]
L
}
]

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

237

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

POST htep:/f192.168.8.183:7077/apifeg/miscservice/getComponentMapping Params Save

Headers (3} Code
Key Value Description Bulk Edit Presets =
user admin
B pwd YWRtaW M=
B managerud htep://192.168.8.183:7077
Body 11 Status: 2000 Time: 139 ms
Pretty JSON 5 Save Response
1= [
2+ {
3 "ComponentType": “Cisco_router”,
4 - "servers": [
5 "cisco_router_d"
6 1
7 3
g {
9 "ComponentType": "Citrix_MetScaler”,
18~ "servers”: [
11 "Netscalerl7e",
12 "Metsceler"
13]

Figure 5.1: Retrieving the components corresponding to all Component Types using Postman REST Client

5.1.1 Retrieving Details of Components Managed in the target environment
using cURL

To retrieve the components corresponding to all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/miscservice/getComponentMapping”" —-H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw ""

Figure 5.2 shows an example for retrieving the components corresponding to all component types
managed in the target environment using cURL.

238

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

sProgram Filesscurl-7.72%bin>curl -L —X POST "http:--192.168.8.183:7/877 api-ey
miscservices/getComponentMapping” —H "wser: admin' —-H "puwd: YWRtaWd4xMjH="" -H "ma
agerurl: http:/-192_.168.8.183:7877" ——data—raw "

"ComponentType': "Cisco_router",

"servers': [“
“"cisco_router_d

1

¥
{

"ComponentType': "Citrix_ MetScaler".
"servers': [

"Metscalerl?6".

"Metscaler”
1

e
{

"ComponentType™: "Citrix_StoreFront_server”,
"servers': [

"cvadddeful?12™.

"devcvad2B@A3sF1"

"devcvad2P@3s

"ltd-winl?-s£3",

"wadl?B9-—=sF2",

wadl?B8?—=f"

Figure 5.2: Retrieving the components corresponding to all Component Types using cURL
5.2 Retrieving Zone Details from eG Manager

To retrieve the details of the zones and the elements associated with the zone (services, segments,
servers etc), administrators can use the eG REST API. The URL can be specified in the following
format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getZoneMapping
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base Not Applicable
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded

239

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Parameters Key values Example

password

Success Response

Type ‘ Code ‘ Content
JSON 200 [
{
"zone": "Zone-VDI",
"Group": [],
"Service": [],

"Segment": [],
"Server": |
"eGDP169:7077",
"javal83:13600",
"winl83",
"mssql100:1433"
J

L

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Failure Response

Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}
POST http://192.168.8.183:7077/apifeg/miscservice/getZoneMapping Params Save
Headers (3) Code
Key Value Description Bulk Edit Presets ¥
user admin
pwd YWREaWAxMj=
managerurl hrep:/M92.168.8.183:7077
|
Body M Test Results Status: 200 0K Time: 92 ms
Pretty JSON 5 Save Response
1= [
i i
3 "zone": “"Zone-VDI,
4 "Group™: [1,
5 "service”: [],
6 "Segment”: [],
i- "Server™: [
8 "e@DP1lE9:7@77",
9 "javald3:136@@",
i@ "winl83",
11 "ms=qllea:1433"
12
13 H
14~ {

Figure 5.3: etrieving the details of the zones created in the target environment using Postman REST Client

5.2.1 Retrieving Zone Details from eG Manager using cURL

To retrieve the details of the zones and the elements associated with the zone (services, segments,
servers etc) in the target environment using cURL, the command should be specified in the following

format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/miscservice/getzZoneMapping” -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" --data-raw

(1K1

Figure 5.4 shows an example for retrieving the details of all the zones created in the target

environment using cURL.

241

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

SProgram Filesscurl-7.72%bhinlcurl -L —X POST "http:--/»122_.168_.8.183:-78Y7 apieq
mizcservicesgetZoneMapping” —H r: admin® —H “pud: YWRtal4xMjH=" —H "manager
irl: http:=/ 2192 _168.8_183:7877" —data—raw "

[

{
"zone": “"Fone_mgr".

"Group': [1.

"Service": [1.

"Segment': [1.

"Server': [
"umware_vcenter'.
"citrix_xenserver_uwdi".
"citl-ix_xenseruer_udi",
-::umm.;.gateiBS"

"umuware u.,phere esx'
"ezxbl-15"

"zone": “"Zone—-UDI"Y,

"Group': [1.

"Service': [1.

"Segment':z [1.

"Server': [
"eGDP167 -7877".,
"javalB83:13608",
"winl83",

] "mesgliB@:=1433"

Figure 5.4: Retrieving the details of the zones created in the target environment using cURL

5.3 Retrieving the Tests Supported by eh Enterprise Using
eG REST API

To retrieve the tests that are available in eG Enterprise for execution, by default, administrators can
use the eG REST API. The URL can be specified in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getTestMapping
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values Example
Headers managerurl: Base Not Applicable
URL of the

eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

242

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Parameters Key values Example

pwd: Base64 encoded
password

Success Response

Type Code Content

JSON 200 {
"IBSubnetMgrTest": "IB Subnet Manager Statistics",
"IBSmaPortTest": "IB SMA Port",
"IBPmaExtPortTest": "IB PMA Extended Port",
"IBPmaPortTest": "IB PMA Port",
"IBFabricElemTest": "Fabric Elements",
"Db2DPFSQLNetTest": "Db2 DPF SQL Network",
"FileUpdateTest": "File Updates",

}
Failure Response
Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

Chapter 5: Extracting Miscellaneous Data from eG

Manager Using eG REST API

POST http://192.168.8.183:7077/api/eg/miscservice/getTestMapping
Headers (3]
Key Value

use admin

pwd YWRraW4xMjM=
manageruri htep:/f192.168.8.183: 7077
Body 11

Pretty SC

*: "1E Subnet Menager Statistics™,
I8 SM4 Port™,

st": "IB PMA Extended
¢ "IB PMA Port”,
"Fabric Elemsnts™,

: "Db2 DPF SQL Network™,
"File Updates",

: "IDM Health Monitor®,

Port™,

Pal.ar‘ns 'i“:ll‘.ll:.:.

Description

Figure 5.5: Retrieving the tests supported by eG Enterprise using Postman REST Client

5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL

To retrieve the details of the tests available in eG Enterprise for execution in the target environment

using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getTestMapping” -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" —--data-raw

Figure 5.6 shows an example cURL command for retrieving the details of all the tests available for

execution in the target environment.

s»Program Files“curl-7.72%bin>curl -L -H POST "http:--192_168_8_183:7877api‘eqg
admin" -H ""'puwd: YWRtal4xMjM=" —H "manager

mizcservices/getTestMapping —H "user:

wl: http:/ 7192 .168.8.183:7877" —data—raw "'

Figure 5.6: An example cURL command to retrieve the tests supported by eG Enterprise

Figure 3 shows a sample output that retrieves the tests supported by eG Enterprise using cURL.

244

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Figure 5.7: Sample output with the list of tests supported by eG Enterprise
5.4 Retrieving the Measurements Reported by eG Enterprise

To retrieve the measures that are reported by eG Enterprise, by default, administrators can use the
eG REST API. The URL can be specified in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getMeasureMapping
Method: POST

Content-Type: application/json

Inputs to be Specified

Headers managerurl: Base Not Applicable
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded

245

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Parameters Key values Example

password

Success Response

Type ‘ Code ‘ Content

JSON 200 {

"IBSubnetMgrTest:smCntSMPsOutstanding":
"Outstanding packets",

"IBSubnetMgrTest:smCntSMPsOnWire": "Onwire
packets",

"IBSubnetMgrTest:smCntSMPsReceived": "Packets
received",

"IBSubnetMgrTest:smCntSMPsSent": "Packets
transmitted",

"IBSubnetMgrTest:smCntSMPsUnidirect": "Responseless
packets transmitted",

"IBSubnetMgrTest:smCntSMPsUnknownReceived":
"Unknown packets received",

Failure Response

Type Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error |{"code": 500,"error": " Server Error "}

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

POST http://192,168.8.183:7077/api/eg/miscservice/getMeasureMapping Params Save

Headers (3)
Key Value Description
user sdmin
pwd YWRtaWdMjM=
manageruri htepe/192.168.8.183:7077
Baody (11 Status 2000K Time: 289 ms
Pretty JSON Save Response

e
oo

Sub
Sub

e I S T e e]
(R

Figure 5.8: Retrieving the list of measurements using Postman REST Client
5.4.1 Retrieving the Measurements Reported by eG Enterprise using cURL

To retrieve the measures reported by eG Enterprise by monitoring the components in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager
IP:Port>/api/eg/miscservice/getMeasureMapping” -H "user:<eG username or domain/eG
username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw ""

Figure 5.9 shows an example cURL command for retrieving the measurements reported by
eG Enterprise by monitoring the components in the target environment.

:»Program Filesscurl-7.72%bin>curl -L —H POST “"http:=~-~122.168.8.183:-7877 api-e
mizczervicesgetMeasureMapping' —H "user: admin'' -H "'pud: YWRtal4xMjM=" —-H "man
erurl: http:=- ~122.168.8.183:=Y877" —data—raw "

Figure 5.9: An example cURL command to retrieve the measurements

Figure 3 shows a sample output that retrieves the measurements reported by eG Enterprise using
cURL.

247

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

apMapping ode
“fizAhapMappingldTest_cf: ExtHudeName"' "Model Technical Mame" .
"AzAbapCustActTest_cf :Client': '"Client",

"AsAbapCustActTest_cf :ConsunerA ve': "Iz Consumer Active",
"AsAbapServinfoTest_cf :IsActi "Iz Active'.,

"AsAbapServinfoTest_cf :Valu alue

"AzAbapGtyLogTest_cf :Client

"AzAbapGtyLogTest_cf :LogLevel’

"AzAbapODataSerTest_cf :ServicelD

"AzAbapODataSerTest_cf :Client"':

"AsAhapODataSerTest_cf :UserRole .

"AsAbapODataSerTest_cf :UserMame': "Last Modified Username' .
"AsAbapODataSerTest_cf :Host": "Host".

"AsAbapODataSerTest_cf :SysAliasName”: "System Alias Mame".
"AzAbapODataSerTest_cf :IsDefault': "System Alias is default®,
"AzAbapODataSerTest_cf :IsDefaultMeta: "System Alias is default for metadata''.

"AzAbapSysAliasTest_cf :SysAliasDesc': "System Alias Description',
"AsAbapSysAliasTest_cf :SoftUersion': "Software Uersion'.
"AsAbapSysAliasTest_cf :RfcDes": "RFC Destination®.

"AzAbapSy=zAliasTest_cf :RfcDesExp' = "HFC Destination points to Explicit user.
"AzAbapiyzAliasTest_cf :UWEFProv": "Webhfervice Provider".

"AzAbapSyzAliasTest_cf :DBConn": '"Database Connection Mame'.
"AzAbapiyszAliasTest_cf :TargetID'": “Target 1D,

"AsAbapSysAliasTest_cf :TargetClient": "Target Client™.

"AsAbapSysAliasTest_cf :LocallWF': "System Alias Points to Local GW Instance'.
"AsAbapSysAliasTest_cf : IsBEP" System Alias to be used by BEP",
"AzfAbapSysAliasTest_cf :BEPUers “"BEF Uersion®.
:ﬂsﬂhapGateuayStTest:Is_ﬂct@ue Is gateqay”actiue?".

Figure 5.10: Sample output with the list of measurements supported by eG Enterprise

5.5 Retrieving Applications Monitored by eG Enterprise Using
eG REST API

In order to retrieve the applications that are monitored by eG Enterprise by default, administrators
can use the eGREST API.

URL: http://192.168.8.206:7077/api/eg/miscservice/getApplicationMapping
Method: POST

Content-Type: application/json

Inputs to be Specified

Parameters Key values
Headers managerurl: Base Not Applicable
URL of the

eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

248

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API

Success Response

Type Content

JSON 200 {
"Infiniband_Switch": "InfiniBand Switch",

"MSExchangeOnline_domain": "Exchange Online
Domain",

"MSExchangeOnline_service": "Exchange Online
Tenant",

"CouchDB_Server": "Apache CouchDB",

"VMWareHorizon_Workspace_one": "Vmware Horizon
Workspace One",

"Alibaba_Cloud": "Alibaba Cloud",

"OracleExadataStorage": "Oracle Exadata Storage

Server",
}
Failure Response
Type Code Content
JSON 401 {"code": 401,"error": "Unauthorized user"}
UNAUTHORIZED
JSON 500 Server Error {"code": 500,"error": " Server Error "}

249

Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API
POST http://192.168.8.183:7077/api/egimiscservice/getApplicationMapping Params Save
Headers (3)
Key alue Description
!i Lze dmir
!i pwd
manageru

iniBand Switch",

“Exchange Online Domain”,
: "Ewxchange Online Tenant”,
uchDB",

: "Vmware Horizon Workspace One",

: "0365 SJntﬁetlc \unltal 2

Figure 5.11: Retrieving the list of applications monitored using Postman REST Client

5.5.1 Retrieving the Applications Monitored by eG Enterprise using cURL

To retrieve the measures reported by eG Enterprise by monitoring the components in the target

environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getApplicationMapping”" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw

Figure 5.12 shows an example cURL command for retrieving the applications monitored by

eG Enterprise.

=Program Files“wcurl-7.72%bin¥curl -L —-H POST "http s#192 .168.8.183 7877 apire

mizcservicesgetApplicationMapping

" —H "pud: YURtaWMdxMjM="'" -H °*

anagerurl: http:/-122.168.8.183:-7877" —data—raw

Figure 5.12: An example cURL command to retrieve the applications monitored by eG Enterprise

Figure 3 shows a sample output that retrieves the measurements reported by eG Enterprise using

cURL.

250

ate_sepuvepr - ate” .
"AIX_sevrver': ",
"Alcatel switch "Alcatel Switch".
"Apache_webh_serve "Apache UWeh".
PC_Ups": “APC UPS"
"AS480_server': “AS488",
"Azp_DotNet_server': "ASP _MET".
"AzyncosMail'”: “"IronPort Async0S Mail',
"Atg_szerver': "ATGY.
"AWS_EC2_Cloud": "AWS Cloud".
"AWS_EC2_Region': "AWS Region".
"Backup_sgl_server': "Backup 5QLY.
"BBerry_server': lackBerry 5x".
"BES_server': ° nd",
"BizTalk_seruver': icrozsoft BizTalk".
"BizTalk_serverZd 'Microsoft BizTalk 20168-2813",
"BlackBerry_serve BlackBerry 4x',
IueCGoat_AUY: "Bluecoat Antilirus®',
"Cache_db_server Cache Databaze".
"CAG_linux_server "Citrix Access Gateway — Linux.
"CFusion_server': "Adobe ColdFusion'.
"CheckPoint_server': "Check Point".
"Cisco_ASA": "Cisco ASAY,
"Cizsco_C8%_sewrver": "Cisco CEE"Y,
"Cisco_pix™: zco PIR™,
"Cisco_route "Cisco Router'.
"Gisco_san_switch": "Cisco SAN Switch",
"Cisco_lUCS_server": "Cisco UCS Manager".
"Cisco_UPN": "Cisco UPN",
"CizcoCat switch": "Cisco Cataluvst Switch"

Figure 5.13: Sample output with the list of applications monitored by eG Enterprise

251

About eG Innovations

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even the most challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learn more visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fithess for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

252

	Chapter 1: Introduction
	1.1 What does the REST API enable?

	Chapter 1: How Does eG REST API Work?
	1.2 Pre-Requisites for Configuring the Target Environment using the REST API
	1.3 Actions Supported by the eG REST API

	Chapter 2: The REST API Commands for Orchestration of eG Administrative Interface
	2.1 Adding Components
	2.1.1 Adding Components using cURL

	2.2 Adding External Agents
	2.2.1 Adding External Agents using cURL

	2.3 Adding Groups
	2.3.1 Adding a Group using cURL

	2.4 Adding Maintenance Policies
	2.4.1 Adding Maintenance Policies using cURL

	2.5 Adding Remote Agents
	2.5.1 Adding Remote Agents using cURL

	2.6 Adding a User
	2.6.1 Adding a User using cURL

	2.7 Adding a Zone
	2.7.1 Adding a Zone using cURL

	2.8 Assigning an Agent
	2.8.1 Assigning an Agent using cURL

	2.9 Assigning a Maintenance Policy
	2.9.1 Assigning a Maintenance Policy using cURL

	2.10 Associating Components to User
	2.10.1 Associating Components to User using cURL

	2.11 Deleting a Component
	2.11.1 Deleting a Component using cURL

	2.12 Deleting an External Agent
	2.12.1 Deleting an External Agent using cURL

	2.13 Deleting a Group
	2.13.1 Deleting a Group using cURL

	2.14 Deleting a Maintenance Policy
	2.14.1 Deleting a Maintenance Policy using cURL

	2.15 Deleting a Remote Agent
	2.15.1 Deleting a Remote Agent using cURL

	2.16 Deleting a User
	2.16.1 Deleting a User using cURL

	2.17 Deleting a Zone
	2.17.1 Deleting a Zone using cURL

	2.18 Disabling Tests
	2.18.1 Disabling Tests using cURL

	2.19 Enabling Tests
	2.19.1 Enabling Tests using cURL

	2.20 Exclude Components for Test
	2.20.1 Excluding Components for Test using cURL

	2.21 Exclude Tests for Component
	2.21.1 Excluding Tests for Component using cURL

	2.22 Include Components for Test
	2.22.1 Include Components for Test using cURL

	2.23 Include Tests for Component
	2.23.1 Including Tests for Component using cURL

	2.24 Managing Components
	2.24.1 Managing Components using cURL

	2.25 Modifying a Component
	2.25.1 Modifying a Component using cURL

	2.26 Modifying a Group
	2.26.1 Modifying a Group using cURL

	2.27 Modifying a Maintenance Policy
	2.27.1 Modifying a Maintenance Policy using cURL

	2.28 Modifying a User
	2.28.1 Modifying a User using cURL

	2.29 Modifying a Zone
	2.29.1 Modifying a Zone using cURL

	2.30 Renaming a Group
	2.30.1 Renaming a Group using cURL

	2.31 Renaming a Zone
	2.31.1 Renaming a Zone using cURL

	2.32 Displaying Components
	2.32.1 Displaying Components using cURL

	2.33 Displaying External Agents
	2.33.1 Displaying External Agents using cURL

	2.34 Displaying Remote Agents
	2.34.1 Displaying Remote Agents using cURL

	2.35 Displaying Maintenance Policies
	2.35.1 Displaying Maintenance Policies using cURL

	2.36 Displaying Details of Maintenance Policies
	2.36.1 Displaying Details of Maintenance Policies using cURL

	2.37 Displaying the Hosts Managed in the Target Environment
	2.37.1 Displaying the Hosts Managed in the Target Environment using cURL

	2.38 Displaying the Details of the Tests
	2.38.1 Displaying the Details of the Tests using cURL

	2.39 Displaying Test Names for a Component Type
	2.39.1 Displaying Test Names for a Component Type using cURL

	2.40 Disassociating Agents from Managers in a Redundant Setup
	2.40.1 Disassociating Agents from Managers in a Redundant Setup using cURL

	2.41 Unmanaging a Component
	2.41.1 Unmanaging a Component using cURL

	Chapter 3: Performing Operations in Bulk Using eG REST API
	3.1 Adding Components in Bulk
	3.1.1 Adding Components in Bulk using cURL

	3.2 Managing Components in Bulk
	3.2.1 Managing Components in Bulk using cURL
	3.2.2 Managing Components in Bulk using cURL

	3.3 Modifying Components in Bulk
	3.3.1 Modifying Components in Bulk using cURL

	3.4 Deleting Components in Bulk
	3.4.1 Deleting Components in Bulk using cURL

	3.5 Unmanaging Components in Bulk
	3.5.1 Unmanaging Components in Bulk using cURL

	3.6 Adding Remote Agents in Bulk
	3.6.1 Adding Remote Agents in Bulk using cURL

	3.7 Adding External Agents in Bulk
	3.7.1 Adding External Agents in Bulk using cURL

	3.8 Deleting Remote Agents in Bulk
	3.8.1 Deleting Remote Agents in Bulk using cURL

	3.9 Deleting External Agents in Bulk
	3.9.1 Deleting External Agents in Bulk using cURL

	Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API
	4.1 Retrieving Count of Alarms Raised in the Target Environment
	4.1.1 Retrieving Count of Alarms Raised in the Target Environment using cURL

	4.2 Retrieving Live Measures of a Component
	4.2.1 Retrieving Live Measures of a Component using cURL

	4.3 Retrieving Historical Data of a Measure
	4.3.1 Retrieving Historical Data of a Measure using cURL

	4.4 Retrieving Detailed Diagnosis of a Measure
	4.4.1 Retrieving Detailed diagnosis of a Measure using cURL

	4.5 Retrieving Top-N Analysis Data
	4.5.1 Retrieving Top-N Analysis Data using cURL

	4.6 Retrieving Test Data
	4.6.1 Retrieving Test Data using cURL

	4.7 Retrieving Trend Data
	4.7.1 Retrieving Trend Data using cURL

	4.8 Retrieving Threshold Data
	4.8.1 Retrieving Threshold Data using cURL

	4.9 Retrieving Infrastructure Health
	4.9.1 Retrieving Infrastructure Health using cURL

	4.10 Retrieving Problem Distribution of Components
	4.10.1 Retrieving Problem Distribution of Components using cURL

	4.11 Retrieving Problem Distribution of the Target Environment
	4.11.1 Retrieving Problem Distribution for all Component Types
	4.11.2 Retrieving Problem Distribution for all Component Types using cURL
	4.11.3 Retrieving Problem Distribution for all Components
	4.11.4 Retrieving Problem Distribution for all Components using cURL
	4.11.5 Retrieving Problem Distribution of the Layers of a Component Type
	4.11.6 Retrieving Problem Distribution of the Layers of a Component Type using cURL
	4.11.7 Retrieving Problem Distribution of the Tests of a Component Type
	4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using cURL

	4.12 Retrieving the Count of Events from Alarm History
	4.12.1 Retrieving the Count of Events from Alarm History for all Component Types
	4.12.2 Retrieving the Count of Events from Alarm History for all Component Types using cURL
	4.12.3 Retrieving the Count of Events for all Components
	4.12.4 Retrieving the Count of Events for all Components using cURL
	4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type
	4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type using cURL
	4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type
	4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type using cURL

	4.13 Retrieving Problem Duration
	4.13.1 Retrieving Problem Duration for Component Types
	4.13.2 Retrieving Problem Duration for all Component Types using cURL
	4.13.3 Retrieving Problem Duration for all Components
	4.13.4 Retrieving Problem Duration for all Components using cURL
	4.13.5 Retrieving Problem Duration for all Layers of a Component Type
	4.13.6 Retrieving Problem Duration for all Layers of a Component Type using cURL
	4.13.7 Retrieving Problem Duration for all Tests of a Component Type
	4.13.8 Retrieving Problem Duration for all Tests of a Component Type using cURL

	4.14 Retrieving Percentage of Proactive Alarms in the Target Environment
	4.14.1 Retrieving Percentage of Proactive Alarms across Component Types
	4.14.2 Retrieving Percentage of Proactive Alarms across Component Types using cURL
	4.14.3 Retrieving Percentage of Proactive Alarms across all Components
	4.14.4 Retrieving Percentage of Proactive Alarms across Components using cURL
	4.14.5 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type
	4.14.6 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type using cURL

	Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API
	5.1 Retrieving Details of Components Managed in the target environment
	5.1.1 Retrieving Details of Components Managed in the target environment using cURL

	5.2 Retrieving Zone Details from eG Manager
	5.2.1 Retrieving Zone Details from eG Manager using cURL

	5.3 Retrieving the Tests Supported by eh Enterprise Using eG REST API
	5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL

	5.4 Retrieving the Measurements Reported by eG Enterprise
	5.4.1 Retrieving the Measurements Reported by eG Enterprise using cURL

	5.5 Retrieving Applications Monitored by eG Enterprise Using eG REST API
	5.5.1 Retrieving the Applications Monitored by eG Enterprise using cURL

	About eG Innovations

