
Automatically Configuring the Target
Environment Using REST API

Table of Contents
CHAPTER 1: INTRODUCTION 1

1.1What does the REST API enable? 1

CHAPTER 1: HOW DOES EG REST API WORK? 1

1.2 Pre-Requisites for Configuring the Target Environment using the REST API 2

1.3 Actions Supported by the eG REST API 2

CHAPTER 2: THE REST API COMMANDS FOR ORCHESTRATION OF EGADMINISTRATIVE
INTERFACE 3

2.1 Adding Components 3

2.1.1 Adding Components using cURL 6

2.2 Adding External Agents 7

2.2.1 Adding External Agents using cURL 9

2.3 Adding Groups 10

2.3.1 Adding a Group using cURL 12

2.4 AddingMaintenance Policies 13

2.4.1 Adding Maintenance Policies using cURL 15

2.5 Adding Remote Agents 16

2.5.1 Adding Remote Agents using cURL 18

2.6 Adding a User 19

2.6.1 Adding a User using cURL 21

2.7 Adding a Zone 22

2.7.1 Adding a Zone using cURL 24

2.8 Assigning an Agent 25

2.8.1 Assigning an Agent using cURL 27

2.9 Assigning aMaintenance Policy 28

2.9.1 Assigning a Maintenance Policy using cURL 30

2.10 Associating Components to User 31

2.10.1 Associating Components to User using cURL 33

2.11 Deleting a Component 34

2.11.1 Deleting a Component using cURL 36

2.12 Deleting an External Agent 37

2.12.1 Deleting an External Agent using cURL 39

2.13 Deleting aGroup 40

2.13.1 Deleting a Group using cURL 41

2.14 Deleting aMaintenance Policy 42

2.14.1 Deleting a Maintenance Policy using cURL 44

2.15 Deleting a Remote Agent 45

2.15.1 Deleting a Remote Agent using cURL 46

2.16 Deleting a User 47

2.16.1 Deleting a User using cURL 49

2.17 Deleting a Zone 50

2.17.1 Deleting a Zone using cURL 51

2.18 Disabling Tests 52

2.18.1 Disabling Tests using cURL 54

2.19 Enabling Tests 55

2.19.1 Enabling Tests using cURL 57

2.20 Exclude Components for Test 58

2.20.1 Excluding Components for Test using cURL 60

2.21 Exclude Tests for Component 61

2.21.1 Excluding Tests for Component using cURL 63

2.22 Include Components for Test 64

2.22.1 Include Components for Test using cURL 66

2.23 Include Tests for Component 67

2.23.1 Including Tests for Component using cURL 69

2.24Managing Components 70

2.24.1 Managing Components using cURL 72

2.25Modifying a Component 73

2.25.1 Modifying a Component using cURL 75

2.26Modifying aGroup 76

2.26.1 Modifying a Group using cURL 78

2.27Modifying aMaintenance Policy 79

2.27.1 Modifying a Maintenance Policy using cURL 81

2.28Modifying a User 82

2.28.1 Modifying a User using cURL 84

2.29Modifying a Zone 85

2.29.1 Modifying a Zone using cURL 87

2.30 Renaming aGroup 88

2.30.1 Renaming a Group using cURL 90

2.31 Renaming a Zone 90

2.31.1 Renaming a Zone using cURL 92

2.32 Displaying Components 93

2.32.1 Displaying Components using cURL 95

2.33 Displaying External Agents 96

2.33.1 Displaying External Agents using cURL 97

2.34 Displaying Remote Agents 98

2.34.1 Displaying Remote Agents using cURL 99

2.35 DisplayingMaintenance Policies 100

2.35.1 Displaying Maintenance Policies using cURL 102

2.36 Displaying Details of Maintenance Policies 102

2.36.1 Displaying Details of Maintenance Policies using cURL 104

2.37 Displaying the Hosts Managed in the Target Environment 105

2.37.1 Displaying the Hosts Managed in the Target Environment using cURL 107

2.38 Displaying the Details of the Tests 108

2.38.1 Displaying the Details of the Tests using cURL 111

2.39 Displaying Test Names for a Component Type 111

2.39.1 Displaying Test Names for a Component Type using cURL 114

2.40 Disassociating Agents fromManagers in a Redundant Setup 114

2.40.1 Disassociating Agents from Managers in a Redundant Setup using cURL 116

2.41 Unmanaging a Component 117

2.41.1 Unmanaging a Component using cURL 119

CHAPTER 3: PERFORMINGOPERATIONS IN BULK USINGEG REST API 121

3.1 Adding Components in Bulk 121

3.1.1 Adding Components in Bulk using cURL 125

3.2Managing Components in Bulk 126

3.2.1 Managing Components in Bulk using cURL 128

3.2.2 Managing Components in Bulk using cURL 129

3.3Modifying Components in Bulk 130

3.3.1 Modifying Components in Bulk using cURL 133

3.4 Deleting Components in Bulk 134

3.4.1 Deleting Components in Bulk using cURL 137

3.5 Unmanaging Components in Bulk 137

3.5.1 Unmanaging Components in Bulk using cURL 140

3.6 Adding Remote Agents in Bulk 141

3.6.1 Adding Remote Agents in Bulk using cURL 143

3.7 Adding External Agents in Bulk 144

3.7.1 Adding External Agents in Bulk using cURL 147

3.8 Deleting Remote Agents in Bulk 148

3.8.1 Deleting Remote Agents in Bulk using cURL 150

3.9 Deleting External Agents in Bulk 151

3.9.1 Deleting External Agents in Bulk using cURL 153

CHAPTER 4: RETRIEVINGANALYTICALDATA FROM EGMANAGER USINGEGREST API 154

4.1 Retrieving Count of Alarms Raised in the Target Environment 154

4.1.1 Retrieving Count of Alarms Raised in the Target Environment using cURL 156

4.2 Retrieving LiveMeasures of a Component 156

4.2.1 Retrieving Live Measures of a Component using cURL 159

4.3 Retrieving Historical Data of aMeasure 160

4.3.1 Retrieving Historical Data of a Measure using cURL 163

4.4 Retrieving Detailed Diagnosis of aMeasure 164

4.4.1 Retrieving Detailed diagnosis of a Measure using cURL 168

4.5 Retrieving Top-N Analysis Data 168

4.5.1 Retrieving Top-N Analysis Data using cURL 171

4.6 Retrieving Test Data 171

4.6.1 Retrieving Test Data using cURL 174

4.7 Retrieving Trend Data 175

4.7.1 Retrieving Trend Data using cURL 178

4.8 Retrieving Threshold Data 179

4.8.1 Retrieving Threshold Data using cURL 182

4.9 Retrieving Infrastructure Health 183

4.9.1 Retrieving Infrastructure Health using cURL 186

4.10 Retrieving Problem Distribution of Components 187

4.10.1 Retrieving Problem Distribution of Components using cURL 189

4.11 Retrieving Problem Distribution of the Target Environment 190

4.11.1 Retrieving Problem Distribution for all Component Types 190

4.11.2 Retrieving Problem Distribution for all Component Types using cURL 192

4.11.3 Retrieving Problem Distribution for all Components 193

4.11.4 Retrieving Problem Distribution for all Components using cURL 195

4.11.5 Retrieving Problem Distribution of the Layers of a Component Type 196

4.11.6 Retrieving Problem Distribution of the Layers of a Component Type using cURL 198

4.11.7 Retrieving Problem Distribution of the Tests of a Component Type 199

4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using cURL 201

4.12 Retrieving the Count of Events from Alarm History 202

4.12.1 Retrieving the Count of Events from Alarm History for all Component Types 202

4.12.2 Retrieving the Count of Events from Alarm History for all Component Types using cURL 204

4.12.3 Retrieving the Count of Events for all Components 205

4.12.4 Retrieving the Count of Events for all Components using cURL 207

4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type 208

4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type using 211

cURL

4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type 211

4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type using
cURL 214

4.13 Retrieving Problem Duration 214

4.13.1 Retrieving Problem Duration for Component Types 215

4.13.2 Retrieving Problem Duration for all Component Types using cURL 217

4.13.3 Retrieving Problem Duration for all Components 217

4.13.4 Retrieving Problem Duration for all Components using cURL 219

4.13.5 Retrieving Problem Duration for all Layers of a Component Type 220

4.13.6 Retrieving Problem Duration for all Layers of a Component Type using cURL 222

4.13.7 Retrieving Problem Duration for all Tests of a Component Type 223

4.13.8 Retrieving Problem Duration for all Tests of a Component Type using cURL 225

4.14 Retrieving Percentage of Proactive Alarms in the Target Environment 226

4.14.1 Retrieving Percentage of Proactive Alarms across Component Types 226

4.14.2 Retrieving Percentage of Proactive Alarms across Component Types using cURL 229

4.14.3 Retrieving Percentage of Proactive Alarms across all Components 229

4.14.4 Retrieving Percentage of Proactive Alarms across Components using cURL 232

4.14.5 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type 232

4.14.6 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type using cURL 235

CHAPTER 5: EXTRACTINGMISCELLANEOUS DATA FROM EG MANAGER USING
EG REST API 236

5.1 Retrieving Details of Components Managed in the target environment 236

5.1.1 Retrieving Details of Components Managed in the target environment using cURL 238

5.2 Retrieving Zone Details from eG Manager 239

5.2.1 Retrieving Zone Details from eG Manager using cURL 241

5.3 Retrieving the Tests Supported by eh Enterprise Using eG REST API 242

5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL 244

5.4 Retrieving theMeasurements Reported by eG Enterprise 245

5.4.1 Retrieving the Measurements Reported by eG Enterprise using cURL 247

5.5 Retrieving Applications Monitored by eG Enterprise Using eG REST API 248

5.5.1 Retrieving the Applications Monitored by eG Enterprise using cURL 250

ABOUT EG INNOVATIONS 252

Table of Figures
Figure 1.1: How the eG REST API works 2

Figure 2.1: Example to add components using Postman REST Client 6

Figure 2.2: Adding components using cURL 7

Figure 2.3: Example to add an external agent using Postman REST Client 9

Figure 2.4: Adding an external agent using cURL 10

Figure 2.5: Example to add a group using Postman REST Client 12

Figure 2.6: Adding a group using cURL 13

Figure 2.7: Example to add a maintenance policy using Postman REST Client 15

Figure 2.8: Adding a maintenance policy using cURL 16

Figure 2.9: Example to add a remote agent using Postman REST Client 18

Figure 2.10: Adding a remote agent using cURL 18

Figure 2.11: Example to add a new user using Postman REST Client 21

Figure 2.12: Adding a user using cURL 22

Figure 2.13: Example to add a zone using Postman REST Client 24

Figure 2.14: Adding a zone using cURL 25

Figure 2.15: Assigning an agent to the eG manager in a redundant setup using Postman REST Client 27

Figure 2.16: Assigning an agent to the eG manager in a redundant setup using cURL 28

Figure 2.17: Assigning a Maintenance Policy using Postman REST Client 30

Figure 2.18: Assigning a maintenance policy using cURL 31

Figure 2.19: Example to associate components to a user using Postman REST Client 33

Figure 2.20: Associating components to a user using cURL 34

Figure 2.21: Deleting a Component using Postman REST Client 36

Figure 2.22: Deleting a component using cURL 37

Figure 2.23: Deleting an external agent using Postman REST Client 39

Figure 2.24: Deleting an external agent using cURL 39

Figure 2.25: Deleting a Group using Postman REST Client 41

Figure 2.26: Deleting a group using cURL 42

Figure 2.27: Example to delete a maintenance policy using Postman REST Client 44

Figure 2.28: Deleting a maintenance policy using cURL 44

Figure 2.29: Deleting a remote agent using Postman REST Client 46

Figure 2.30: Deleting a remote agent using cURL 47

Figure 2.31: Deleting a User using Postman REST Client 49

Figure 2.32: Deleting a user using cURL 49

Figure 2.33: Deleting a zone using Postman REST Client 51

Figure 2.34: Deleting a zone using cURL 52

Figure 2.35: Disabling one/more tests of a chosen component type using Postman REST Client 54

Figure 2.36: Disabling one/more tests of a chosen component type using cURL 55

Figure 2.37: Enabling one/more tests for a chosen component type using Postman REST Client 57

Figure 2.38: Enabling one/more tests for a chosen component type using cURL 58

Figure 2.39: Example for excluding Components for Test using Postman REST Client 60

Figure 2.40: Excluding one/more components for a test using cURL 61

Figure 2.41: Excluding one/more tests for a Component using Postman REST Client 63

Figure 2.42: Excluding one/more tests for a Component using cURL 64

Figure 2.43: Example to include one/more components for a test using Postman REST Client 66

Figure 2.44: Including one/more components for a test using cURL 67

Figure 2.45: Example to include one/more tests for a component using Postman REST Client 69

Figure 2.46: Including one/more tests for a component using cURL 70

Figure 2.47: Example to manage components using Postman REST Client 72

Figure 2.48: Managing a component using cURL 73

Figure 2.49: Example to modify the details of a component using Postman REST Client 75

Figure 2.50: Modifying a component using cURL 76

Figure 2.51: Example to modify the details of a group using Postman REST Client 78

Figure 2.52: Modifying the details of an existing group using cURL 79

Figure 2.53: Example to modify the details of an existing maintenance policy using Postman REST Client 81

Figure 2.54: Modifying the details of an existing maintenance policy using cURL 82

Figure 2.55: Example to modify a user using Postman REST Client 84

Figure 2.56: Modifying a user using cURL 85

Figure 2.57: Example to modify a zone using Postman REST Client 87

Figure 2.58: Modifying a zone using cURL 88

Figure 2.59: Example to rename a group using Postman REST Client 89

Figure 2.60: Renaming a group using cURL 90

Figure 2.61: Example to rename an existing Zone using Postman REST Client 92

Figure 2.62: Renaming a zone using cURL 92

Figure 2.63: Displaying the components in the target environment using Postman REST Client 95

Figure 2.64: Displaying the components in the target environment using cURL 96

Figure 2.65: Displaying the External agents in the target environment using Postman REST Client 97

Figure 2.66: Displaying all the external agents in the target environment using cURL 98

Figure 2.67: Displaying the Remote agents configured in the target environment using Postman REST Client 99

Figure 2.68: Displaying all the remote agents in the target environment using cURL 100

Figure 2.69: Displaying the Maintenance Policies configured in the target environment using Postman
REST Client 101

Figure 2.70: Displaying the maintenance policies in the target environment using cURL 102

Figure 2.71: Displaying the details of the Maintenance Policies in the target environment using Postman
REST Client 104

Figure 2.72: Displaying the details of the Maintenance Policies in the target environment using cURL 105

Figure 2.73: Displaying the hosts managed in the target environment using Postman REST Client 107

Figure 2.74: Displaying the hosts managed in the target environment using cURL 108

Figure 2.75: Displaying the details of a test using Postman REST Client 110

Figure 2.76: Displaying the details of a test using cURL 111

Figure 2.77: Displaying the tests for a chosen Component Type using Postman REST Client 113

Figure 2.78: Displaying the tests for a chosen Component Type using cURL 114

Figure 2.79: Unassign agents from the eG managers in a redundant setup using Postman REST Client 116

Figure 2.80: Unassigning agents from the eG managers in a redundant setup using cURL 117

Figure 2.81: Unmanaging a component using Postman REST Client 119

Figure 2.82: Unmanaging a component using cURL 120

Figure 3.1: Example to add components in bulk using Postman REST Client 125

Figure 3.2: Adding components in bulk using cURL 126

Figure 3.3: Managing components in bulk using cURL 129

Figure 3.4: Managing Components in bulk using cURL 129

Figure 3.5: Modifying Components in bulk using Postman REST Client 133

Figure 3.6: Modifying Components in bulk using cURL 133

Figure 3.7: Deleting Components in bulk using Postman REST Client 136

Figure 3.8: Deleting components in bulk using cURL 137

Figure 3.9: Unmanaging Components in bulk using Postman REST Client 140

Figure 3.10: Unmanaging components in bulk using cURL 140

Figure 3.11: Example to add remote agents in bulk 143

Figure 3.12: Adding remote agents in bulk using cURL 144

Figure 3.13: Example to add external agents in bulk using Postman REST Client 147

Figure 3.14: Adding external agents in bulk using cURL 147

Figure 3.15: Deleting remote agents in bulk using Postman REST Client 150

Figure 3.16: Deleting remote agents in bulk using cURL 150

Figure 3.17: Example to delete external agents in bulk using Postman REST Client 153

Figure 3.18: Deleting external agents in bulk using cURL 153

Figure 4.1: Example to retrieve current alarm count using Postman REST Client 155

Figure 4.2: Retrieving current alarm count in the target environment using cURL 156

Figure 4.3: Example to retrieve current measures of a component using Postman REST Client 159

Figure 4.4: Retrieving current measures of a component using cURL 160

Figure 4.5: Retrieving historical data of a measure using Postman REST Client 163

Figure 4.6: Retrieving historical data of a measure using cURL 164

Figure 4.7: Retrieving detailed diagnosis of a measure using Postman REST Client 167

Figure 4.8: Retrieving Detailed diagnosis of a measure using cURL 168

Figure 4.9: Retrieving Top-N Analysis Data using Postman REST Client 170

Figure 4.10: Retrieving Top-N Analysis Data using cURL 171

Figure 4.11: Retrieving measurement data of a test using Postman REST Client 174

Figure 4.12: An example cURL command to retrieve the measurement data of the test 174

Figure 4.13: Sample output with the measurement data of a test across all monitored component types 175

Figure 4.14: Retrieving trend data of a chosen measure using Postman REST Client 178

Figure 4.15: An example cURL command to retrieve the trend data for the measures 178

Figure 4.16: Sample output with the trend data for the chosen measures of a chosen test 179

Figure 4.17: Retrieving Threshold data configured for the measures using Postman REST Client 182

Figure 4.18: An example cURL command to retrieve the threshold configured for the measures 182

Figure 4.19: Sample output with the threshold data configured for the measures of a chosen test 183

Figure 4.20: Retrieving the health of the components in a zone using Postman REST Client 186

Figure 4.21: Retrieving the health of the components in a zone using cURL 187

Figure 4.22: Retrieving the priority based problem distribution of a chosen component using Postman
REST Client 189

Figure 4.23: Retrieving the priority based problem distribution of a chosen component using cURL 190

Figure 4.24: Retrieving the alarm count based on severity for all component types using Postman REST Client 192

Figure 4.25: Retrieving the alarm count based on severity for all component types using cURL 193

Figure 4.26: Retrieving the alarm count based on severity for all components using Postman REST Client 195

Figure 4.27: Retrieving the alarm count based on severity for all components using cURL 196

Figure 4.28: Retrieving the alarm count based on severity for all layers of a Component Type using Postman
REST Client 198

Figure 4.29: Retrieving the alarm count based on severity for all layers of a Component Type using cURL 199

Figure 4.30: Retrieving the alarm count based on severity for all tests of a Component Type using Postman
REST Client 201

Figure 4.31: Retrieving the alarm count based on severity for all tests of a Component Type using cURL 202

Figure 4.32: Retrieving count of events from Alarm History for all Component Types using Postman REST Client204

Figure 4.33: Retrieving count of events from Alarm History for all Component Types using cURL 205

Figure 4.34: Retrieving count of events from Alarm History for all Components using Postman REST Client 207

Figure 4.35: Retrieving count of events from Alarm History for all Components using cURL 208

Figure 4.36: Retrieving count of events from Alarm History for the layers of a component type using Postman
REST Client 210

Figure 4.37: Retrieving count of events from Alarm History for the layers of a component type using cURL 211

Figure 4.38: Retrieving count of events from Alarm History for the tests of a component type using Postman
REST Client 213

Figure 4.39: Retrieving count of events from Alarm History for the tests of a component type using cURL 214

Figure 4.40: Retrieving the duration for which an alarm was open for all Component Types using Postman
REST Client 216

Figure 4.41: Retrieving the duration for which an alarm was open for all Component Types using cURL 217

Figure 4.42: Retrieving the duration for which an alarm was open for all Components using Postman
REST Client 219

Figure 4.43: Retrieving the duration for which an alarm was open for all Components using cURL 220

Figure 4.44: Retrieving the duration for which an alarm was open for all layers of a Component types using Post-
man REST Client 222

Figure 4.45: Retrieving the duration for which an alarm was open for all layers of a Component types using
cURL 223

Figure 4.46: Retrieving the duration for which an alarm was open for all Tests of a Component Type using Post-
man REST Client 225

Figure 4.47: Retrieving the duration for which an alarm was open for all Tests of a Component Type using cURL226

Figure 4.48: Retrieving the percentage of proactive alarms for all Component Types using Postman
REST Client 228

Figure 4.49: Retrieving the percentage of proactive alarms for all Component Types using cURL 229

Figure 4.50: Retrieving the percentage of proactive alarms for all Components using Postman REST Client 231

Figure 4.51: Retrieving the percentage of proactive alarms for all Components using cURL 232

Figure 4.52: Retrieving the percentage of proactive alarms for the layers of a component type using Postman
REST Client 234

Figure 4.53: Retrieving the percentage of proactive alarms for the layers of a component type using cURL 235

Figure 5.1: Retrieving the components corresponding to all Component Types using Postman REST Client 238

Figure 5.2: Retrieving the components corresponding to all Component Types using cURL 239

Figure 5.3: etrieving the details of the zones created in the target environment using Postman REST Client 241

Figure 5.4: Retrieving the details of the zones created in the target environment using cURL 242

Figure 5.5: Retrieving the tests supported by eG Enterprise using Postman REST Client 244

Figure 5.6: An example cURL command to retrieve the tests supported by eG Enterprise 244

Figure 5.7: Sample output with the list of tests supported by eG Enterprise 245

Figure 5.8: Retrieving the list of measurements using Postman REST Client 247

Figure 5.9: An example cURL command to retrieve the measurements 247

Figure 5.10: Sample output with the list of measurements supported by eG Enterprise 248

Figure 5.11: Retrieving the list of applications monitored using Postman REST Client 250

Figure 5.12: An example cURL command to retrieve the applications monitored by eG Enterprise 250

Figure 5.13: Sample output with the list of applications monitored by eG Enterprise 251

Chapter 1: Introduction

1

Chapter 1: Introduction

eG Enterprise is a 100%, web-based management console that allows users to view performance
metrics collected from a target infrastructure. Users with administrative rights can configure the
infrastructure that needs to be monitored. Configuration typically involves a sequence of tasks that
prepares the environment for monitoring - this includes identifying and adding the components to be
monitored, configuring the tests pertaining to these components, setting thresholds, configuring
additional external and remote agents for the environment, etc. Typically, a user must login to the
web-based eG administrative interface as an admin user in order to perform the above-mentioned
tasks.

To perform critical configuration tasks on the eG manager without logging into the eG manager, eG
Enterprise previously offered only an eG CLI capability. However, to keep pace with the growth
observed in the technologyworld, eGREST API capability is also available for a similar purpose.

A RESTful API is an application program interface (API) that uses HTTP requests to GET, PUT,
POST and DELETE data. It is based on representational state transfer (REST) technology, an
architectural style and approach to communications often used in web services development.

From any REST client, administrators can hit the URL of the eG manager using the HTTP POST
method to connect to the manager and perform administrative tasks on it. Moreover, using the eG
REST API, administrators can also retrieve analytical data (for e.g., alarms raised in the target
environment, the detailed diagnosis data of a chosen measure, health of the components in the
target environment) from the eG manager. This information can be integrated with other
management portals. Commands can also be executed in bulk using this eGREST API.

1.1 What does the REST API enable?
l Ability to automate admin activities (e.g., auto provisionmonitoring when a VM is spun up)

l Extract and analyze performancemetrics automatically

l Integration with other management portals to provide a seamless user interface

l Integration and consolidation with asset / configuration tracking systems

Chapter 1: HowDoes eG REST API Work?

From anyREST Client, administrators can perform critical configuration tasks on the eG manager.

Chapter 1: How Does eG REST API Work?

2

Figure 1.1: How the eG REST API works

1.2 Pre-Requisites for Configuring the Target Environment using
the REST API
The eG REST API capability can perform critical configuration tasks on the eG manager only when
the following pre-requisites are fulfilled:

l API consumer should have connectivity with eGmanager

l API consumer requires a valid eGuser account to access the API

l Provide valid password to be authenticated by the eGmanager

1.3 Actions Supported by the eG REST API
The eG REST API can be used to perform the following actions:

l Orchestration

l Analytics and

l Miscellaneous Services

Each of these actions is explained in detail in the forthcoming chapters.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

3

Chapter 2: The REST API Commands for Orchestration of
eG Administrative Interface

To perform the administrative activities on the eG manager, users need to provide the following
default Headers parameters. These parameters can also be set as a global variable in the
REST Client.

l managerurl: The URL of the eG manager. Example: http://192.168.8.206:7077 (Note that
this URL of the eG manager will be used in this document, wherever applicable)

l user: The user authorized to access the eGmanager. Example: john

l pwd: The password for the user. Ensure that you provide an encrypted value of the password
in this field. Note that the password should be encrypted in Base64 format.

Note:

Themanagerurl, user and pwd parameters (referred as Key values in REST Client) should be
specified in theHeaders tab of the REST Client.

The REST API supports commands for performing a bunch of administrative activities on the eG
manager that are explained in detail in the following sections.

2.1 Adding Components
This API aids in adding new components to the eG Enterprise.
Note:
A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addcomponent

Method: POST

Content-Type: application/json

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

4

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address
of the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example containing both Default and
Optional key values:

{

"hostip":"192.168.10.175",
"componenttype":"Oracle Database",
"componentname":"ora8",
"port":"1521" ,

"sid":"egoracle",

"ispassive":"no",

"externalagents":agent1"

}

Example containing both Default and
Optional key values:

{

"hostip":"192.168.10.175",
"componenttype":"Oracle Database",
"componentname":"ora8",
"port":"1521" ,

"sid":"egoracle",

"ispassive":"no",

"externalagents":agent1"

}

Body Default:

{

"hostip":"IP address of the
component",

"componenttype":"ComponentType",

"componentname":"nick name of
the component",

"port":"port at which the component
listens"

}

Optional:

{

"sid":"comma-separated list of
SIDs",

"'externalagents":"comma-
separated list of external agents
assigned to the server",

"agentless":"yes/no",

"os":"Operating System of the
server",

"mode":"Mode using which metrics
are collected",

"encrypttype":"Password/Keybased",

"keyfilename":"Key file name",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

5

Parameters Key values Example

"remoteagent":"The remote agent
that monitors the target",

"remoteport":"the port at which
Rexec/SSH listens",

"remoteuser":"Valid user name on
the target",

"remotepwd":"A valid password",

"internalagentassignment":"yes/no",

"internalagent":"IP address/nick
name of the internal agent",

"mtsenabled":"yes/no",

"virtualenv":"yes/no",

"virtualserver":"Virtual server
name",

"ispassive":"yes/no"

}

Type Code Content

JSON 200 {

"Succeed": "Component has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "Component already exist under this type."

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

6

Type Content

}

{

"Error": "Cannot add agent based component for this component type."

}

Figure 2.1: Example to add components using Postman REST Client

2.1.1 Adding Components using cURL

To add components through the REST API using cURL, the command should be specified in the
following format:

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

7

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addcomponent" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'componenttype': 'ComponentType', 'hostip': 'IP

address of the component', 'componentname': 'nick name of the component', 'port': 'port

at which the component listens', 'agentless': 'yes/no', 'remoteagent': 'The remote agent

that monitors the target', 'mode': 'Mode using which metrics are collected', 'sid':

'comma-separated list of SIDs', 'externalagents': 'comma-separated list of external

agents assigned to the server', 'os': 'Operating System of the server', 'encrypttype':

'Password/Keybased', 'remoteuser': 'Valid user name on the target', 'remoteport': 'the

port at which Rexec/SSH listens', 'remotepwd': 'A valid password',

'internalagentassignment': 'yes/no', 'internalagent': 'IP address/nick name of the

internal agent', 'mtsenabled': 'yes/no', 'virtualenv': 'yes/no', 'virtualserver':

'Virtual server name', 'ispassive':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.2 shows an example of adding components using cURL.

Figure 2.2: Adding components using cURL

2.2 Adding External Agents
Use this REST API to add external agents to the target eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/addexternalagent

Method: POST

Content-Type: application/json

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

8

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"hostip":"192.168.8.191",

"agentname":"egdp119"

}

Example containing both Default and Optional key
values:

{

"hostip":"192.168.8.191",

"agentname":"egdp119",

"clientemulation":"yes"

}

Body Default:

{

"hostip":"IP address of the
component",

"agentname":"Agent
name"

}

Optional:

{

"clientemulation":"yes/no"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "External agent has been added
successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

9

Type Content

JSON {

"Error": "Space is not allowed in component name/agent name."

}

Failure Response

Figure 2.3: Example to add an external agent using Postman REST Client

2.2.1 Adding External Agents using cURL

To add external agents through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addexternalagent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{ 'hostip': 'IP address of the component',

'agentname': 'Agent name', 'clientemulation': 'yes/no'}"

Note that the command specified above contains both Default andOptional key values.

Figure 2.4 shows an example of adding external agents using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

10

Figure 2.4: Adding an external agent using cURL

2.3 Adding Groups
Use this API to add a group comprising of one/more components to the eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/addgroup

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"groupname":"group_X",

"elements":"Citrix Logon
Simulator:TestLogon,Microsoft SQL:MSSQL:1433"

}

Body Default:

{

"groupname":"Group

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

11

Parameters Key values Example

name",

"elements":"comma-
separated list of
elements"

}

Type Code Content

JSON 200 {

"Succeed": "Group has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "Required group details"

}

{

"Error": "One or more elements do not exist or not available to associate.
Invalid elements"

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

12

Figure 2.5: Example to add a group using Postman REST Client

2.3.1 Adding aGroup using cURL

To add a group through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addgroup" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'groupname': 'Group name', 'elements': 'comma-

separated list of elements'}"

Figure 2.6 shows an example of adding a group using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

13

Figure 2.6: Adding a group using cURL

2.4 Adding Maintenance Policies
This API helps administrators addmaintenance policies to the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/addmaintenancepolicy

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"policyname":"QMPPolicy",

"timefrequency":" Thursday=10:15-
11:15"

}

Body Default:

{

"policyname":"Policy name",

"timefrequency":"[Daily]/[First day of
month]/[Last day of month]/

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

14

Parameters Key values Example

[Sunday/Monday/Tuesday/Wednesday/

Thursday/Friday/

Saturday]/

Start Date-End Date]=Start Time-End
Time"

}

Note:

The format for Start Date andEnd Date isMM/DD/YYYY

The format for Start Time andEnd Time isHours:Minutes

Type Code Content

JSON 200 {

"Succeed": "Maintenance policy added successfully."

}

Success Response

Type Content

JSON {

"Error": "Invalid Time frequency."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

15

Figure 2.7: Example to add amaintenance policy using Postman REST Client

2.4.1 AddingMaintenance Policies using cURL

To add a maintenance policy through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addmaintenancepolicy" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'policyname': 'Policy name',

'timefrequency': '[Daily]/[First day of month]/[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday]/Start Date-End Date]=Start

Time-End Time'}"

Figure 2.8 shows an example of adding amaintenance policy using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

16

Figure 2.8: Adding amaintenance policy using cURL

2.5 Adding Remote Agents
Use this API to add remote agents for monitoring to the eGmanager.

URL: http://192.168.8.206:7077/api/eg/orchestration/addremoteagent

Method: POST

Content-Type: application/json

Parameters Key values Example

Header managerurl: Base URL
of the eG Manager
i.e., http://<IP address
of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"hostip":"192.168.8.192",

"agentname":"remote191"

}

Body Default:

{

"hostip":"Host IP",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

17

Parameters Key values Example

"agentname":"Remote
Agent name"

}

Type Code Content

JSON 200 {

"Succeed": "Remote agent has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "The agent name you are trying to add already exists. Please use
another agent name."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

18

Figure 2.9: Example to add a remote agent using Postman REST Client

2.5.1 Adding Remote Agents using cURL

To add a remote agent through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/adaddremoteagent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'hostip': 'Host IP', 'agentname': 'Remote

Agent name'}"

Figure 2.10 shows an example of adding a remote agent using cURL.

Figure 2.10: Adding a remote agent using cURL

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

19

2.6 Adding a User
Use this API to add a user to the eG manager.

Note:
A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/adduser

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"userid":"john",

"userrole":"monitor",

"password":"******",

"expirydate":"05/20/2021"

}

Example with both Default and Optional key
values:

{

"userid":"john",

"userrole":"monitor",

"password":"******",

"expirydate":"05/20/2021",

"alarmsbymail":"critical",

"to":"saranya1@eginnovations.com",

"cc":"saran1@eginnovations.com,

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

20

Parameters Key values Example

9840391695",

"bcc":"shara@eginnovations.com"

}

Body Default:

{

"userrole":"User role",

"userid":"User ID",

"password":"Password",

"expirydate":"MM/DD/YYYY"

}

Optional:

{

"alarmsbymail":"Critical/Major
/Minor/All",

"to":"comma-separated list
of Mail IDs/Mobile numbers",

"cc":"comma-separated list of
Mail IDs/Mobile numbers",

"bcc":"comma-separated list of
Mail IDs/Mobile numbers"

}

Type Code Content

JSON 200 {

"Succeed": "User has been created successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

21

Type Content

JSON {

"Error": "Please provide a user role."

}

{

"Error": "Please enter a valid date."

}

Failure Response

Figure 2.11: Example to add a new user using Postman REST Client

2.6.1 Adding a User using cURL

To add a user through the REST API using cURL, specify the command in the following format:

curl --location --request POST "http://<eG Manager IP:Port>/api/eg/orchestration/adduser"

-H "managerurl:http://<eG Manager IP:Port>"-H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "Content-Type: application/json" --data-raw "

{'userrole': 'User role', 'userid': 'User ID', 'password': 'Password', 'expirydate':

'MM/DD/YYYY', 'alarmsbymail":"Critical/Major/Minor/All', 'to': 'comma-separated list

of Mail IDs/Mobile numbers', 'cc': 'comma-separated list of Mail IDs/Mobile numbers',

'bcc': 'comma-separated list of Mail IDs/Mobile numbers'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.12 shows an example of adding a user using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

22

Figure 2.12: Adding a user using cURL

2.7 Adding a Zone
Use this API to add a zone to the eG manager.

Note:
A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addzone

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with both Default and Optional key values:

{

"zonename":"eastzone",

"elements":"IIS Web:web_ 2:80,group:dbgroup",

"displayimage":"Web",

"autoassociate":"yes"

}

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

23

Parameters Key values Example

Example with Default key values:

{

{

"zonename":"westzone",

"elements":"IIS Web:web_2:80",

}

Body Default:

{

"zonename":"Zone
name",

"elements":"comma-
separated list of
elements"

}

Optional:

{

"displayimage":"Display
image",

"autoassociate":"yes/no"

}

Type Code Content

JSON 200 {

"Succeed": "Zone has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more elements do not exist or not available to associate.
Invalid elements"

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

24

Figure 2.13: Example to add a zone using Postman REST Client

2.7.1 Adding a Zone using cURL

To add components through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager IP:Port>/api/eg/orchestration/addzone"

-H "managerurl:http://<eG Manager IP:Port>"-H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "Content-Type: application/json" --data-raw "

{'zonename':'Zone name', 'elements':'comma-separated list of elements',

'displayimage':'Display image', 'autoassociate':'yes/no'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.14 shows an example of adding a zone using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

25

Figure 2.14: Adding a zone using cURL

2.8 Assigning an Agent
Use this command to assign agents to amanager in a redundant setup.

URL: http://192.168.8.206:7077/api/eg/orchestration/assignagents

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"managerip":"192.168.8.191",

"agentname":"egdp119,egdp201"

}

Body {

"managerip":"IP of

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

26

Parameters Key values Example

the eG manager to
which agents are to
be assigned",

"agents":"comma-
separated list of
agents"

}

Type Code Content

JSON 200 {

"Succeed": "one or more agents assigned successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more agents in not valid. Please give valid agent name."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

27

Figure 2.15: Assigning an agent to the eG manager in a redundant setup using Postman REST Client

2.8.1 Assigning an Agent using cURL

To assign an eG agent to an eG manager in a redundant setup through the REST API using cURL,
the command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/unassignagents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'managerip':'IP of the eG manager from

which agents are to be delinked', 'agents':'Comma-separated list of agents'}"

Figure 2.16 shows an example of assigning the eG agent to an eG manager in a redundant setup
using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

28

Figure 2.16: Assigning an agent to the eG manager in a redundant setup using cURL

2.9 Assigning a Maintenance Policy
Use this API to associate/dissociate a maintenance Policy to a Component/Host/Test/Test For
Host/Test For Component/Test For component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/assignmaintenancepolicy

Method: POST

Content-Type: application/json

Parameters Key Values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"policyname":"QMP1",

"associatefor":"Component",

"componentsby": "Component Type",

"componenttype":"microsoft windows",

"associateelements":"windowsos191
,windows195"

}

Body Default:

{

"policyname":"Policy name"

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

29

Parameters Key Values Example

"associatefor":"Host/Component/Test/
Test For Host/Test For component/
Test For component type"

"componentsby":"Zone/Segment
/Service/Component Type"

"zone":"Zone name"

"segment":"Segment name"

"service":"Service name"

"componenttype":"Component type"

"test":"Test name"

"associateelements":"comma-
separated list of elements"

"disassociateelements":"comma-
separated list of elements"

}

Type Code Content

JSON 200 {

"Succeed": "Maintenance policy has been
associated/dissociated successfully."

}

Success Response

Type Content

JSON {

"Error": "Element(s) you are trying to add does/do not exist."

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

30

Type Content

}

Figure 2.17: Assigning aMaintenance Policy using Postman REST Client

2.9.1 Assigning aMaintenance Policy using cURL

To assign a maintenance policy through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/assignmaintenancepolicy" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'policyname':'Policy name',

'associatefor':'Host/Component/Test/Test For Host/Test For component/Test For component

type', 'componentsby':'Zone/Segment/Service/Component Type', 'zone':'Zone name',

'segment':'Segment name', 'service':'Service name', 'componenttype':'Component type',

'test':'Test name', 'associateelements':'comma-separated list of elements',

'disassociateelements':'comma-

separated list of elements'}"

Figure 2.18 shows an example of assigning amaintenance policy using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

31

Figure 2.18: Assigning amaintenance policy using cURL

2.10 Associating Components to User
Using this API, administrators can associate components to a user.

Note:
A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/associatecomponentstouser

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default Key Values:

{

"userid":"john",

"componenttype":"microsoft windows",

"components":"dev153,win155,win156"

}

Example with both Default and Optional Key
Values:

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

32

Parameters Key values Example

{

"userid":"john",

"componenttype":"microsoft windows",

"components":"dev153,win155,win156"

"autossociatetype":"yes"

}

Body Default:

{

"userid":"User ID",

"componenttype":"Component
type",

"components":"comma-
separated list of Nick names",

}

Optional:

{

"autoassociatetype":"yes/no"

}

Type Code Content

JSON 200 {

"Succeed": "One or more components have been
associated successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more component names do not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

33

Figure 2.19: Example to associate components to a user using Postman REST Client

2.10.1 Associating Components to User using cURL

To associate components to a user through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/associatecomponentstouser" -H "managerurl:http://<eG

Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded

password" -H "Content-Type: application/json" --data-raw "{'userid':'User ID',

'componenttype':'Component type', 'components':'comma-separated list of Nick names',

'autoassociatetype':'yes/no'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.20 shows an example of associating components to a user using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

34

Figure 2.20: Associating components to a user using cURL

2.11 Deleting a Component
Use this API to delete a component from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletecomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"Microsoft SQL",

"componentname":"MSSQL",

"port":"1433"

}

Example with both Default and Optional Key
Values:

{

"componenttype":"Oracle Database",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

35

Parameters Key values Example

"componentname":"oradb4",

"port":"1521"

"sid":"egora"

}

Body Default:

{

"componenttype":"Component
type",

"componentname":"The nick
name of the component",

"port":"Port",

}

Optional:

{

"sid":"SID"

}

Note:

If an Oracle Database server is added with multiple SIDs, then the eGEnterprise systemwill monitor
each SID as a different Oracle Database server. Therefore, while removing an Oracle Database
server that supportsmultiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

Type Code Content

JSON 200 {

"Succeed": "Component has been removed successfully."

}

Success Response

Type Content

JSON {

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

36

Type Content

"Error": "The selected component does not exist."

}

Figure 2.21: Deleting a Component using Postman REST Client

2.11.1 Deleting a Component using cURL

To delete a component through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deletecomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'ComponentType',

'componentname': 'nick name of the component', 'port': 'port at which the component

listens', 'sid': 'SID'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.22 shows an example of deleting a component using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

37

Figure 2.22: Deleting a component using cURL

2.12 Deleting an External Agent
Using this API, administrators can delete an external agent from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteexternalagent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"agentname":"ext191"

}

Body Default:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

38

Parameters Key values Example

"agentname":"Agent
name"

}

Type Code Content

JSON 200 {

"Succeed": "External agent has been deleted
successfully."

}

Success Response

Type Content

JSON {

"Error": "The external agent you are trying to delete does not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

39

Figure 2.23: Deleting an external agent using Postman REST Client

2.12.1 Deleting an External Agent using cURL

To delete an external agent through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteexternalagent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'agentname':'Agent name'}"

2.12 shows an example of deleting an external agent using cURL.

Figure 2.24: Deleting an external agent using cURL

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

40

2.13 Deleting a Group
Administrators can use this API to delete a group from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletegroup

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager
i.e., http://<IP address
of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"groupname":"mynewgroup,egdbgroup"

}

Body Default:

{

"groupname":"comma-
separated list of
groups"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "Group has been deleted successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

41

Type Code Content

JSON 401
UNAUTHORIZED

{

"Error": "One or more given groups do not exist or is not
associated to any zone/segment/services. Invalid groups
: <comma-separated list of group names>"

}

Failure Response

Figure 2.25: Deleting aGroup using Postman REST Client

2.13.1 Deleting aGroup using cURL

To delete a group through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deletegroup" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'groupname':'comma-separated list of groups'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.26 shows an example of deleting a group using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

42

Figure 2.26: Deleting a group using cURL

2.14 Deleting a Maintenance Policy
Use this API to delete amaintenance policy configured in the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletemaintenancepolicy

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager
i.e., http://<IP address
of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"policyname":"QMP1,QMP2"

}

Body Default:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

43

Parameters Key values Example

"policyname":"comma-
separated list of
maintenance policies"

}

Type Code Content

JSON 200 {

"Succeed": "Maintenance policy deleted successfully."

}

Success Response

Type Content

JSON {

"Error": "Maintenance policy does not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

44

Figure 2.27: Example to delete amaintenance policy using Postman REST Client

2.14.1 Deleting aMaintenance Policy using cURL

To delete a maintenance policy through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deletemaintenancepolicy" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'policyname':'comma-separated list of

maintenance policies'}"

Figure 2.28 shows an example of deleting amaintenance policy using cURL.

Figure 2.28: Deleting amaintenance policy using cURL

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

45

2.15 Deleting a Remote Agent
Use this API to delete a remote agent from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteremoteagent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"agentname":"AG_191"

}

Body Default:

{

"agentname":"Agent
name"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "Remote agent has been deleted
successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

46

Type Content

JSON {

"Error": "The remote agent you are trying to delete does not exist."

}

Failure Response

Figure 2.29: Deleting a remote agent using Postman REST Client

2.15.1 Deleting a Remote Agent using cURL

To delete a remote agent through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteremoteagent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'agentname':'Agent name'}"

Figure 2.30 shows an example of deleting a remote agent using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

47

Figure 2.30: Deleting a remote agent using cURL

2.16 Deleting a User
Use this API to delete a user from the eGEnterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteuser

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"userid":"john,kim,sarah"

}

Body Default:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

48

Parameters Key values Example

"userid":"comma-
separated list of User
IDs"

}

Type Code Content

JSON 200 {

"Succeed": "User(s) has/have been deleted successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more users do not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

49

Figure 2.31: Deleting a User using Postman REST Client

2.16.1 Deleting a User using cURL

To delete a user through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteuser" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'userid':'comma-separated list of User IDs'}"

Figure 2.32 shows an example of deleting a user using cURL.

Figure 2.32: Deleting a user using cURL

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

50

2.17 Deleting a Zone
Use this API to delete a zone from the eG manager.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletezone

Method: POST

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"zonename":"EurAsia,globalwest"

}

Body Default:

{

"zonename":"comma-
separated list of
zones"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "Zone has been deleted successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

51

Type Content

JSON {

"Error": "One or more given zone names do not exist."

}

Failure Response

Figure 2.33: Deleting a zone using Postman REST Client

2.17.1 Deleting a Zone using cURL

To delete a zone through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deletezone" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'zonename':'comma-separated list of zones'}"

Figure 2.34 shows an example of deleting a zone using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

52

Figure 2.34: Deleting a zone using cURL

2.18 Disabling Tests
Use this API to disable one/more tests of a chosen component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/disabletests

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"Microsoft SQL",

"tests":"SQL Blocker Processes, SQL locks"

}

Example with both Default and Optional Key
Values:

{

"componenttype":"Microsoft SQL",

testtype:"configuration"

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

53

Parameters Key values Example

"tests":"Drives"

}
Body Default:

{

"componenttype":"Component
Type",

"tests":"comma-separated list
of tests"

}

Optional:

{

"testtype":"performance/
configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Test(s) is/are disabled for this component type."

}

Success Response

Type Content

JSON {

"Error": "One or more tests are not available for this component type."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

54

Figure 2.35: Disabling one/more tests of a chosen component type using Postman REST Client

2.18.1 Disabling Tests using cURL

To disable one/more tests of a chosen component type through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/disabletests" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'componenttype':'Component Type', 'tests':'comma-

separated list of tests', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.36 shows an example of disabling one/more tests of a chosen component type using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

55

Figure 2.36: Disabling one/more tests of a chosen component type using cURL

2.19 Enabling Tests
Use this API to enable one/more tests for a chosen component type.

URL: http://192.168.8.206:7077/api/eg/orchestration/enabletests

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example with both Default and Optional
Key Values:

{

"componenttype":"Microsoft SQL",

testtype:"configuration"

"tests":"Operating System,Drives"

}

Example with Default key values:

{

"componenttype":"Microsoft SQL",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

56

Parameters Key values Example

"tests":"SQL Blocker Processes,
SQL locks"

}

Body Default:

{

"componenttype":"Component Type",

"tests":"comma-separated list of tests"

}

Optional:

{

"testtype":"performance/configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Test(s) is/are enabled for this component
type."

}

Success Response

Type Content

JSON {

"Error": "One or more tests are not available for this component type."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

57

Figure 2.37: Enabling one/more tests for a chosen component type using Postman REST Client

2.19.1 Enabling Tests using cURL

To enable one/more tests for a chosen component type through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/enabletests" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'componenttype':'Component Type', 'tests':'comma-

separated list of tests', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.38 shows an example of enabling one/more tests of a chosen component type using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

58

Figure 2.38: Enabling one/more tests for a chosen component type using cURL

2.20 Exclude Components for Test
Use this API to exclude one/more components for a test.

URL: http://192.168.8.206:7077/api/eg/orchestration/excludecomponentsfortest

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"2X Client Gateway",

"componentname":"client_1:80,client_2:80",

"testname":"2X Gateway Status"

}

Example with both Default and Optional Key
Values:

{

"componenttype":"2X Client Gateway",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

59

Parameters Key values Example

"componentname":"client_1:80,client_2:80",

"testtype":"configuration",

"testname":"Drives"

}

Body Default:

{

"componenttype":"component
type",

"componentname":"comma-
separated list of component
names:Port number",

"testname":"Test name"

}

Optional:

{

"testtype":"performance/
configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Component(s) is/are excluded successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more component names do not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

60

Figure 2.39: Example for excluding Components for Test using Postman REST Client

2.20.1 Excluding Components for Test using cURL

To exclude one/more components for a test through the REST API using cURL, the command
should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/excludecomponentsfortest" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':'comma-separated list of component names:Port number', 'testname':'Test

name', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.40 shows an example of excluding one/more components for a test using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

61

Figure 2.40: Excluding one/more components for a test using cURL

2.21 Exclude Tests for Component
Use this API to exclude one/more tests for a chosen component.

URL: http://192.168.8.206:7077/api/eg/orchestration/excludetestsforcomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with both Default and Optional Key
Values:

{

"componenttype":"Active Directory",

"componentname":"actDir:389",

"testtype":"configuration",

"testname":"Operating System,Drives"

}

Example with Default key values:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

62

Parameters Key values Example

"componenttype":"Active Directory",

"componentname":"actDir:389",

"testname":"AD Replications,Application
Events."

}

Body Default:

{

"componenttype":"component
type",

"componentname":Component
name:Port number",

"testname":"comma-
separated list of test names"

}

Optional:

{

"testtype":"performance/
configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Test(s) is/are excluded successfully."

}

Success Response

Type Content

JSON {

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

63

Type Content

"Error": "One or more tests for the component are already excluded."

}

Figure 2.41: Excluding one/more tests for a Component using Postman REST Client

2.21.1 Excluding Tests for Component using cURL

To exclude one/more tests for a component through the REST API using cURL, the command
should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/excludetestsforcomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':Component name:Port number', 'testname':'comma-separated list of test

names', 'testtype':'performance/ configuration'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.42 shows an example of excluding one/more tests for a component using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

64

Figure 2.42: Excluding one/more tests for a Component using cURL

2.22 Include Components for Test
Use this API to include one/more components for a test.

URL: http://192.168.8.206:7077/api/eg/orchestration/includecomponentsfortest

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"2X Client Gateway",

"componentname":"client_1:80,client_2:80",

"testname":"2X Gateway Status"

}

Example with both Default and Optional Key
Values:

{

"componenttype":"2X Client Gateway",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

65

Parameters Key values Example

"componentname":"client_1:80,client_2:80",

"testtype":"configuration",

"testname":"Drives"

}

Body Default:

{

"componenttype":"component
type",

"componentname":"comma-
separated list of component
names:Port number",

"testname":"Test name"

}

Optional:

{

"testtype":"performance/
configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Component(s) is/are included successfully."

}

Success Response

Type Content

JSON {

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

66

Type Content

"Error": "One or more component names do not exist."

}

Figure 2.43: Example to include one/more components for a test using Postman REST Client

2.22.1 Include Components for Test using cURL

To include one/more components for a test through the REST API using cURL, the command
should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/includecomponentsfortest" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':'comma-separated list of component names:Port number', 'testname':'Test

name', 'testtype':'performance/configuration'}"

Note that the command specified above contains both the Default andOptional key values.

2.22 shows an example of including one/more components for a test using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

67

Figure 2.44: Including one/more components for a test using cURL

2.23 Include Tests for Component
Use this API to include one/more tests for a component.

URL: http://192.168.8.206:7077/api/eg/orchestration/includetestsforcomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"Active Directory",

"componentname":"actDir:389",

"testname":"AD Replications,Application
Events."

}

Example with both Default and Optional Key
Values:

{

"componenttype":"Active Directory",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

68

Parameters Key values Example

"componentname":"actDir:389",

"testtype":"configuration",

"testname":"Operating System,Drives"

}

Body Default:

{

"componenttype":"component
type",

"componentname":Component
name:Port number",

"testname":"comma-
separated list of test names"

}

Optional:

{

"testtype":"performance/
configuration",

}

Type Code Content

JSON 200 {

"Succeed": "Test(s) is/are included successfully."

}

Success Response

Type Content

JSON {

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

69

Type Content

"Error": "One or more tests are not available for this component type."

}

Figure 2.45: Example to include one/more tests for a component using Postman REST Client

2.23.1 Including Tests for Component using cURL

To include one/more tests for a component through the REST API using cURL, the command
should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/includetestsforcomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':Component name:Port number', 'testname':'comma-separated list of test

names', 'testtype':'performance/ configuration'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.46 shows an example of including one/more tests for a component using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

70

Figure 2.46: Including one/more tests for a component using cURL

2.24 Managing Components
Administrators can use this API to manage components in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/managecomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default key values:

{

"componenttype":"Microsoft SQL",

"componentname":"MSSQL",

"port":"1433"

}

Example with both Default and Optional Key
Values:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

71

Parameters Key values Example

"componenttype":"Oracle Database Server",

"componentname":"Oradb",

"port":"1521",

"sid":"egora"

}

Body Default:

{

"componentname":"The nick
name of the component",

"componenttype":"Component
type",

"port":"Port"

}

Optional:

{

"sid":"SID"

}

Type Code Content

JSON 200 {

"Succeed": "Component has been managed
successfully."

}

Success Response

Type Content

JSON {

"Error": "The selected component does not exist."

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

72

Type Content

}

Figure 2.47: Example tomanage components using Postman REST Client

2.24.1Managing Components using cURL

To manage a component through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/managecomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componentname':'The nick name of the

component', 'componenttype':'Component type', 'port':'Port', 'sid':'SID'}"

Note that the command specified above contains both the Default andOptional key values.

Figure 2.48 shows an example of managing a component using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

73

Figure 2.48: Managing a component using cURL

2.25 Modifying a Component
Use this API to modify the details of a component.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifycomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with both Default and Optional Key
Values:

{

"hostip":"192.168.11.175",

"componenttype":"Microsoft SQL",

"componentname":"MSSQL",

"oldcomponentname":"MSSQL",

"newcomponentname":"MSSQL_DB",

"newport":"1433"

}

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

74

Parameters Key values Example

Example with Default key values:

{

"componenttype":"Microsoft SQL",

"componentname":"MSSQL",

"port":"1433"

}

Body Default:

{

"hostip":"Host IP",

"componentname":"The nick
name of the component",

"componenttype":"Component
type"

}

Optional:

{

"port":"Port",

"oldhostip":"Old host IP",

"newhostip":"New host IP",

"oldcomponentname":"Old
nick name",

"newcomponentname":"New
nick name",

"oldport":"Old port",

"newport":"New port"

}

Note:

If an Oracle Database server is added with multiple SIDs, then the eGEnterprise systemwill monitor
each SID as a different Oracle Database server. Therefore, while removing an Oracle Database
server that supportsmultiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

75

Type Code Content

JSON 200 {

"Succeed": "Component has been modified successfully."

}

Success Response

Type Content

JSON {

"Error": "The old component name or port does not exist."

}

Failure Response

Figure 2.49: Example tomodify the details of a component using Postman REST Client

2.25.1Modifying a Component using cURL

To modify the details of a component through the REST API using cURL, the command should be
specified in the following format:

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

76

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifycomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'ComponentType',

'hostip': 'IP address of the component', 'componentname': 'nick name of the component',

'port': 'port at which the component listens', 'oldhostip':'Old host IP',

'newhostip':'New host IP', 'oldcomponentname':'Old nick name', 'newcomponentname':'New

nick name', 'oldport':'Old port', 'newport':'New port'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.50 shows an example of modifying a component using cURL.

Figure 2.50: Modifying a component using cURL

2.26 Modifying a Group
Administrators can use this API to modify the details of an existing group.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifygroup

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the

Example with Default key values:

{

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

77

Parameters Key values Example

eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

"groupname":"MGRGroup",

"disassociateelements":"IIS Web:iis1:80"

}

Example with both Default and Optional Key
Values:

{

"groupname":"MGRGroup",

"disassociateelements":"IIS Web:iis1:80",

"associateelements":"Active
Directory:ad:1234"

}

Body Default:

{

"groupname":"Group name",

"disassociateelements":"Elements"

}

Optional:

{

"associateelements":"Elements"

}

Type Code Content

JSON 200 {

"Succeed": "Group has been modified successfully."

}

Success Response

Type Content

JSON {

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

78

Type Content

"Error": "One or more invalid elements to associate. Invalid elements"

}

Figure 2.51: Example tomodify the details of a group using Postman REST Client

2.26.1Modifying aGroup using cURL

To the details of an existing group through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifygroup" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'groupname':'Group name',

'disassociateelements':'Elements', 'associateelements':'Elements'}"

Note that the command specified above contains both the Default and Optional key values. 2.26
shows an example of the details of an existing group using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

79

Figure 2.52: Modifying the details of an existing group using cURL

2.27 Modifying a Maintenance Policy
Use this API to modify the details of an existingmaintenance policy.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifymaintenancepolicy

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example with both Default and Optional key
values:

{

"policyname":"QMP1",

"addtimefrequency":"Daily=13:30-
14:30",

"rmtimefrequency":"Daily=10:15-11:15"

}

Body Default:

{

"policyname":"Policy name"

}

Optional:

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

80

Parameters Key values Example

{

"addtimefrequency":"[Daily]/[First day
of month]/

[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday
/Thursday/Friday/Saturday]/
[MM/DD/YYYY-
MM/DD/YYYY]=HH:MM-HH:MM",

"rmtimefrequency":"[Daily]/[First day
of month]/

[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday
/Thursday/Friday/Saturday]/
[MM/DD/YYYY-
MM/DD/YYYY]=HH:mm-HH:MM"

}

Type Code Content

JSON 200 {

"Succeed": "Maintenance policy modified successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more time frequencies you are trying to remove do not
exist."

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

81

Type Content

}

Figure 2.53: Example tomodify the details of an existingmaintenance policy using Postman REST Client

2.27.1Modifying aMaintenance Policy using cURL

To modify the details of an existing maintenance policy through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifymaintenancepolicy" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'policyname':'Policy name',

'addtimefrequency':'[Daily]/[First day of month]/[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday]/[MM/DD/YYYY-MM/DD/YYYY]=HH:MM-

HH:MM', 'rmtimefrequency':'[Daily]/[First day of month]/[Last day of month]/

[Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday]/[MM/DD/YYYY-MM/DD/YYYY]=HH:mm-

HH:MM'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.54 shows an example of modifying the details of an existingmaintenance policy using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

82

Figure 2.54: Modifying the details of an existingmaintenance policy using cURL

2.28 Modifying a User
Administrators can use this API to modify a user existing in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifyuser

Method: POST

Content-Type: application/json

Para-
meters

Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example:

{

"userid":"john",

"userrole":"AlarmViewer",

"password":"******",

"expirydate":"12/12/2024",

"alarmsbymail":"saran1@eginnovations.co
m,
9884011111",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

83

Para-
meters

Key values Example

"cc":"saranya@eginnovations.com,
9840391695",

"bcc":"sample@eginnovations.com"

}

Body Default:

{

"userid":"User ID"

}

Optional:

{

"userrole":"User role",

"password":"Password",

"expirydate":"MM/dd/yyyy",

"alarmsbymail":"Critical/Major/Mino
r/
All",

"to":"comma-separated list of Mail
IDs/Mobile numbers",

"cc":"comma-separated list of Mail
IDs/Mobile numbers",

"bcc":"comma-separated list of Mail
IDs/Mobile numbers"

}

Type Code Content

JSON 200 {

"Succeed": "User has been modified successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

84

Type Content

JSON {

"Error": "User ID does not exist."

}

Failure Response

Figure 2.55: Example tomodify a user using Postman REST Client

2.28.1Modifying a User using cURL

To modify a user through the REST API using cURL, the command should be specified in the
following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifyuser" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'userid':'User ID', 'userrole':'User role',

'password':'Password', 'expirydate':'MM/dd/yyyy',

'alarmsbymail':'Critical/Major/Minor/All', 'to':'comma-separated list of Mail IDs/Mobile

numbers', 'cc':'comma-separated list of Mail IDs/Mobile numbers', 'bcc':'comma-separated

list of Mail IDs/Mobile numbers'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.56 shows an example of modifying a user using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

85

Figure 2.56: Modifying a user using cURL

2.29 Modifying a Zone
Administrators can use this API to modify the details of a zone created in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifyzone

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address
of the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"zonename":"westzone",

"displayimage":"Banking",

"disassociateelements":"Microsoft
SQL:MSSQL_DB:1433"

}
Body Default:

{

"zonename":"Zone name"

}

Optional:

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

86

Parameters Key values Example

{

"associateelements":"Elements",

"disassociateelements":"Elements",

"displayimage":"Display image",

"autoassociate":"yes/no"

}

Type Code Content

JSON 200 {

"Succeed": "Zone has been modified successfully."

}

Success Response

Type Content

JSON {

"Error": "One or more invalid elements to associate. Invalid elements"

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

87

Figure 2.57: Example tomodify a zone using Postman REST Client

2.29.1Modifying a Zone using cURL

To modify the details of a zone through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifyzone" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'zonename':'Zone name',

'associateelements':'Elements', 'disassociateelements':'Elements',

'displayimage':'Display image', 'autoassociate':'yes/no'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.58 shows an example of modifying a zone using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

88

Figure 2.58: Modifying a zone using cURL

2.30 Renaming a Group
Use this API to rename an existing group in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/renamegroup

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"groupname":"westgroup",

"newgroupname":"West_group"

}

Body Default:

{

"groupname":"Group
name",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

89

Parameters Key values Example

"newgroupname":"New
group name"

}

Type Code Content

JSON 200 {

"Succeed": "Group has been renamed successfully."

}

Success Response

Type Content

JSON {

"Error": "The given group does not exist."

}

Failure Response

Figure 2.59: Example to rename a group using Postman REST Client

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

90

2.30.1 Renaming aGroup using cURL

To rename an existing group through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/renamegroup" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'groupname':'Group name', 'newgroupname':'New group

name'}"

Figure 2.60 shows an example of renaming a group using cURL.

Figure 2.60: Renaming a group using cURL

2.31 Renaming a Zone
Administrators can use this API to rename an existing Zone in eG Enterprise.

URL: http://192.168.8.206:7077/api/eg/orchestration/renamezone

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the

{

"zonename":"Northzone",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

91

Parameters Key values Example

eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

"newzonename":"North_zone"

}

Body Default:

{

"zonename":"Zone
name",

"newzonename":"New
zone name"

}

Type Code Content

JSON 200 {

"Succeed": "Zone has been renamed successfully."

}

Success Response

Type Content

JSON {

"Error": "The given zone does not exist."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

92

Figure 2.61: Example to rename an existing Zone using Postman REST Client

2.31.1 Renaming a Zone using cURL

To rename an existing zone through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/renamezone" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'zonename':'Zone name', 'newzonename':'New zone

name'}"

Figure 2.62 shows an example of renaming a zone using cURL.

Figure 2.62: Renaming a zone using cURL

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

93

2.32 Displaying Components
Administrators can use this API to display all the components available in the target environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showcomponents

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"componenttype":"Citrix XenApp7.x"

}

Body Default:

{

"componenttype":"Component
type"

}

Inputs to be Specified

Type Code Content

JSON 200 [

{

"componentType": "Real User Monitor",

"ip": "192.168.8.191",

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

94

Type Code Content

"componentName": "11_196_RUM",

"port": "-",

"externalAgent": "mobilecollector",

"internalAgent": "mobilecollector"

},

.

.

.

]

Type Content

JSON {

"Error": "Component type is not available."

}

Failure Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

95

Figure 2.63: Displaying the components in the target environment using Postman REST Client

2.32.1 Displaying Components using cURL

To display the components in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showcomponents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype': 'Component Type'}"

Figure 2.64 shows an example of displaying the components in the target environment using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

96

Figure 2.64: Displaying the components in the target environment using cURL

2.33 Displaying External Agents
Use this API to display all the external agents in the target environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showexternalagents

Method: POST

Content-Type: application/json

Parameters Key values Example

Header managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Not Applicable

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

97

Type Code Content

JSON 200 [

{

"agentName": "mobilecollector",

"hostIp": "mobilecollector"

},

.

.

.

]

Success Response

Figure 2.65: Displaying the External agents in the target environment using Postman REST Client

2.33.1 Displaying External Agents using cURL

To display all the external agents in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showexternalagents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password"

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

98

Figure 2.66 shows an example of displaying all the external agents in the target environment using
cURL.

Figure 2.66: Displaying all the external agents in the target environment using cURL

2.34 Displaying Remote Agents
Use this API to display all the remote agents in the target environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showremoteagents

Method: POST

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Not Applicable

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

99

Type Code Content

JSON 200 [

{

"agentName": "mobilecollector",

"hostIp": "mobilecollector"

},

.

.

.

]

Success Response

Figure 2.67: Displaying the Remote agents configured in the target environment using Postman REST Client

2.34.1 Displaying Remote Agents using cURL

To display all the remote agents in the target environment through the REST API using cURL, the
command should be specified in the following format:

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

100

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showremoteagents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password"

Figure 2.68 shows an example of displaying all the remote agents in the target environment using
cURL.

Figure 2.68: Displaying all the remote agents in the target environment using cURL

2.35 Displaying Maintenance Policies
Administrators can use this API to display all the maintenance policies configured in the target
environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmaintenancepolicynames

Method: POST

Parameters Key values Example

Header managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

Not Applicable

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

101

Parameters Key values Example

pwd: Base64 encoded
password

Type Code Content

JSON 200 {

"policyNames": [

"esx_maintenance",

"Manual_restart",

"VDI_maintenance"

]

}

Success Response

Figure 2.69: Displaying theMaintenance Policies configured in the target environment using Postman
REST Client

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

102

2.35.1 DisplayingMaintenance Policies using cURL

To display all the maintenance policies configured in the target environment through the REST API
using cURL, the command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showmainteanncepolicynames" -H "managerurl:http://<eG

Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded

password"

Figure 2.70 shows an example of displaying the maintenance policies configured in the target
environment using cURL.

Figure 2.70: Displaying themaintenance policies in the target environment using cURL

2.36 Displaying Details of Maintenance Policies
Use this API to display all the details of the Maintenance Policies configured in the target
environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmaintenancepolicydetails

Method: POST

Content-Type: application/json

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

103

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager
i.e., http://<IP address
of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"policyname":"QMP1, QMP2"

}

Body Default:

{

"policyname":"comma-
separated list of
Maintenance Policies"

}

Inputs to be Specified

Type Code Content

JSON 200 [

{

"policyName": "VDI_maintenance",

"policyStatus": "Deactive",

"policySchedule": ["Last Day of Month=00:00-23:59"],

"nextScheduleDate": "Sep 30, 2020 0:00-23:59",

"associatedElements": {

"component": ["Vdi_113"]

}

},

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

104

Type Code Content

.

.

.

]

Type Content

JSON {

"Error": "One or more maintenance policy does/do not exist."

}

Failure Response

Figure 2.71: Displaying the details of theMaintenance Policies in the target environment using Postman
REST Client

2.36.1 Displaying Details of Maintenance Policies using cURL

To display the details of the Maintenance Policies in the target environment through the REST API
using cURL, the command should be specified in the following format:

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

105

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showmaintenancepolicydetails" -H "managerurl:http://<eG

Manager IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded

password" -H "Content-Type: application/json" --data-raw "{'policyname':'comma-separated

list of Maintenance Policies'}"

Figure 2.72 shows an example of displaying the details of theMaintenance Policies using cURL.

Figure 2.72: Displaying the details of theMaintenance Policies in the target environment using cURL

2.37 Displaying the Hosts Managed in the Target Environment
Use this API to display the hosts that aremanaged in the target environment.

URL: http://192.168.8.206:7077/api/eg/orchestration/showmanagedhosts

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

Example with Default Key values:

{

"agentname":"192.168.11.136"

}

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

106

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with Default and Optional Key values:

{

"agentname":"ext12"

"agenttype":" External agent"

}
Body Default:

{

"agentname":"Agent
name"

}

Optional:

{

"agenttype":"External
agent/Remote agent"

}

Note that the agentname key value is case-sensitive.

Type Code Content

JSON 200 {

"managedHosts": [

"Esx_14",

"mobilecollector",

"network_10",

"Rds_196",

"Vdi_113",

"windows1"

]

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

107

Figure 2.73: Displaying the hosts managed in the target environment using Postman REST Client

2.37.1 Displaying the Hosts Managed in the Target Environment using cURL

To display the hosts managed in the target environment through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showmanagedhosts" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'agentname':'Agent name',

'agenttype':'External agent/Remote agent'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.74 shows an example of displaying the hostsmanaged in the target environment using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

108

Figure 2.74: Displaying the hosts managed in the target environment using cURL

2.38 Displaying the Details of the Tests
Use this API to display the details of a test pertaining to a chosen Component Type.

URL: http://192.168.8.206:7077/api/eg/orchestration/showtestsdetails

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example with Optional Key values:

{

"componenttype": "Citrix NetScaler
VPX/MPX",

"componentname": "Netscaler176:NULL",

"testtype": "Performance",

"testname": "Application Flows"

}

Body Optional:

{

"componenttype":"Component
type",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

109

Parameters Key values Example

"componentname":"Component
name",

"testtype":"Performance /
Configuration",

"testname":"Test name"

}

Type Code Content

JSON 200 [

{

"componentType": "Citrix NetScaler VPX/MPX",

"componentName": "Netscaler176:NULL",

"testType": {

"performance": [

{

"testName": "Application Flows",

"details": {

"TESTPERIOD": "5 mins",

"HOST": "192.168.10.176",

"NETSCALER USERNAME": "$unconfigured",

"NETSCALER PASSWORD": "$unconfigured",

"SSL": "No",

"AGENTLESS": "y",

"OS": "win7",

"SSHPORT": "22"

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

110

Type Code Content

}

],

"configuration": []

}

}

]

Type Content

JSON {

"Error": "The test is not available for this component type."

}

Failure Response

Figure 2.75: Displaying the details of a test using Postman REST Client

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

111

2.38.1 Displaying the Details of the Tests using cURL

To display the details of a test through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showtestsdetails" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'Component type',

'componentname':'Component name', 'testtype':'Performance / Configuration',

'testname':'Test name'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.76 shows an example of displaying the details of a test using cURL.

Figure 2.76: Displaying the details of a test using cURL

2.39 Displaying Test Names for a Component Type
Administrators can use this API to obtain all the performance/configuration tests pertaining to a
chosen Component Type.

URL: http://192.168.8.206:7077/api/eg/orchestration/showtests

Method: POST

Content-Type: application/json

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

112

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example with Default key values:

{

"componenttype:"oracle database"

}

Example with Default and Optional Key
values:

{

"componenttype":"oracle database",

"category":"enabled",

"testtype":"performance"

}

Body Default:

{

"componenttype":"Component type"

}

Optional:

{

"category":"Enabled/Disabled/All",

"testtype":"Performance/Configuration"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"enabledTests": [

"Drives",

"Drives Capacity",

"Environment Entries",

"Hotfix/Patch",

"IP Settings Configuration",

"IPC Semaphores Configuration",

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

113

Type Code Content

"IPC Shared Memory Configuration",

"Network Adapters Configuration",

"Operating System",

"Oracle Audit",

"Oracle Automatic Storage Management",

"Oracle Backup",

.

.

.

],

"disabledTests": [

"File Information"

]

}

Figure 2.77: Displaying the tests for a chosen Component Type using Postman REST Client

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

114

2.39.1 Displaying Test Names for a Component Type using cURL

To display the tests for a chosen Component Type through the REST API using cURL, the
command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/showtests" -H "managerurl:http://<eG Manager IP:Port>"-H

"user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H "Content-

Type: application/json" --data-raw "{'componenttype':'Component type',

'category':'Enabled/Disabled/All', 'testtype':'Performance / Configuration'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.78 shows an example of displaying the tests for a chosen Component Type using cURL.

Figure 2.78: Displaying the tests for a chosen Component Type using cURL

2.40 Disassociating Agents from Managers in a Redundant Setup
Use this API to unassign agents from the eG managers in a redundant setup.

URL: http://192.168.8.206:7077/api/eg/orchestration/unassignagents

Method: POST

Content-Type: application/json

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

115

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"managerip:"192.168.8.104",

"agents":"gen1,ora8"

}

Body Default:

{

"managerip":"IP of
the eG manager from
which agents are to
be delinked",

"agents":"Comma-
separated list of
agents"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "one or more agents unassigned
successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

116

Figure 2.79: Unassign agents from the eG managers in a redundant setup using Postman REST Client

2.40.1 Disassociating Agents from Managers in a Redundant Setup using
cURL

To unassign agents from the eG managers in a redundant setup through the REST API using cURL,
the command should be specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/unassignagents" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'managerip':'IP of the eG manager from

which agents are to be delinked', 'agents':'Comma-separated list of agents'}"

Figure 2.80 shows an example of unassigning agents from the eG managers in a redundant setup
using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

117

Figure 2.80: Unassigning agents from the eG managers in a redundant setup using cURL

2.41 Unmanaging a Component
To unmanage a component from the target environment, use this API.

URL: http://192.168.8.206:7077/api/eg/orchestration/unmanagecomponent

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Example with both Default and Optional Key
Values:

{

"componenttype":"Oracle Database",

"componentname":"oracleDB",

"port":"1521",

"sid":"egurkha"

}

Example with Default key values:

{

"componenttype":"Microsoft SQL",

Inputs to be Specified

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

118

Parameters Key values Example

"componentname":"MSSQL",

"port":"1433"

}

Body Default:

{

"componenttype":"component
type",

"componentname":"Nick
name",

"port":"Port",

}

Optional:

{

"sid":"SID"

}

Note:

If an Oracle Database server is added with multiple SIDs, then the eGEnterprise systemwill monitor
each SID as a different Oracle Database server. Therefore, while unmanaging an Oracle Database
server that supportsmultiple SIDs, you cannot issue a single command to remove all the SIDs at one
shot. Instead, this command should be invoked separately for each SID.

Type Code Content

JSON 200 {

"Succeed": "Component has been unmanaged
successfully."

}

Success Response

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

119

Type Content

JSON {

"Error": "Please enter the SID of the component."

}

Failure Response

Figure 2.81: Unmanaging a component using Postman REST Client

2.41.1 Unmanaging a Component using cURL

To unmanage a component through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/unmanagecomponent" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: application/json" --data-raw "{'componenttype':'component type',

'componentname':'Nick name', 'port':'Port', 'sid':'SID'}"

Note that the command specified above contains both the Default and Optional key values. Figure
2.82 shows an example of unmanaging a component using cURL.

Chapter 2: The REST API Commands for Orchestration of eG Admini strati ve

120

Figure 2.82: Unmanaging a component using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

121

Chapter 3: PerformingOperations in Bulk Using
eG REST API

One of the key benefits of the eG REST API is that, administrators are allowed to process
commands in bulk, thus allowing to performmultiple tasks simultaneously without logging into the eG
console - for instance, you can add multiple components at one shot using the eG REST API. This
saves administrators the time and trouble involved in performing redundant tasks.

To execute commands in bulk, the eG REST API requires a CSV file that contains the details of the
operations to be performed. This file (CSV) should be created on the eG Manager on which the
operations are to be performed.

Once the file is created, invoke the relevant eG REST API command from the RESTClient by
providing the manager ID and the full path to the CSV file. The command will then read the
instructions defined in the CSV file and then execute them on the specified manager to perform the
operation.

Note:

To ensure that the CSV file supports multi-byte component names and agent nick names, ensure
that you save the CSV file in the UTF-8mode.

The sections below discuss how the CSV file can be used for performingmultiple administrative
operations on an eGmanager.

3.1 Adding Components in Bulk
For every administrative operation to be performed in bulk by the eG REST API, separate CSV files
should be created. This implies that for adding new components to the eG Enterprise system, a
dedicated CSV file is required.

To configure a CSV file with the details of the components to be added, entries of the following
format should be included in that file:

Chapter 3: Performing Operations in Bulk Using eG REST API

122

Element,action

Component,add

componenttype,hostip/hostname,componentname,port,externalagents

<Details of component1>

<Details of component2>

.

.

.

For example, if you want to add 3 IIS web servers to the eGEnterprise system using the host IP, do
the following:

Element,action

Component,add

componenttype,hostip,componentname,port,mtsenabled,externalagents

IIS web,192.168.10.96,iis96,80,no,ext43

IIS web,192.168.10.173,iis173,7077,no,ext173

IIS web,192.168.10.90,web90,80,no,ext85

If you want to add 3 IIS web servers to the eGEnterprise system using the host name of the
component, do the following:

Element,action

Component,add

componenttype,hostname,componentname,port,mtsenabled,externalagents

IIS web,egurkha25,iis96,80,no,ext43

IIS web,egurkha26,iis173,7077,no,ext173

IIS web,egurkha27,web90,80,no,ext85

Note that the column names (componenttype, hostip, etc.) used here are the same as the input
parameters of the ‘addcomponent’ command supported by eG REST API (see Section 2.1 of this
document) . These column names cannot be changed. Also, while providing the details of the
components to be added, ensure that you follow the same order of the column names.

While adding components of different types or those which support different parameter sets, make
sure that you leave the columns not applicable for a component specification, blank. At the same
time, ensure that the column names you specify in the CSV file are a super-set of the parameters
supported by all the components that are being added. In other words, the column names provided
in the CSV file should correspond to the following:

l the parameters that are common across all the components to be added, and;

l the parameters that are distinct/unique for each of the components being added;

For instance, you can add an IIS web server and a Microsoft Windows component using the same
CSV file, with the help of the following specification:

Chapter 3: Performing Operations in Bulk Using eG REST API

123

Element,action

Component,add

componenttype,hostip,componentname,port,mtsenabled,externalagents IIS

web,192.168.10.96,iis96,80,no,ext43

Microsoft Windows,192.168.10.173, win173,,,ext180

In this case, note that the columns componenttype, hostip, componentname, and externalagents are
common for both the IIS web server and the Microsoft Windows server, but the port and mtsenabled
columns are supported only by the IIS web server. Moreover, since the Microsoft Windows server is
a non-port-based component and does not support the mtsenabled parameter, the columns port
and mtsenabled have been left blank in the specification that corresponds to the Microsoft Windows
server.

If you want to say, associatemultiple external agents with a component, then your specification
should include a comma-separated list of external agents provided within double-quotes:

Element,action

Component,add

componenttype,hostip,componentname,port,mtsenabled,externalagents

IIS web,192.168.10.96,iis96,80,no,"ext43,ext60"

IIS web,192.168.10.173,iis173,7077,no,ext173

Similarly, you can add anOracle database sever with multiple SIDs.

Note:

If an Oracle database server with multiple SIDs is added to the eGEnterprise system, then each SID
will be registered as a separate Oracle database server in the eGEnterprise system.

Once all the required entries are defined in the CSV file (let's say, the name of the file is
addcomponent.csv), execute the command specified in the URL of the table below to extract the
component information from the file, connect to the required eG manager, and add the specified
components to the eGEnterprise system.

Note:
A few key values of the Body parameter are optional. These optional key values are mentioned
separately in the below table.

URL: http://192.168.8.206:7077/api/eg/orchestration/addcomponent/bulk

Method: POST

Content-Type:multipart/form-data

Chapter 3: Performing Operations in Bulk Using eG REST API

124

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"file": G:\addcomponent.csv

}

Body Default:

{

"file" : "Full path to
the CSV file"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Succeed": "Component has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "Following component(s) could not be configured.",

"Description": [

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

125

Type Content

"Component already exist under this type. Component type :<Component
Type>,Component name :<hostname of the Component>",

]

}

Figure 3.1: Example to add components in bulk using Postman REST Client

3.1.1 Adding Components in Bulk using cURL

To add components in bulk through the REST API using cURL, the command should be specified in
the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addcomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.2 shows an example of adding components in bulk using cURL.

Chapter 3: Performing Operations in Bulk Using eG REST API

126

Figure 3.2: Adding components in bulk using cURL

3.2 Managing Components in Bulk
To manage components in bulk, you can create a dedicated CSV file for this purpose and configure
it with entries related to each component to be managed. Given below is the format of the entries in
such a file:

Element,action

Component,manage

componenttype,componentname,port,sid

<Component1 to be managed>

<Component2 to be managed>

.

.

.

For instance:

Element,action

Component,manage

componenttype,componentname,port,sid

Microsoft Windows,win1,,

AGate,agte10,3900,

Oracle Database,ora55,1521,multi

Note that the column names used in the CSV file are the same as the input parameters of the
‘ManageComponent’ command supported by the eG REST API.

Note:

Chapter 3: Performing Operations in Bulk Using eG REST API

127

l If an Oracle database server with multiple SIDs is to be managed, then the entry for the Oracle
server in your CSV file should not include a comma-separated list of SIDs; instead, you should
provide a separate entry for each SID to bemanaged.

l If one/more column names in your CSV file are not applicable to a component specification, then
make sure that such columns are left empty in the specification.

Once the CSV file (let's say, the name of the file is managecomponent.csv) is created on the eG
manager, invoke the URL command mentioned in the below table from the eG REST API Client to
update the eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/managecomponent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"file": G:\managecomponent.csv

}

Body Default:

{

"file" : "Full path to
the CSV file"

}

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

128

Type Code Content

JSON 200 {

"Succeed": "Component has been managed
successfully."

}

Success Response

Type Content

JSON {

"Error": "Following component(s) could not be managed.",

"Description": [

"The selected component does not exist. Component type :<Component
TYpe>,Component name :<hostname of the component>",

]

}

Failure Response

3.2.1Managing Components in Bulk using cURL

To manage components in bulk through the REST API using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addcomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" -F "file=@Full path to the CSV file"

Figure 3.4 shows an example of managing components in bulk using cURL.

Chapter 3: Performing Operations in Bulk Using eG REST API

129

Figure 3.3: Managing components in bulk using cURL

3.2.2Managing Components in Bulk using cURL

To manage components s in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/managecomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.4 shows an example of managing components in bulk using cURL.

Figure 3.4: Managing Components in bulk using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

130

3.3 Modifying Components in Bulk
As already mentioned, an exclusive CSV file should be created to handle bulk modifications to
component details.

Entries in this file should be of the following format:

Element,action

Component,modify

componenttype,hostip/hostname,componentname,port,externalagents

<Modification to component1>

<Modification to component2>

.

.

.

For example, if you want to modify the port numbers of 2 IIS web servers, do the following:

Element,action

Component,modify

componenttype,hostip,componentname,oldport,Newport,mtsenabled,externalagents

IIS web,192.168.10.96,iis96,7077,8088,no,ext43

IIS web,192.168.10.173,iis173,7077,7078,no,ext173

The CSV file can also be used to modify the details of components of multiple types at one shot.
While doing so, make sure that you leave the columns not applicable for a component specification,
blank. At the same time, ensure that the column names you specify in the CSV file are a super-set of
the parameters supported by all the components that are being modified. In other words, the column
names provided in the CSV file should correspond to the following:

l the parameters that are common across all the components to bemodified, and;

l the parameters that are distinct/unique for each of the components beingmodified;

For instance, say you want to modify the nick name of an Oracle database server, and want to
change the monitoring mode of an MS SQL server from agent-based to agentless. The specification
in this case will be, as follows:

Element,action

Component,modify

componenttype,hostip,componentname,oldcomponentname,

newcomponentname,port,sid,agentless,mode,os,externalagents,remoteagent

Oracle database,192.168.10.8,,ora8,ora08,1521,egora,,,,ext125,

Microsoft SQL,192.168.10.63, sql63,,,1433,,yes,perfmon,Windows2012,ext173,rem12

In the above specification, you can find that the column list includes the following:

Chapter 3: Performing Operations in Bulk Using eG REST API

131

l parameters such as componenttype, hostip/hostname, port, and externalagents that are common
to both the Oracle andMS SQL servers

l the oldcomponentname, newcomponentname, and sid parameter that are available only for the
Oracle component

l the componentname, agentless, mode, OS, and remoteagent parameters that are relevant for
only theMS SQL server beingmodified

From the above specification, it is also evident that columns not applicable to a component
specification have been left blank.

If say, you want to add multiple SIDs to an Oracle database server, your specification should be as
follows:

Element,action

Component,modify

componenttype,hostip,componentname,port,sid,externalagents

Oracle database,192.168.10.8,ora08,1521,"egora,egoracle",ext125

Note:

If an Oracle database server with multiple SIDs is added to the eGEnterprise system, then each SID
will be registered as a separate Oracle database server in the eGEnterprise system.

Once the CSV file (let's say, the name of the file is modifycomponent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/modifycomponent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Header managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

{

"file": G:\modifycomponent.csv

}

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

132

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Type Code Content

JSON 200 {

"Succeed": "Component has been modified successfully."

}

Success Response

Type Content

JSON {

"Error": "Following component(s) could not be modifed.",

"Description": [

"The old component name or port does not exist. Component type
:<Component Type>,Component name :<Component name>",

"The old component name or port does not exist. Component type
:<Component Type>,Component name :<Component name>",

]

}

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

133

Figure 3.5: Modifying Components in bulk using Postman REST Client

3.3.1Modifying Components in Bulk using cURL

Tomodify components in bulk through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/modifycomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.6 shows an example of modifying components in bulk using cURL.

Figure 3.6: Modifying Components in bulk using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

134

3.4 Deleting Components in Bulk
The components to be deleted simultaneously from the eG Enterprise system should be included in
a CSV file that is created exclusively for this purpose.

Such a CSV file should contain entries of the following format:

Element,action

Component,delete

componenttype,hostip/hostname,componentname,port

<Component1 to be deleted>

<Component2 to be deleted>

.

.

.

For example, if you want to delete an Oracle and an MS SQL server together using their respective
host IPs, then your CSV file should include the following entries:

Element,action

Component,delete

componenttype,hostip,componentname,port,sid

Oracle database,192.168.10.96,ora96,1521,egora

Microsoft SQL,192.168.10.173,sql173,1433,

If you want to delete an Oracle and an MS SQL server together using their respective host names,
then your CSV file should include the following entries:

Element,action

Component,delete

componenttype,hostname,componentname,port,sid

Oracle database,egurkha25,ora96,1521,egora

Microsoft SQL,egurkha26,sql173,1433,

As already stated, if an Oracle database server is added with multiple SIDs, then the eG Enterprise
system will monitor each SID as a different Oracle server. Therefore, while removing an Oracle
database server that supports multiple SIDs, each SID should be treated as a different Oracle
server, and a separate specification for each SID should be included in the CSV file. For example,
say, an Oracle database server has been added with the following SIDs: egdemo,egora. To remove
this Oracle server completely, your CSV file should contain the following entries:

Element,action

Component,delete

componenttype,hostip,componentname,port,sid

Oracle database,192.168.10.96,ora96,1521,egora

Oracle database,192.168.10.96,ora96,1521,egdemo

Chapter 3: Performing Operations in Bulk Using eG REST API

135

Note:

Components included in a zone, segment, or service cannot be deleted.

Once the CSV file (let's say, the name of the file is deletecomponent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deletecomponent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"file": G:\deletecomponent.csv

}

Body Default:

{

"file" : "Full path to
the CSV file"

}

Inputs to be Specified

Type Content

JSON {

"Succeed": "Component has been removed successfully."

Success Response

Chapter 3: Performing Operations in Bulk Using eG REST API

136

Type Content

}

Type Content

JSON {

"Error": "Following component(s) could not be deleted.",

"Description": [

"The selected component does not exist. Component type :<Component
Type>,Component name :<nick name of the component>",

"The selected component does not exist. Component type :<Component
Type>,Component name :<nick name of the component>",

.

.

.

]

}

Failure Response

Figure 3.7: Deleting Components in bulk using Postman REST Client

Chapter 3: Performing Operations in Bulk Using eG REST API

137

3.4.1 Deleting Components in Bulk using cURL

To delete components in bulk through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deletecomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.8 shows an example of deleting components in bulk using cURL.

Figure 3.8: Deleting components in bulk using cURL

3.5 Unmanaging Components in Bulk
The components to be unmanaged should be included in a CSV file that is created exclusively for
this purpose.

Such a CSV file should contain entries of the following format:

Element,action

Component,unmanage

componenttype,componentname,port,sid

<Component1 to be managed>

<Component2 to be managed>

.

.

.

For instance:

Chapter 3: Performing Operations in Bulk Using eG REST API

138

Element,action

Component,unmanage

componenttype,componentname,port,sid

Microsoft Windows,win1,,

AGate,agte10,3900,

Oracle Database,ora55,1521,multi

Note that the column names used in the CSV file are the same as the input parameters of the
‘unmanagecomponent’ command supported by the eG REST API.

Note:

l Components included in a zone, segment, or service cannot be unmanaged.

l If an Oracle database server with multiple SIDs is to be managed, then the entry for the Oracle
server in your CSV file should not include a comma-separated list of SIDs; instead, you should
provide a separate entry for each SID to bemanaged.

l If one/more column names in your CSV file are not applicable to a component specification, then
make sure that such columns are left empty in the specification.

Once the CSV file (let's say, the name of the file is unmanagecomponent.csv) is created on the eG
manager, invoke the URL command mentioned in the below table from the eG REST API Client to
update the eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/unmanagecomponent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"file": G:\unmanagecomponent.csv

}

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

139

Parameters Key values Example

Body Default:

{

"file" : "Full path to
the CSV file"

}

Type Code Content

JSON 200 {

"Succeed": "Component has been unmanaged
successfully."

}

Success Response

Type Content

JSON {

"Error": "Following component(s) could not be unmanaged.",

"Description": [

"The selected component does not exist. Component type :<Component
Type>,Component name :<host name of the Component>",

"The selected component does not exist. Component type <Component
Type>,Component name :<host name of the Component>",

"The selected component does not exist. Component type :<Component
Type>,Component name :<host name of the Component>"

]

}

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

140

Figure 3.9: Unmanaging Components in bulk using Postman REST Client

3.5.1 Unmanaging Components in Bulk using cURL

To unmanage components in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/unmanagecomponent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.10 shows an example of unmanaging components in bulk using cURL.

Figure 3.10: Unmanaging components in bulk using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

141

3.6 Adding Remote Agents in Bulk
The CSV file created specifically for adding multiple remote agents to the eG Enterprise system,
should contain the following entries:

Element,action

RemoteAgent,add

hostip,agentname

<Details of remoteagent1>

<Details of remoteagent2>

<Details of remoteagent3>

.

.

.

For instance:

Element,action

RemoteAgent,add

hostip,agentname

192.168.10.8,rem8

192.168.10.10,rem10

192.168.10.12,lin12

Note that the column names used in the CSV file are the same as the input parameters of the
‘addremoteagent’ command supported by the eG REST API.

Once the CSV file (let's say, the name of the file is addremagent.csv) is created on the eGmanager,
invoke the URL command mentioned in the below table from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/addremoteagent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,

{

"file": G:\addremagent.csv

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

142

Parameters Key values Example

http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

}

Body Default:

{

"file" : "Full path to
the CSV file"

}

Type Code Content

JSON 200 {

"Succeed": "Remote agent has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "Following remote agent(s) could not be added.",

"Description": [

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the remote agent>",

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the remote agent>"

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

143

Type Content

]

}

Figure 3.11: Example to add remote agents in bulk

3.6.1 Adding Remote Agents in Bulk using cURL

To add remote agents in bulk through the REST API using cURL, the command should be specified
in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addremoteagent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.12 shows an example of adding remote agents in bulk using cURL.

Chapter 3: Performing Operations in Bulk Using eG REST API

144

Figure 3.12: Adding remote agents in bulk using cURL

3.7 Adding External Agents in Bulk
The CSV file created specifically for adding multiple remote agents to the eG Enterprise system,
should contain the following entries:

Element,action

ExternalAgent,add

Hostip/hostname,agentname

Details of extenalagent1>

<Details of extenalagent2>

<Details of extenalagent3>

.

.

.

For instance:

Element,action

ExternalAgent,add

hostip,agentname

192.168.10.8,ext8

192.168.10.10,ext10

192.168.10.12,lin12

If you use the host name instead of hostip, then your specification should be:

Element,action

ExternalAgent,add

hostname,agentname

egurkha25,ext8

egurkha26,ext10

egurkha27,lin12

Chapter 3: Performing Operations in Bulk Using eG REST API

145

Note that the column names (hostip,hostname,etc.) used in the CSV file are the same as the input
parameters of the ‘addexternalagent’ command supported by the eG REST API.

If the eG license enables the client emulation capability, then the CSV file should include an
additional clientemulation column. Therefore, if you want to add two external agents - one to be used
for client emulation and another that is not used for client emulation - then, your CSV specification
should be as follows:

Element,action

ExternalAgent,add

hostip,agentname,clientemulation

192.168.10.8,ext8,yes

192.168.10.10,ext10,no

Once the CSV file (let's say, the name of the file is addextagent.csv) is created on the eGmanager,
invoke the URL command mentioned in the below table from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/addexternalagent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"file": G:\addextagent.csv

}

Body Default:

{

"file" : "Full path to
the CSV file"

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

146

Parameters Key values Example

}

Type Code Content

JSON 200 {

"Succeed": "External agent has been added successfully."

}

Success Response

Type Content

JSON {

"Error": "Following external agent(s) could not be add.",

"Description": [

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the external agent>",

"The agent name you are trying to add already exists. Please use another
agent name. Agent name :<name of the external agent>"

]

}

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

147

Figure 3.13: Example to add external agents in bulk using Postman REST Client

3.7.1 Adding External Agents in Bulk using cURL

To add external agents in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/addexternalagent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.14 shows an example of adding external agents in bulk using cURL.

Figure 3.14: Adding external agents in bulk using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

148

3.8 Deleting Remote Agents in Bulk
The CSV file that is specifically created for deleting a number of remote agents in bulk, should
contain the following entries:

Element,action

RemoteAgent,delete

agentname

<Nickname of remote agent1>

<Nickname of remote agent2>

<Nickname of remote agent3>

.

.

.

For instance:

Element,action

RemoteAgent,delete

agentname

rem8

rem10

external12

Once the CSV file (let's say, the name of the file is deleteremagent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteremoteagent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or

{

"file": G:\deleteremagent.csv

}

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

149

Parameters Key values Example

domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Type Code Content

JSON 200 {

"Succeed": "Remote agent has been deleted successfully."

}

Success Response

Type Content

JSON {

"Error": "Following remote agent(s) could not be deleted.",

"Description": [

"The remote agent you are trying to delete does not exist. Agent name
:<name of the remote agent>",

"The remote agent you are trying to delete does not exist. Agent name
:<name of the remote agent>"

]

}

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

150

Figure 3.15: Deleting remote agents in bulk using Postman REST Client

3.8.1 Deleting Remote Agents in Bulk using cURL

To delete remote agents in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteremoteagent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.16 shows an example of deleting remote agents in bulk using cURL.

Figure 3.16: Deleting remote agents in bulk using cURL

Chapter 3: Performing Operations in Bulk Using eG REST API

151

3.9 Deleting External Agents in Bulk
The CSV file that is specifically created for deleting a number of remote agents in bulk, should
contain the following entries:

Element,action

ExternalAgent,delete

agentname

<Nickname of external agent1>

<Nickname of external agent2>

<Nickname of external agent3>

.

.

.

For instance:

Element,action

ExternalAgent,delete

agentname

ext8

ext10

ext12

Once the CSV file (let's say, the name of the file is deleteexternalagent.csv) is created on the eG
manager, invoke the URL command mentioned below from the eG REST API Client to update the
eGmanager with all themodifications contained in the CSV file.

URL: http://192.168.8.206:7077/api/eg/orchestration/deleteexternalagent/bulk

Method: POST

Content-Type:multipart/form-data

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or

{

"file": G:\deleteexternalagent.csv

}

Inputs to be Specified

Chapter 3: Performing Operations in Bulk Using eG REST API

152

Parameters Key values Example

domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"file" : "Full path to
the CSV file"

}

Type Code Content

JSON 200 {

"Succeed": "External agent has been deleted
successfully."

}

Success Response

Type Content

JSON {

"Error": "Following external agent(s) could not be deleted.",

"Description": [

"The external agent you are trying to delete does not exist. Agent name
:<name of the external agent>",

"The external agent you are trying to delete does not exist. Agent name
:<name of the external agent>"

]

}

Failure Response

Chapter 3: Performing Operations in Bulk Using eG REST API

153

Figure 3.17: Example to delete external agents in bulk using Postman REST Client

3.9.1 Deleting External Agents in Bulk using cURL

To delete external agents in bulk through the REST API using cURL, the command should be
specified in the following format:

curl --location --request POST "http://<eG Manager

IP:Port>/api/eg/orchestration/deleteexternalagent/bulk" -H "managerurl:http://<eG Manager

IP:Port>"-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -

H "Content-Type: multipart/form-data" --form "file=@ Full path to the CSV file"

Figure 3.18 shows an example of deleting external agents in bulk using cURL.

Figure 3.18: Deleting external agents in bulk using cURL

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

154

Chapter 4: Retrieving Analytical Data from eGManager
Using eG REST API

An important aspect of the eG REST API is that, apart from performing administrative activities on
the eG manager, administrators are allowed to retrieve analytical data from the eG manager (for
e.g., alarms raised in the target environment, the detailed diagnosis data of a chosen measure,
health of the components in the target environment). Administrators can export this data to other
management portals to provide a seamless user interface. This data can also be used by the
administrators for different purposes such as creating more powerful dashboards, consolidation with
asset / configuration tracking systems etc.

The sections below will discuss in detail on how to retrieve analytical data from the eGmanager.

4.1 Retrieving Count of Alarms Raised in the Target Environment
By default, using the eG REST API, administrators can retrieve the count of alarms raised in the
eG manager. The URL to retrieve the count of alarms should be in the following format:

URL:http://<eGmanager IP:port>/api/eg/analytics/getAlarmCount

URL: http://192.168.8.206:7077/api/eg/analytics/getAlarmCount

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Not Applicable

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

155

Type Code Example Response

JSON 200 {

"TOTAL": 43,

"CRITICAL": 7,

"MAJOR": 13,

"MINOR": 23

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.1: Example to retrieve current alarm count using Postman REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

156

4.1.1 Retrieving Count of Alarms Raised in the Target Environment using cURL

To retrieve the count of alarms in the target environment using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getAlarmCount"

-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H

"managerurl:http://<eG Manager IP:Port>" --data-raw ""

Figure 4.2 shows an example of retrieving the count of alarms raised in the target environment using
cURL.

Figure 4.2: Retrieving current alarm count in the target environment using cURL

4.2 Retrieving Live Measures of a Component
Using the eG REST API, the measures reported by executing the tests of a component during the
current measurement period can be retrieved.

URL: http://<eGmanager IP:port>/api/eg/analytics/getLiveMeasure

URL: http://192.168.8.206:7077/api/eg/analytics/getLiveMeasure

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

157

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"servername":"windows_136",

"servertype":"Microsoft Windows"

}

Example for retrieving current measures from an
Oracle Database Server:

{

"servername":"Oractest:1521:egora",

"servertype":"Oracle Database Server"

}

Body {

"servername":"Hostname
of the component:Port",

"servertype":"Component
Type"

}

If current measures of
the Oracle Database
server is to be retrieved,
then the Key values
should be specified as
follows:

{

"servername":"Hostname
of the
component:Port:SID",

"servertype":"Component
Type"

}

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

158

Type Code Content

JSON 200 [{"Measure Details for windows_136:Microsoft
Windows": [{

"Disk Space": {

"State": "GOOD",

"Last Measurement Time": "Aug 17, 2020 00:30:36",

"Total capacity": [{

"State": "GOOD",

"Value": "51098",

"Unit": "MB"

}]

}

}]

}]

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

159

Figure 4.3: Example to retrieve current measures of a component using Postman REST Client

4.2.1 Retrieving LiveMeasures of a Component using cURL

To retrieve the measures of a component during the current measurement period through the
REST API using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getLiveMeasure" -H "user:<eG username or domain/eG username>" -

H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -d"

{\"servertype\":\Microsoft Windows\",\servername\":\"name of the component\"}" -

H"Content-Type:application/json" -s

Figure 4.4 shows an example of retrieving the current measures of a component using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

160

Figure 4.4: Retrieving current measures of a component using cURL

4.3 Retrieving Historical Data of a Measure
To figure out whether the target environment is functioning without any glitches, more often than not,
administrators tend to monitor the performance of certain keymeasures over a period of time. Using
the eG REST API, administrators are befitted in monitoring the performance of the measures over a
period of time without logging into the eG console. The table below specifies the parameters that
should be used to retrieve the historical data of themeasures.

URL: http://192.168.8.206:7077/api/eg/analytics/getHistoricalData

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

{

"timeline":"1 hour",

"server":"Microsoft Windows:win112:NULL",

"test":"Network",

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

161

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

"measure":"packet loss"

}

Example for retrieving historical data of a measure
pertaining to an Oracle Database Server:

{

"timeline":"1 day",

"server":"Oracle Database
Server:Oradb:1521:egora",

"test":"Oracle Sessions",

"measure":"Active Sessions"

}

Body Default:

{

"timeline":"Timeline
for retrieving the
measure data (in
hours/days/weeks)",

"server":"Component
Type:Component
name:Port/Null",

"test":"Test name",

"measure":"Measure
name"

}

If current measures
of the Oracle
Database server is to
be retrieved, then the
Key values should be
specified as follows:

{

"timeline":"Timeline
for retrieving the
measure data (in
hours/days/weeks)",

"server":"Component
Type:Component
name:Port:SID",

"test":"Test name",

"measure":"Measure
name"

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

162

Parameters Key values Example

}

Type Code Example Response

JSON 200 {

"NetworkTest": [

{

"Date": "29/09/2020 05:33:13",

"Value": "0.0"

},

{

"Date": "29/09/2020 05:38:40",

"Value": "0.0"

},

.

.

.

]

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

163

Figure 4.5: Retrieving historical data of ameasure using Postman REST Client

4.3.1 Retrieving Historical Data of aMeasure using cURL

To retrieve the historical data of a measure using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getHistoricalData" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the

measure data (in hours/days/weeks)\",\"server\":\"Component Type:Component

name:Port\",\"test\":\"Test name\",\"measure\":\"Measure name\"}"

Figure 4.6 shows an example of retrieving the current measures of a component using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

164

Figure 4.6: Retrieving historical data of ameasure using cURL

4.4 Retrieving Detailed Diagnosis of a Measure
More often than not, administratorsmaywant additional information on a key performancemeasure.
Such additional information is provided as part of detailed diagnosis by eG Enterprise. Using
eG REST API, administrators may be able to retrieve the detailed diagnosis of a measure without
logging into the eG console. The table below specifies the URL and the parameters that should be
used to retrieve the detailed diagnosis of ameasure.

URL: http://192.168.8.206:7077/api/eg/analytics/getDiagnosisData

Method: POST

Content-Type: application/json

Parameters Key values Example

Header managerurl: Base URL
of the eG Manager i.e.,
http://<IP address of the

{

"timeline":"1 hour",

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

165

Parameters Key values Example

eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

"server":"Microsoft Windows:win112:NULL",

"test":"Network",

"measure":"packet loss",

"descriptor":""

}

Example to retrieve Detailed Diagnosis for a descriptor
of a measure:

{

"timeline":"1 hour",

"server":"Windows_server:win112:NULL",

"test":"Disk Activity",

"descriptor":"Disk0 C:",

"measure":"Disk busy"

}

Body Default:

{

"timeline"="Timeline for
retrieving the measure
data (in
hours/days/weeks)",

"server"="Component
Type:Component
name:Port/Null",

"test"="Test name",

"measure"="Measure
name",

"descriptor"="Descriptor
name"

}

For an Oracle Database
server, the Key values
should be specified as
follows:

{

"timeline"="Timeline for
retrieving the measure
data (in
hours/days/weeks)",

"server"="Component
Type:Component
name:Port:SID",

test="Test name",

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

166

Parameters Key values Example

measure="Measure
name"

}

Note:

The "descriptor" key value ismandatory for non-descriptor based tests too. In such case, the key
value should be blank as shown in the example.

Type Code Content

JSON 200 [

{

"PROCESS ID": "4196",

"APPLICATION NAME": "Symantec Service Framework",

"PROCESSNAME": "C:\\Program Files
(x86)\\Symantec\\Symantec Endpoint
Protection\\14.2.5587.2100.105\\Bin\\ccSvcHst.exe /s
Symantec Endpoint Protection /m C:\\Program Files
(x86)\\Symantec\\Symantec Endpoint
Protection\\14.2.5587.2100.105\\Bin\\sms.dll
/prefetch:1",

"IO RATE(KB/SEC)": "59.44",

"IO READ RATE(KB/SEC)": "59.44",

"IO READ OPS RATE(OPS/SEC)": "2.99",

"IO WRITE RATE(KB/SEC)": "0",

"IO WRITE OPS RATE(OPS/SEC)": "0",

"FILE NAME": "-",

"FILE IO READ RATE(KB/SEC)": "-",

"FILE IO WRITE RATE(KB/SEC)": "-",

"TOTAL FILE IO RATE(KB/SEC)": "-",

"RESPONSE TIME(SECS)": "-"

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

167

Type Code Content

},

.

.

.

}

]

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.7: Retrieving detailed diagnosis of ameasure using Postman REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

168

4.4.1 Retrieving Detailed diagnosis of aMeasure using cURL

To retrieve the detailed diagnosis of a measure using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getDiagnosisData" -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-

Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the detailed

diagnosis data (in hours/days/weeks)\",\"server\":\"Component Type:Component

name:Port\",\"test\":\"Test name\",\"measure\":\"Measure

name\",\"descriptor\":\"Descriptor name\"}"

Figure 4.8 shows an example of retrieving the detailed diagnosis of ameasure using cURL.

Figure 4.8: Retrieving Detailed diagnosis of ameasure using cURL

4.5 Retrieving Top-N Analysis Data
To identify the best/worst players in a particular performance area, administrators need to rank
components/descriptors for every metric collected by the eG Enterprise. For such ranking,
administrators need to figure out the Top-N Analysis data offered by eG Enterprise. Using the
eG REST API, administrators can figure out the Top-N data of the components/descriptors of a
measure reported by eG Enterprise without logging into the eG console. The table below specifies
the parameters that should be used to retrieve the health of the infrastructure.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

169

URL: http://192.168.8.206:7077/api/eg/analytics/getTopNData

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL
of the eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"server":"win112:NULL:Microsoft Windows",

"test":"Disk Activity",

"descriptor":"Disk0 C:",

"measure":"Disk busy"

}
Body Default:

{

"timeline":"Timeline for
retrieving the measure
data (in
hours/days/weeks)",

"server":"Component
Type:Component
name:Port/Null",

"test":"Test name",

"measure":"Measure
name",

"descriptor":"Descriptor
name"

}

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

170

Type Code Content

JSON 200 [

{

"Name": "win183 {Disk0 C: D:}",

"Value": "7.5"

}

]

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.9: Retrieving Top-N Analysis Data using Postman REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

171

4.5.1 Retrieving Top-N Analysis Data using cURL

To retrieve the Top-N Data of components/descriptors using cURL, the command should be
specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTopNData" -

H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H

"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "

{\"timeline\":\"Timeline for retrieving the Top-N data (in

hours/days/weeks)\",\"server\":\"Component Type:Component name:Port\",\"test\":\"Test

name\",\"measure\":\"Measure name\",\"descriptor\":\"Descriptor name\"}"

Figure 4.10 shows an example of retrieving the Top-N Analysis Data using cURL.

Figure 4.10: Retrieving Top-N Analysis Data using cURL

4.6 Retrieving Test Data
Using the eG REST API, administrators can retrieve the measurement data collected upon
execution of tests across all relevant component types. The table below specifies the parameters
that should be used to retrieve themeasures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getTestData

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

172

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address
of the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"test":"TCP Port Status",

"host":"sql",

"port":"1433",

"lastmeasure":"true",

"startDate":"2020-01-29 18:00:26",

"endDate":"2020-01-29 18:15:03"

}

Body Default:

{

"test":"Test name",

"host":"Host name",

"port":"Port",

"info":"info"

}

Optional:

{

"lastmeasure":"true/false",

"startDate":"start date",

"endDate":"End date",

"measures":"comma-separated list
of measures",

"msmthost":"Measurement Host",

"type":"dd",

"segment":"Segment name",

"service":"Service name",

"searchhost":"Search Host",

"searchinfo":"Search info",

"groupby":"measure",

"orderby":"Ascending/Descending",

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

173

Parameters Key values Example

"dateformat":"Date formant",

}

Type Code Content

JSON 200 [

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME AVAILABILITY AVAILABILITY_ST
RESPONSETIME RESPONSETIME_ST ",

"",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:34:58 100.0000 GOOD 0.0030 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:39:48 100.0000 GOOD 0.0030 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:44:41 100.0000 GOOD 0.0040 GOOD",

"cvadddc7v1912 80 NULL +80 eGDP169 2020-09-17
15:49:39 100.0000 GOOD 0.0070 GOOD",

.

.

.

]

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

174

Figure 4.11: Retrievingmeasurement data of a test using Postman REST Client

4.6.1 Retrieving Test Data using cURL

To retrieve the measurement data collected upon execution of tests across all relevant component
types using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTestData" -

H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H

"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "

{\"test\":\"test name\"}

Figure 4.12 shows an example cURL command for retrieving the measurement data that is reported
by eG Enterprise bymonitoring all the components in the target environment.

Figure 4.12: An example cURL command to retrieve themeasurement data of the test

Figure 3 shows a sample output that retrieves the measurement data of a chosen test reported by
eG Enterprise using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

175

Figure 4.13: Sample output with themeasurement data of a test across all monitored component types

4.7 Retrieving Trend Data
Using the eG REST API, administrators can retrieve the trend data of the tests across all relevant
component types. The table below specifies the URL and the parameters that should be used to
retrieve themeasures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getTrendData

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address
of the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"test":"Oracle Latches",

"host":"Oracle",

"port":"1521",

"info":"egurkha+redo allocation",

"type":"Trend"

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

176

Parameters Key values Example

}Body Default:

{

"test":"Test name",

"host":"Host name",

"port":"Port",

"info":"info"

}

Optional:

{

"startDate":"start_date",

"endDate":"end_date",

"measure":"comma-separated list
of measures",

"msmthost":"Measurement Host",

"type":"trend",

"segment":"Segment Name",

"service":"Service Name",

"searchhost":"Search Host",

"searchinfo":"Info",

"groupby":"measure",

"orderby":"Ascending/Descending",

}

Type Code Content

JSON 200 [

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

177

Type Code Content

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME ",

"",

"eGDP169 NULL NULL +Disk0 C: D: eGDP169 2020-08-01
00:00:00 ",

"HISELKVPMAS01 NULL NULL +dm-0 eGDP169 2020-08-
01 00:00:00 ",

"HISELKVPMAS01 NULL NULL +dm-1 eGDP169 2020-08-
01 00:00:00 ",

"HISELKVPMAS01 NULL NULL +sda eGDP169 2020-08-01
00:00:00 ",

"java183 NULL NULL +Disk0 C: D: java183 2020-08-01
00:00:00 ",

"win183 NULL NULL +Disk0 C: D: win183 2020-08-01
00:00:00 ",

.

.

.

]

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

178

Figure 4.14: Retrieving trend data of a chosenmeasure using Postman REST Client

4.7.1 Retrieving Trend Data using cURL

To retrieve trend data of the tests using cURL, the command should be specified in the following
format:

curl -location -request POST "http://<eG Manager IP:Port>/api/eg/analytics/getTrendData"

-H "user:<eG username or domain/eG username>" -H "pwd:Base64 encoded password" -H

"managerurl:http://<eG Manager IP:Port>" -H"Content-Type:application/json" --data-raw "

{\"test\":\"Test name\",\"measure\":\"comma-separated list of

measures\",\"type\":\"Trend\"}"

Figure 4.15 shows an example to retrieve the trend data for the measures of a chosen test using
cURL.

Figure 4.15: An example cURL command to retrieve the trend data for themeasures

Figure 3 shows a sample output that retrieves the trend data for the chosen measures of a chosen
test reported by eG Enterprise using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

179

Figure 4.16: Sample output with the trend data for the chosenmeasures of a chosen test

4.8 Retrieving Threshold Data
Using the eG REST API, administrators can retrieve the threshold configured for the measures of a
chosen test. The table below specifies the URL and the parameters that should be used to retrieve
themeasures of the tests.

URL: http://192.168.8.206:7077/api/eg/analytics/getThresholdData

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the
eG Manager i.e., http://<IP address
of the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

{

"test":"Oracle Latches",

"host":"Oracle",

"port":"1521",

"info":"egurkha+redo allocation",

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

180

Parameters Key values Example

"type":"Threshold"

}
Body Default:

{

"test":"Test name",

"host":"Host name",

"port":"Port",

"info":"info"

}

Optional:

"type":"Threshold",

"measure":"comma-separated list
of measures",

"searchhost":"Search Host",

"searchinfo":"Search info",

"groupby":"TRGT_HOST",

"orderby":"Ascending/Descending",

}

Type Code Content

JSON 200 [

"TRGT_HOST PORT_NO SITE_NAME INFO MSMT_HOST
MSMT_TIME_START MSMT_TIME_END TOTAL_
CAPACITY_MIN TOTAL_CAPACITY_MAX USED_SPACE_
MIN USED_SPACE_MAX FREE_SPACE_MIN FREE_SPACE_
MAX PERCENT_USAGE_MIN PERCENT_USAGE_MAX
DRIVE_AVAIL_MIN DRIVE_AVAIL_MAX ",

"",

"win183 NULL NULL +D win183 2020-09-12 19:30:00

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

181

Type Code Content

2020-09-12 20:30:00 -1 -1 -1 -1 -1 -1 -1 99/97/95 -/-/90 -
1",

"win183 NULL NULL +D win183 2020-09-12 20:30:00
2020-09-12 21:30:00 -1 -1 -1 -1 -1 -1 -1 99/97/95 -/-/90 -
1",

"win183 NULL NULL +D win183 2020-09-12 21:30:00
2020-09-12 22:30:00 -1 -1 -1 -1 -1 -1 -1 99/97/95 -/-/90 -
1",

"win183 NULL NULL +D win183 2020-09-12 22:30:00
2020-09-12 23:30:00 -1 -1 -1 -1 -1 -1 -1 99/97/95 -/-/90 -
1",

"win183 NULL NULL +D win183 2020-09-12 23:30:00
2020-09-13 00:30:00 -1 -1 -1 -1 -1 -1 -1 99/97/95 -/-/90 -
1",

.

.

.

]

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

182

Figure 4.17: Retrieving Threshold data configured for themeasures using Postman REST Client

4.8.1 Retrieving Threshold Data using cURL

To retrieve the threshold configured for the measures of a chosen test using cURL, the command
should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getThresholdData" -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-

Type:application/json" --data-raw "{\"test\":\"Test name\",\"host\":\"Host

name\",\"type\":\"Threshold\"}"

Figure 4.18 shows an example to retrieve the threshold configured for themeasures of a chosen test
using cURL.

Figure 4.18: An example cURL command to retrieve the threshold configured for themeasures

Figure 3 shows a sample output that retrieves the threshold configured for themeasures of a chosen
test reported by eG Enterprise using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

183

Figure 4.19: Sample output with the threshold data configured for themeasures of a chosen test

4.9 Retrieving Infrastructure Health
Using the eG REST API, administrators can figure out the health of the
Zone/Service/Segment/Component Type managed in the eG manager without logging into the
eG console. The table below specifies the URL and the parameters that should be used to retrieve
the health of the infrastructure.

URL: http://192.168.8.206:7077/api/eg/analytics/getInfraHealth

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of the eG Manager
i.e., http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded password

Example to retrieve the health of a
zone:

{

"type":"Zone",

"name":"east zone"

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

184

Parameters Key values Example

}

Example to retrieve the health of
the components of a chosen
Component Type:

{

"type":"Component Type",

"name":"Microsoft Windows"

}

Body Default:

{

"type":"Zone/Service/Segment/Component
Type",

"name":"Name of
Zone/Service/Segment/Component Type"

}

Type Code Content

JSON 200 {

"root": [

{

"Component": "Virtual_center:vmware_vcenter:NULL ",

"State": "HIGH"

},

{

"Component": "VmEsx_i_server:esx51-15:NULL ",

"State": "HIGH"

},

{

"Component": "VmEsx_i_server:vmware_vsphere_
esx:NULL ",

"State": "INTERMEDIATE"

},

{

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

185

Type Code Content

"Component": "Xen_desktop_server:citrix_xenserver_
vdi:NULL ",

"State": "LOW"

},

{

"Component": "Xen_virtual_server:citrix_xenserver_
vdi:NULL ",

"State": "LOW"

},

{

"Component": "commzComp1_ex:commzgate183:NULL
",

"State": "UNKNOWN"

}

],

.

.

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

186

Figure 4.20: Retrieving the health of the components in a zone using Postman REST Client

4.9.1 Retrieving Infrastructure Health using cURL

To retrieve the health of the Zone/Service/Segment/Component Type managed in the eGmanager
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getInfraHealth" -H "user:<eG username or domain/eG username>" -

H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -H"Content-

Type:application/json" --data-raw "{\"type\":\"Zone/Service/Segment/Component

Type\",\"name\":\"Name of Zone/Service/Segment/Component Type\"}

Figure 4.21 shows an example of retrieving the health of the components within a zone in the target
environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

187

Figure 4.21: Retrieving the health of the components in a zone using cURL

4.10 Retrieving Problem Distribution of Components
Use the URL specified below to retrieve the priority based problem distribution of the chosen
components in the target environment using the eG REST API.

URL: http://192.168.8.206:7077/api/eg/analytics/getServerListProblemDistribution

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded

{

serverlist":"Microsoft
Windows:win112:NULL,Oracle Database
Server:Oradb123:1521:egora"

}

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

188

Parameters Key values Example

password

Body Default:

{

"serverlist":"comma-
separated
list of ComponentType:
Component:Port/Null:SID",

}

Type Code Content

JSON 200 {

"eG_Manager:eGDP169:7077": [

{

"date": "16/09",

"CRITICAL": "0",

"MAJOR": "0",

"MINOR": "0"

},

.

.

.

}

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

189

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.22: Retrieving the priority based problem distribution of a chosen component using Postman
REST Client

4.10.1 Retrieving Problem Distribution of Components using cURL

To retrieve the priority based problem distribution of the chosen components using cURL, the
command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getServerListProblemDistribution" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H"Content-Type:application/json" --data-raw "{\"serverlist\":\"comma-separated

list of ComponentType:Component:Port/Null:SID\"}

Figure 4.23 shows an example of retrieving the priority based problem distribution of the chosen
component using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

190

Figure 4.23: Retrieving the priority based problem distribution of a chosen component using cURL

4.11 Retrieving Problem Distribution of the Target Environment
Using the eG REST API, administrators can retrieve the alarm count based on severity for all
component types, components, layers and tests specific to the target environment.

4.11.1 Retrieving Problem Distribution for all Component Types

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/servertype

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl

user

pwd

{

"timeline":"1 hour"

}

Body Default:

{

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

191

Parameters Key values Example

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Type Code Content

JSON 200 {

"Problem Distribution": [

{

"Server Type": "Java Application",

"CRITICAL": "0",

"MAJOR": "47",

"MINOR": "7"

},

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

192

Figure 4.24: Retrieving the alarm count based on severity for all component types using Postman
REST Client

4.11.2 Retrieving Problem Distribution for all Component Types using cURL

To retrieve the alarm count based on severity for all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDistribution/servertype" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks)\"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all component types
managed in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

193

Figure 4.25: Retrieving the alarm count based on severity for all component types using cURL

4.11.3 Retrieving Problem Distribution for all Components

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/servername

Method: POST

Content-Type: application/json

Parameters Key values Example

Header managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour"

}

Body Default:

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

194

Parameters Key values Example

{

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Type Code Content

JSON 200 {

"Problem Distribution": [

{

"Server Name": "esx51-15",

"CRITICAL": "11",

"MAJOR": "26",

"MINOR": "148"

},

{

"Server Name": "win183",

"CRITICAL": "5",

"MAJOR": "6",

"MINOR": "1"

},

.

.

.

}

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

195

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.26: Retrieving the alarm count based on severity for all components using Postman REST Client

4.11.4 Retrieving Problem Distribution for all Components using cURL

To retrieve the alarm count based on severity for all components managed in the target environment
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDistribution/servername" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks)\"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all components
managed in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

196

Figure 4.27: Retrieving the alarm count based on severity for all components using cURL

4.11.5 Retrieving Problem Distribution of the Layers of a Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/layer

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"servertype":"Microsoft Windows"

}

Body Default:

{

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

197

Parameters Key values Example

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Type Code Content

JSON 200 {

"Problem Distribution": [

{

"Layer Name": "Application Processes",

"CRITICAL": "4",

"MAJOR": "3",

"MINOR": "0"

},

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

198

Figure 4.28: Retrieving the alarm count based on severity for all layers of a Component Type using Postman
REST Client

4.11.6 Retrieving Problem Distribution of the Layers of a Component Type
using cURL

To retrieve the alarm count based on severity corresponding to all layers of a chosen Component
Type managed in the target environment using cURL, the command should be specified in the
following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDistribution/layer" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarms (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity corresponding to all
layers of a chosen Component Typemanaged in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

199

Figure 4.29: Retrieving the alarm count based on severity for all layers of a Component Type using cURL

4.11.7 Retrieving Problem Distribution of the Tests of a Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDistribution/test

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"servertype":"Microsoft Windows"

}

Body Default:

{

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

200

Parameters Key values Example

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Type Code Content

JSON 200 {

"Problem Distribution": [

{

"Test Name": "Windows Services",

"CRITICAL": "5",

"MAJOR": "0",

"MINOR": "0"

},

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

201

Figure 4.30: Retrieving the alarm count based on severity for all tests of a Component Type using Postman
REST Client

4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using
cURL

To retrieve the alarm count based on severity for the tests of a chosen Component Typemanaged in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDistribution/test" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H"Content-Type:application/json" --data-raw "{\"timeline\":\"Timeline for retrieving the

alarms (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"}"

Figure 4.25 shows an example to retrieve the alarm count based on severity for all tests of a chosen
Component Typemanaged in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

202

Figure 4.31: Retrieving the alarm count based on severity for all tests of a Component Type using cURL

4.12 Retrieving the Count of Events from Alarm History
Using the eG REST API, administrators can retrieve the count of events from Alarm History for all
component types, components, layers and tests specific to the target environment.

4.12.1 Retrieving the Count of Events from Alarm History for all Component
Types

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/servertype

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

{

"timeline":"1 hour"

}

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

203

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"timeline":"Timeline
for retrieving the
count of events (in
hours/days/weeks)"

}

Type Code Content

JSON 200 {

"Event Count": [

{

"Server Type": "Java Application",

"Event Count": "54"

},

{

"Server Type": "eG Manager",

"Event Count": "137"

},

.

.

.

}

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

204

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.32: Retrieving count of events from Alarm History for all Component Types using Postman
REST Client

4.12.2 Retrieving the Count of Events from Alarm History for all Component
Types using cURL

To retrieve the count of events for all Component Types using cURL, the command should be
specified in the following format:

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

205

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getEventCount/servertype" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\"}"

Figure 4.33 shows an example of retrieving the count of events recorded for all Components Types
using cURL.

Figure 4.33: Retrieving count of events from Alarm History for all Component Types using cURL

4.12.3 Retrieving the Count of Events for all Components

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/servername

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of

{

"timeline":"1 hour"

}

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

206

Parameters Key values Example

the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Body Default:

{

"timeline":"Timeline
for retrieving the
count of events(in
hours/days/weeks)"

}

Type Code Content

JSON 200 {

"Event Count": [

{

"Server Name": "esx51-15",

"Event Count": "185"

},

{

"Server Name": "win183",

"Event Count": "12"

},

.

.

.

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

207

Type Code Content

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.34: Retrieving count of events from Alarm History for all Components using Postman REST Client

4.12.4 Retrieving the Count of Events for all Components using cURL

To retrieve the count of events for all Components using cURL, the command should be specified in
the following format:

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

208

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getEventCount/servername" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\"}"

Figure 4.33 shows an example of retrieving the count of events from Alarm History for all
Components using cURL.

Figure 4.35: Retrieving count of events from Alarm History for all Components using cURL

4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a
Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/layer

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

{

"timeline":"1 hour",

"servertype":"Microsoft Windows"

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

209

Parameters Key values Example

user: eG username or
domain/eG username

pwd: Base64 encoded
password

}

Body Default:

{

"timeline":"Timeline for
retrieving the count of
events (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Type Code Content

JSON 200 {

"Event Count": [

{

"Layer Name": "Operating System",

"Event Count": "3"

},

{

"Layer Name": "Oracle Service",

"Event Count": "2"

},

.

.

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

210

Type Code Content

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.36: Retrieving count of events from Alarm History for the layers of a component type using Postman
REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

211

4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a
Component Type using cURL

To retrieve the count of events that are specific to layers of a component type using cURL, the
command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getEventCount/layer" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.33 shows an example of retrieving the count of events from AlarmHistory for the layers of a
chosen component type using cURL.

Figure 4.37: Retrieving count of events from Alarm History for the layers of a component type using cURL

4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a
Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getEventCount/test

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

212

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"servertype":"Microsoft Windows"

}

Body Default:

{

"timeline":"Timeline for
retrieving the count of
events (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Event Count": [

{

"Test Name": "Network",

"Event Count": "1"

},

{

"Test Name": "Oracle SGA",

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

213

Type Code Content

"Event Count": "35"

},

.

.

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.38: Retrieving count of events from Alarm History for the tests of a component type using Postman
REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

214

4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a
Component Type using cURL

To retrieve the count of events from Alarm History that are specific to tests of a component type
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getEventCount/test" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the count of events (in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.33 shows an example of retrieving the count of events from Alarm History for the tests of a
chosen component type using cURL.

Figure 4.39: Retrieving count of events from Alarm History for the tests of a component type using cURL

4.13 Retrieving Problem Duration
Using the eG REST API, administrators can retrieve the duration for which an alarmwas open for all
component types or components or layers specific to the component type or tests specific to a
component type.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

215

4.13.1 Retrieving Problem Duration for Component Types

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/servertype

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl

user

pwd

{

"timeline":"1 hour"

}

Body Default:

{

"timeline":"Timeline
for retrieving the
alarm duration (in
hours/days/weeks)"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Problem Duration": [

{

"ServerType": "Java Application",

"MIN_DURATION": "4m 7s",

"MAX_DURATION": "8h 4m",

"AVG_DURATION": "18m 23s"

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

216

Type Code Content

},

.

.

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.40: Retrieving the duration for which an alarm was open for all Component Types using Postman
REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

217

4.13.2 Retrieving Problem Duration for all Component Types using cURL

To retrieve the duration for which an alarmwas open for the component typesmanaged in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDuration/servertype" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarm duration(in hours/days/weeks)\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for the
component typesmanaged in the target environment using cURL.

Figure 4.41: Retrieving the duration for which an alarm was open for all Component Types using cURL

4.13.3 Retrieving Problem Duration for all Components

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/servername

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

218

Parameters Key values Example

Headers managerurl

user

pwd

{

"timeline":"1 hour"

}

Body Default:

{

"timeline":"Timeline
for retrieving the
alarms (in
hours/days/weeks)"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Problem Duration": [

{

"Server Name": "esx51-15",

"MIN_DURATION": "0s",

"MAX_DURATION": "4D 1h",

"AVG_DURATION": "19h 21m"

},

.

.

.

}

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

219

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.42: Retrieving the duration for which an alarm was open for all Components using Postman
REST Client

4.13.4 Retrieving Problem Duration for all Components using cURL

To retrieve the duration for which an alarm was open for all components managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDuration/servername" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving the alarm duration(in hours/days/weeks)\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all
componentsmanaged in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

220

Figure 4.43: Retrieving the duration for which an alarm was open for all Components using cURL

4.13.5 Retrieving Problem Duration for all Layers of a Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/layer

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl

user

pwd

{

"timeline":"1 hour",

"servertype":Microsoft Windows"

}Body Default:

{

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

221

Parameters Key values Example

Type"

}

Type Code Content

JSON 200 {

"Problem Duration": [

{

"Layer Name": "Operating System",

"MIN_DURATION": "24m 36s",

"MAX_DURATION": "24m 36s",

"AVG_DURATION": "24m 36s"

},

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

222

Figure 4.44: Retrieving the duration for which an alarm was open for all layers of a Component types using
Postman REST Client

4.13.6 Retrieving Problem Duration for all Layers of a Component Type using
cURL

To retrieve the duration for which an alarm was open for all layers of a component type managed in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDuration/layer" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the alarm duration(in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all layers
corresponding to a component typemanaged in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

223

Figure 4.45: Retrieving the duration for which an alarm was open for all layers of a Component types using
cURL

4.13.7 Retrieving Problem Duration for all Tests of a Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getProblemDuration/test

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"servertype":Microsoft Windows"

}

Body Default:

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

224

Parameters Key values Example

{

"timeline":"Timeline for
retrieving the alarms (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Type Code Content

JSON 200 {

"Problem Duration": [

{

"Test Name": "Uptime",

"MIN_DURATION": "4m 11s",

"MAX_DURATION": "5m 6s",

"AVG_DURATION": "4m 38s"

},

.

.

.

}

Success Response

Type Code Content

JSON 401 {"code": 401,"error": "Unauthorized user"}

Failure Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

225

Type Code Content

UNAUTHORIZED

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Figure 4.46: Retrieving the duration for which an alarm was open for all Tests of a Component Type using
Postman REST Client

4.13.8 Retrieving Problem Duration for all Tests of a Component Type using
cURL

To retrieve the duration for which an alarm was open for all tests of a component type managed in
the target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProblemDuration/test" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for retrieving

the alarm duration(in hours/days/weeks)\",\"servertype\":\"Component Type\"}"

Figure 4.41 shows an example of retrieving the duration for which an alarm was open for all tests of
a component typemanaged in the target environment using cURL.

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

226

Figure 4.47: Retrieving the duration for which an alarm was open for all Tests of a Component Type using
cURL

4.14 Retrieving Percentage of Proactive Alarms in the Target
Environment
Use the URL specified below to retrieve the percentage of proactive alarms for all component types,
components, layers and tests specific to the target environment. The percentage is calculated by
considering the count of Major and Minor alarms against the Total alarms raised in the target
environment.

4.14.1 Retrieving Percentage of Proactive Alarms across Component Types

URL: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/servertype

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,

{

"timeline":"1 hour"

Inputs to be Specified

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

227

Parameters Key values Example

http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

}

Body Default:

{

"timeline":"Timeline
for retrieving
proactive alarm
percent (in
hours/days/weeks)"

}

Type Code Content

JSON 200 {

"Proactive Problem Percent": [

{

"Server Type": "Java Application",

"ProactivePercent": "100"

},

{

"Server Type": "NetFlow Device",

"ProactivePercent": "0"

},

.

.

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

228

Type Code Content

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.48: Retrieving the percentage of proactive alarms for all Component Types using Postman
REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

229

4.14.2 Retrieving Percentage of Proactive Alarms across Component Types
using cURL

To retrieve the percentage of proactive alarms across all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProactiveProblemPercent/servertype" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving proactive alarm percent(in hours/days/weeks)\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for all component
typesmanaged in the target environment using cURL.

Figure 4.49: Retrieving the percentage of proactive alarms for all Component Types using cURL

4.14.3 Retrieving Percentage of Proactive Alarms across all Components

URL: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/servername

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

230

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour"

}

Body Default:

{

"timeline":"Timeline
for retrieving
proactive alarm
percent (in
hours/days/weeks)"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Proactive Problem Percent": [

{

"Server Name": "esx51-15",

"ProactivePercent": "80"

},

{

"Server Name": "win183",

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

231

Type Code Content

"ProactivePercent": "93"

},

.

.

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.50: Retrieving the percentage of proactive alarms for all Components using Postman REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

232

4.14.4 Retrieving Percentage of Proactive Alarms across Components using
cURL

To retrieve the percentage of proactive alarms across all components managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProactiveProblemPercent/servername" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving proactive alarm percent(in hours/days/weeks)\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for all components
managed in the target environment using cURL.

Figure 4.51: Retrieving the percentage of proactive alarms for all Components using cURL

4.14.5 Retrieving Percentage of Proactive Alarms specific to Layers of a
Component Type

URL: http://192.168.8.206:7077/api/eg/analytics/getProactiveProblemPercent/layer

Method: POST

Content-Type: application/json

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

233

Parameters Key values Example

Headers managerurl: Base URL of
the eG Manager i.e.,
http://<IP address of the
eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

{

"timeline":"1 hour",

"servertype":"Microsoft Windows"

}

Body Default:

{

"timeline":"Timeline for
retrieving proactive
alarm percent (in
hours/days/weeks)",

"servertype":"Component
Type"

}

Inputs to be Specified

Type Code Content

JSON 200 {

"Proactive Problem Percent": [

{

"Layer Name": "Operating System",

"ProactivePercent": "95"

},

{

"Layer Name": "eG Application",

Success Response

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

234

Type Code Content

"ProactivePercent": "38"

},

.

.

.

}

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 4.52: Retrieving the percentage of proactive alarms for the layers of a component type using Postman
REST Client

Chapter 4: Retrieving Analyti cal Data f rom eG Manager Using eG REST API

235

4.14.6 Retrieving Percentage of Proactive Alarms specific to Layers of a
Component Type using cURL

To retrieve the percentage of proactive alarms specific to layers of a component typemanaged in the
target environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/analytics/getProactiveProblemPercent/layer" -H "user:<eG username or

domain/eG username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager

IP:Port>" -H "Content-Type: application/json" --data-raw "{\"timeline\":\"Timeline for

retrieving proactive alarm percent(in hours/days/weeks)\",\"servertype\":\"Component

Type\"}"

Figure 4.49 shows an example of retrieving the percentage of proactive alarms for the layers specific
to a component typemanaged in the target environment using cURL.

Figure 4.53: Retrieving the percentage of proactive alarms for the layers of a component type using cURL

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

236

Chapter 5: ExtractingMiscellaneous Data from eG Manager
Using eG REST API

In some environments, administrators may need certain additional information with respect to the
infrastructure configured in the eGmanager. For example, administrators may need to figure out the
tests and measures supported by eG Enterprise. Such data can be retrieved with ease using the
REST API commands.

The sections below will discuss in detail on the miscellaneous data that can be extracted from the
eG Manager.

5.1 Retrieving Details of Components Managed in the target
environment
The eG REST API can be used to retrieve all the components managed in the eG Manager along
with their respective Component Types. For this, specify the URL in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getComponentMapping

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Not Applicable

Inputs to be Specified

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

237

Type Code Content

JSON 200 [

{

"ComponentType": "Cisco_router",

"servers": [

"cisco_router_d"

]

},

{

"ComponentType": "Citrix_NetScaler",

"servers": [

"Netscaler176",

"Netscaler"

]

},

.

.

.

}

]

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

238

Figure 5.1: Retrieving the components corresponding to all Component Types using Postman REST Client

5.1.1 Retrieving Details of Components Managed in the target environment
using cURL

To retrieve the components corresponding to all component types managed in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getComponentMapping" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw ""

Figure 5.2 shows an example for retrieving the components corresponding to all component types
managed in the target environment using cURL.

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

239

Figure 5.2: Retrieving the components corresponding to all Component Types using cURL

5.2 Retrieving Zone Details from eG Manager
To retrieve the details of the zones and the elements associated with the zone (services, segments,
servers etc), administrators can use the eG REST API. The URL can be specified in the following
format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getZoneMapping

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded

Not Applicable

Inputs to be Specified

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

240

Parameters Key values Example

password

Type Code Content

JSON 200 [

{

"zone": "Zone-VDI",

"Group": [],

"Service": [],

"Segment": [],

"Server": [

"eGDP169:7077",

"java183:13600",

"win183",

"mssql100:1433"

]

},

.

.

.

}

]

Success Response

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

241

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Figure 5.3: etrieving the details of the zones created in the target environment using Postman REST Client

5.2.1 Retrieving Zone Details from eG Manager using cURL

To retrieve the details of the zones and the elements associated with the zone (services, segments,
servers etc) in the target environment using cURL, the command should be specified in the following
format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getZoneMapping" -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" --data-raw

""

Figure 5.4 shows an example for retrieving the details of all the zones created in the target
environment using cURL.

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

242

Figure 5.4: Retrieving the details of the zones created in the target environment using cURL

5.3 Retrieving the Tests Supported by eh Enterprise Using
eG REST API
To retrieve the tests that are available in eG Enterprise for execution, by default, administrators can
use the eG REST API. The URL can be specified in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getTestMapping

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

Not Applicable

Inputs to be Specified

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

243

Parameters Key values Example

pwd: Base64 encoded
password

Type Code Content

JSON 200 {

"IBSubnetMgrTest": "IB Subnet Manager Statistics",

"IBSmaPortTest": "IB SMA Port",

"IBPmaExtPortTest": "IB PMA Extended Port",

"IBPmaPortTest": "IB PMA Port",

"IBFabricElemTest": "Fabric Elements",

"Db2DPFSQLNetTest": "Db2 DPF SQL Network",

"FileUpdateTest": "File Updates",

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

244

Figure 5.5: Retrieving the tests supported by eG Enterprise using Postman REST Client

5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL

To retrieve the details of the tests available in eG Enterprise for execution in the target environment
using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getTestMapping" -H "user:<eG username or domain/eG username>"

-H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" --data-raw

""

Figure 5.6 shows an example cURL command for retrieving the details of all the tests available for
execution in the target environment.

Figure 5.6: An example cURL command to retrieve the tests supported by eG Enterprise

Figure 3 shows a sample output that retrieves the tests supported by eG Enterprise using cURL.

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

245

Figure 5.7: Sample output with the list of tests supported by eG Enterprise

5.4 Retrieving the Measurements Reported by eG Enterprise
To retrieve the measures that are reported by eG Enterprise, by default, administrators can use the
eG REST API. The URL can be specified in the following format:

URL: http://192.168.8.206:7077/api/eg/miscservice/getMeasureMapping

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded

Not Applicable

Inputs to be Specified

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

246

Parameters Key values Example

password

Type Code Content

JSON 200 {

"IBSubnetMgrTest:smCntSMPsOutstanding":
"Outstanding packets",

"IBSubnetMgrTest:smCntSMPsOnWire": "Onwire
packets",

"IBSubnetMgrTest:smCntSMPsReceived": "Packets
received",

"IBSubnetMgrTest:smCntSMPsSent": "Packets
transmitted",

"IBSubnetMgrTest:smCntSMPsUnidirect": "Responseless
packets transmitted",

"IBSubnetMgrTest:smCntSMPsUnknownReceived":
"Unknown packets received",

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

247

Figure 5.8: Retrieving the list of measurements using Postman REST Client

5.4.1 Retrieving theMeasurements Reported by eG Enterprise using cURL

To retrieve the measures reported by eG Enterprise by monitoring the components in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getMeasureMapping" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw ""

Figure 5.9 shows an example cURL command for retrieving the measurements reported by
eG Enterprise bymonitoring the components in the target environment.

Figure 5.9: An example cURL command to retrieve themeasurements

Figure 3 shows a sample output that retrieves the measurements reported by eG Enterprise using
cURL.

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

248

Figure 5.10: Sample output with the list of measurements supported by eG Enterprise

5.5 Retrieving Applications Monitored by eG Enterprise Using
eG REST API
In order to retrieve the applications that are monitored by eG Enterprise by default, administrators
can use the eG REST API.

URL: http://192.168.8.206:7077/api/eg/miscservice/getApplicationMapping

Method: POST

Content-Type: application/json

Parameters Key values Example

Headers managerurl: Base
URL of the
eG Manager i.e.,
http://<IP address of
the eG console:Port>

user: eG username or
domain/eG username

pwd: Base64 encoded
password

Not Applicable

Inputs to be Specified

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

249

Type Code Content

JSON 200 {

"Infiniband_Switch": "InfiniBand Switch",

"MSExchangeOnline_domain": "Exchange Online
Domain",

"MSExchangeOnline_service": "Exchange Online
Tenant",

"CouchDB_Server": "Apache CouchDB",

"VMWareHorizon_Workspace_one": "Vmware Horizon
Workspace One",

"Alibaba_Cloud": "Alibaba Cloud",

"OracleExadataStorage": "Oracle Exadata Storage
Server",

.

.

.

}

Success Response

Type Code Content

JSON 401
UNAUTHORIZED

{"code": 401,"error": "Unauthorized user"}

JSON 500 Server Error {"code": 500,"error": " Server Error "}

Failure Response

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

250

Figure 5.11: Retrieving the list of applications monitored using Postman REST Client

5.5.1 Retrieving the ApplicationsMonitored by eG Enterprise using cURL

To retrieve the measures reported by eG Enterprise by monitoring the components in the target
environment using cURL, the command should be specified in the following format:

curl -location -request POST "http://<eG Manager

IP:Port>/api/eg/miscservice/getApplicationMapping" -H "user:<eG username or domain/eG

username>" -H "pwd:Base64 encoded password" -H "managerurl:http://<eG Manager IP:Port>" -

-data-raw ""

Figure 5.12 shows an example cURL command for retrieving the applications monitored by
eG Enterprise.

Figure 5.12: An example cURL command to retrieve the applications monitored by eG Enterprise

Figure 3 shows a sample output that retrieves the measurements reported by eG Enterprise using
cURL.

Chapter 5: Extracting Miscel laneous Data f rom eG Manager Using eG REST API

251

Figure 5.13: Sample output with the list of applications monitored by eG Enterprise

About eG Innovations

252

About eG Innovations

eG Innovations provides intelligent performance management solutions that automate and
dramatically accelerate the discovery, diagnosis, and resolution of IT performance issues in on-
premises, cloud and hybrid environments. Where traditional monitoring tools often fail to provide
insight into the performance drivers of business services and user experience, eG Innovations
provides total performance visibility across every layer and every tier of the IT infrastructure that
supports the business service chain. From desktops to applications, from servers to network and
storage, from virtualization to cloud, eG Innovations helps companies proactively discover, instantly
diagnose, and rapidly resolve even themost challenging performance and user experience issues.

eG Innovations is dedicated to helping businesses across the globe transform IT service delivery into
a competitive advantage and a center for productivity, growth and profit. Many of the world’s largest
businesses use eG Enterprise to enhance IT service performance, increase operational efficiency,
ensure IT effectiveness and deliver on the ROI promise of transformational IT investments across
physical, virtual and cloud environments.

To learnmore visit www.eginnovations.com.

Contact Us

For support queries, email support@eginnovations.com.

To contact eG Innovations sales team, email sales@eginnovations.com.

Copyright © 2020 eG Innovations Inc. All rights reserved.

This document may not be reproduced by any means nor modified, decompiled, disassembled,
published or distributed, in whole or in part, or translated to any electronic medium or other means
without the prior written consent of eG Innovations. eG Innovations makes no warranty of any kind
with regard to the software and documentation, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The information contained in this document is
subject to change without notice.

All right, title, and interest in and to the software and documentation are and shall remain the
exclusive property of eG Innovations. All trademarks, marked and not marked, are the property of
their respective owners. Specifications subject to change without notice.

	Chapter 1: Introduction
	1.1 What does the REST API enable?

	Chapter 1: How Does eG REST API Work?
	1.2 Pre-Requisites for Configuring the Target Environment using the REST API
	1.3 Actions Supported by the eG REST API

	Chapter 2: The REST API Commands for Orchestration of eG Administrative Interface
	2.1 Adding Components
	2.1.1 Adding Components using cURL

	2.2 Adding External Agents
	2.2.1 Adding External Agents using cURL

	2.3 Adding Groups
	2.3.1 Adding a Group using cURL

	2.4 Adding Maintenance Policies
	2.4.1 Adding Maintenance Policies using cURL

	2.5 Adding Remote Agents
	2.5.1 Adding Remote Agents using cURL

	2.6 Adding a User
	2.6.1 Adding a User using cURL

	2.7 Adding a Zone
	2.7.1 Adding a Zone using cURL

	2.8 Assigning an Agent
	2.8.1 Assigning an Agent using cURL

	2.9 Assigning a Maintenance Policy
	2.9.1 Assigning a Maintenance Policy using cURL

	2.10 Associating Components to User
	2.10.1 Associating Components to User using cURL

	2.11 Deleting a Component
	2.11.1 Deleting a Component using cURL

	2.12 Deleting an External Agent
	2.12.1 Deleting an External Agent using cURL

	2.13 Deleting a Group
	2.13.1 Deleting a Group using cURL

	2.14 Deleting a Maintenance Policy
	2.14.1 Deleting a Maintenance Policy using cURL

	2.15 Deleting a Remote Agent
	2.15.1 Deleting a Remote Agent using cURL

	2.16 Deleting a User
	2.16.1 Deleting a User using cURL

	2.17 Deleting a Zone
	2.17.1 Deleting a Zone using cURL

	2.18 Disabling Tests
	2.18.1 Disabling Tests using cURL

	2.19 Enabling Tests
	2.19.1 Enabling Tests using cURL

	2.20 Exclude Components for Test
	2.20.1 Excluding Components for Test using cURL

	2.21 Exclude Tests for Component
	2.21.1 Excluding Tests for Component using cURL

	2.22 Include Components for Test
	2.22.1 Include Components for Test using cURL

	2.23 Include Tests for Component
	2.23.1 Including Tests for Component using cURL

	2.24 Managing Components
	2.24.1 Managing Components using cURL

	2.25 Modifying a Component
	2.25.1 Modifying a Component using cURL

	2.26 Modifying a Group
	2.26.1 Modifying a Group using cURL

	2.27 Modifying a Maintenance Policy
	2.27.1 Modifying a Maintenance Policy using cURL

	2.28 Modifying a User
	2.28.1 Modifying a User using cURL

	2.29 Modifying a Zone
	2.29.1 Modifying a Zone using cURL

	2.30 Renaming a Group
	2.30.1 Renaming a Group using cURL

	2.31 Renaming a Zone
	2.31.1 Renaming a Zone using cURL

	2.32 Displaying Components
	2.32.1 Displaying Components using cURL

	2.33 Displaying External Agents
	2.33.1 Displaying External Agents using cURL

	2.34 Displaying Remote Agents
	2.34.1 Displaying Remote Agents using cURL

	2.35 Displaying Maintenance Policies
	2.35.1 Displaying Maintenance Policies using cURL

	2.36 Displaying Details of Maintenance Policies
	2.36.1 Displaying Details of Maintenance Policies using cURL

	2.37 Displaying the Hosts Managed in the Target Environment
	2.37.1 Displaying the Hosts Managed in the Target Environment using cURL

	2.38 Displaying the Details of the Tests
	2.38.1 Displaying the Details of the Tests using cURL

	2.39 Displaying Test Names for a Component Type
	2.39.1 Displaying Test Names for a Component Type using cURL

	2.40 Disassociating Agents from Managers in a Redundant Setup
	2.40.1 Disassociating Agents from Managers in a Redundant Setup using cURL

	2.41 Unmanaging a Component
	2.41.1 Unmanaging a Component using cURL

	Chapter 3: Performing Operations in Bulk Using eG REST API
	3.1 Adding Components in Bulk
	3.1.1 Adding Components in Bulk using cURL

	3.2 Managing Components in Bulk
	3.2.1 Managing Components in Bulk using cURL
	3.2.2 Managing Components in Bulk using cURL

	3.3 Modifying Components in Bulk
	3.3.1 Modifying Components in Bulk using cURL

	3.4 Deleting Components in Bulk
	3.4.1 Deleting Components in Bulk using cURL

	3.5 Unmanaging Components in Bulk
	3.5.1 Unmanaging Components in Bulk using cURL

	3.6 Adding Remote Agents in Bulk
	3.6.1 Adding Remote Agents in Bulk using cURL

	3.7 Adding External Agents in Bulk
	3.7.1 Adding External Agents in Bulk using cURL

	3.8 Deleting Remote Agents in Bulk
	3.8.1 Deleting Remote Agents in Bulk using cURL

	3.9 Deleting External Agents in Bulk
	3.9.1 Deleting External Agents in Bulk using cURL

	Chapter 4: Retrieving Analytical Data from eG Manager Using eG REST API
	4.1 Retrieving Count of Alarms Raised in the Target Environment
	4.1.1 Retrieving Count of Alarms Raised in the Target Environment using cURL

	4.2 Retrieving Live Measures of a Component
	4.2.1 Retrieving Live Measures of a Component using cURL

	4.3 Retrieving Historical Data of a Measure
	4.3.1 Retrieving Historical Data of a Measure using cURL

	4.4 Retrieving Detailed Diagnosis of a Measure
	4.4.1 Retrieving Detailed diagnosis of a Measure using cURL

	4.5 Retrieving Top-N Analysis Data
	4.5.1 Retrieving Top-N Analysis Data using cURL

	4.6 Retrieving Test Data
	4.6.1 Retrieving Test Data using cURL

	4.7 Retrieving Trend Data
	4.7.1 Retrieving Trend Data using cURL

	4.8 Retrieving Threshold Data
	4.8.1 Retrieving Threshold Data using cURL

	4.9 Retrieving Infrastructure Health
	4.9.1 Retrieving Infrastructure Health using cURL

	4.10 Retrieving Problem Distribution of Components
	4.10.1 Retrieving Problem Distribution of Components using cURL

	4.11 Retrieving Problem Distribution of the Target Environment
	4.11.1 Retrieving Problem Distribution for all Component Types
	4.11.2 Retrieving Problem Distribution for all Component Types using cURL
	4.11.3 Retrieving Problem Distribution for all Components
	4.11.4 Retrieving Problem Distribution for all Components using cURL
	4.11.5 Retrieving Problem Distribution of the Layers of a Component Type
	4.11.6 Retrieving Problem Distribution of the Layers of a Component Type using cURL
	4.11.7 Retrieving Problem Distribution of the Tests of a Component Type
	4.11.8 Retrieving Problem Distribution of the Tests of a Component Type using cURL

	4.12 Retrieving the Count of Events from Alarm History
	4.12.1 Retrieving the Count of Events from Alarm History for all Component Types
	4.12.2 Retrieving the Count of Events from Alarm History for all Component Types using cURL
	4.12.3 Retrieving the Count of Events for all Components
	4.12.4 Retrieving the Count of Events for all Components using cURL
	4.12.5 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type
	4.12.6 Retrieving the Count of Events from Alarm History specific to Layers of a Component Type using cURL
	4.12.7 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type
	4.12.8 Retrieving the Count of Events from Alarm History specific to Tests of a Component Type using cURL

	4.13 Retrieving Problem Duration
	4.13.1 Retrieving Problem Duration for Component Types
	4.13.2 Retrieving Problem Duration for all Component Types using cURL
	4.13.3 Retrieving Problem Duration for all Components
	4.13.4 Retrieving Problem Duration for all Components using cURL
	4.13.5 Retrieving Problem Duration for all Layers of a Component Type
	4.13.6 Retrieving Problem Duration for all Layers of a Component Type using cURL
	4.13.7 Retrieving Problem Duration for all Tests of a Component Type
	4.13.8 Retrieving Problem Duration for all Tests of a Component Type using cURL

	4.14 Retrieving Percentage of Proactive Alarms in the Target Environment
	4.14.1 Retrieving Percentage of Proactive Alarms across Component Types
	4.14.2 Retrieving Percentage of Proactive Alarms across Component Types using cURL
	4.14.3 Retrieving Percentage of Proactive Alarms across all Components
	4.14.4 Retrieving Percentage of Proactive Alarms across Components using cURL
	4.14.5 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type
	4.14.6 Retrieving Percentage of Proactive Alarms specific to Layers of a Component Type using cURL

	Chapter 5: Extracting Miscellaneous Data from eG Manager Using eG REST API
	5.1 Retrieving Details of Components Managed in the target environment
	5.1.1 Retrieving Details of Components Managed in the target environment using cURL

	5.2 Retrieving Zone Details from eG Manager
	5.2.1 Retrieving Zone Details from eG Manager using cURL

	5.3 Retrieving the Tests Supported by eh Enterprise Using eG REST API
	5.3.1 Retrieving the Tests Supported by eG Enterprise using cURL

	5.4 Retrieving the Measurements Reported by eG Enterprise
	5.4.1 Retrieving the Measurements Reported by eG Enterprise using cURL

	5.5 Retrieving Applications Monitored by eG Enterprise Using eG REST API
	5.5.1 Retrieving the Applications Monitored by eG Enterprise using cURL

	About eG Innovations

